1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
|
#ifdef NMZ_COCOA
/*
* Copyright (C) 2012-2014 Winfried Bruns, Christof Soeger
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#include <fstream>
#include <sstream>
#include <string>
#include <sys/stat.h>
#include "libnormaliz/nmz_integrate.h"
#include "libnormaliz/cone.h"
#include "libnormaliz/full_cone.h"
#include "libnormaliz/vector_operations.h"
// #include "libnormaliz/map_operations.h"
#include "libnormaliz/dynamic_bitset.h"
#include "libnormaliz/list_and_map_operations.h"
using namespace CoCoA;
#include "../libnormaliz/my_omp.h"
namespace libnormaliz {
bool verbose_INT;
void processInputPolynomial(const string& poly_as_string,
const SparsePolyRing& R,
const SparsePolyRing& RZZ,
const bool& do_leadCoeff,
const long dim,
PolynomialData& PolData) {
// "res" stands for "result"
// resPrimeFactors are homogenized, the "nonhom" come from the original polynomial
string input_string = poly_as_string;
size_t semicolon = input_string.find(';');
if (semicolon != string::npos) { // remove semicolon
input_string[semicolon] = ' ';
}
vector<string> inputFactors;
while (true) {
size_t sep = input_string.find('|');
if (sep == string::npos)
break;
inputFactors.push_back(input_string.substr(0, sep));
input_string = input_string.substr(sep + 1);
}
inputFactors.push_back(input_string);
vector<RingElem> factorsRead;
for (auto& inp : inputFactors)
factorsRead.push_back(ReadExpr(R, inp));
vector<long> rawMultiplicities;
vector<RingElem> rawPrimeFactorsNonhom;
if (verbose_INT)
verboseOutput() << "Polynomial read" << endl;
bool homogeneous = true;
RingElem remainingFactor = one(R);
for (auto& G : factorsRead) {
// we factor the polynomials read and make them integral this way they
// must further be homogenized and converted to polynomials with ZZ
// coefficients (instead of integral QQ) The homogenization is necessary
// to allow substitutions over ZZ
if (deg(G) == 0) {
remainingFactor *= G; // constants go into remainingFactor
continue; // this extra treatment would not be necessary
}
// homogeneous=(G==LF(G));
vector<RingElem> compsG = homogComps(G);
// we test for homogeneity. In case do_leadCoeff==true, polynomial
// is replaced by highest homogeneous component
if (G != compsG[compsG.size() - 1]) {
homogeneous = false;
if (do_leadCoeff) {
G = compsG[compsG.size() - 1];
}
}
factorization<RingElem> FF = factor(G); // now the factorization and transfer to integer coefficients
for (long j = 0; j < (long)FF.myFactors().size(); ++j) {
rawPrimeFactorsNonhom.push_back(FF.myFactors()[j]); // these are the factors of the polynomial to be integrated
rawMultiplicities.push_back(FF.myMultiplicities()[j]);
}
remainingFactor *= FF.myRemainingFactor();
}
if (verbose_INT && do_leadCoeff && !homogeneous)
verboseOutput() << "Polynomial is inhomogeneous. Replacing it by highest homogeneous component" << endl;
PolData.homogeneous = homogeneous;
// we collect the factors from the various input factors
// no way to work with a map since there is no order of RingElem
vector<RingElem> primeFactorsNonhom;
vector<RingElem> primeFactors;
vector<long> multiplicities;
for (size_t i = 0; i < rawPrimeFactorsNonhom.size(); ++i) {
bool found = false;
for (size_t j = 0; j < primeFactorsNonhom.size(); ++j) {
if (rawPrimeFactorsNonhom[i] == primeFactorsNonhom[j]) {
multiplicities[j] += rawMultiplicities[i];
found = true;
break;
}
}
if (!found) {
primeFactorsNonhom.push_back(rawPrimeFactorsNonhom[i]);
primeFactors.push_back(makeZZCoeff(homogenize(rawPrimeFactorsNonhom[i]), RZZ));
multiplicities.push_back(rawMultiplicities[i]);
}
}
PolData.FF = ourFactorization(primeFactors, multiplicities, remainingFactor); // assembles the data
ourFactorization FFNonhom(primeFactorsNonhom, multiplicities, remainingFactor); // for output
long nf = PolData.FF.myFactors.size(); // No real need to make FFNonhom
if (verbose_INT) {
verboseOutput() << "Factorization" << endl; // we show the factorization so that the user can check
for (long i = 0; i < nf; ++i)
verboseOutput() << FFNonhom.myFactors[i] << " mult " << PolData.FF.myMultiplicities[i] << endl;
verboseOutput() << "Remaining factor " << PolData.FF.myRemainingFactor << endl << endl;
}
PolData.F = one(R); // the polynomial to be integrated with QQ coefficients
for (const auto& G : factorsRead)
PolData.F *= G;
PolData.degree = deg(PolData.F);
PolData.Factorial.resize(PolData.degree + dim); // precomputed values
for (long i = 0; i < PolData.degree + dim; ++i)
PolData.Factorial[i] = factorial(i);
PolData.FactQuot.resize(PolData.degree + dim); // precomputed values
for (long i = 0; i < PolData.degree + dim; ++i)
PolData.FactQuot[i] = PolData.Factorial.back() / PolData.Factorial[i];
PolData.dimension = dim;
}
BigRat IntegralUnitSimpl(const RingElem& F, const SparsePolyRing& P, const PolynomialData& PolData, const long& rank) {
long dim = NumIndets(P);
vector<long> v(dim);
SparsePolyIter mon = BeginIter(F); // go over the given polynomial
map<vector<long>, RingElem> orderedMons; // will take the ordered exponent vectors
for (; !IsEnded(mon); ++mon) {
exponents(v, PP(mon)); // this function gives the exponent vector back as v
sort(v.begin() + 1, v.begin() + rank + 1);
auto ord_mon = orderedMons.find(v); // insert into map or add coefficient
if (ord_mon != orderedMons.end()) {
ord_mon->second += coeff(mon);
}
else {
orderedMons.insert(pair<vector<long>, RingElem>(v, coeff(mon)));
}
}
long deg;
BigInt facProd, I;
I = 0;
for (const auto& ord_mon : orderedMons) {
deg = 0;
v = ord_mon.first;
IsInteger(facProd, ord_mon.second); // start with coefficient and multiply by Factorials
for (long i = 1; i <= rank; ++i) {
deg += v[i];
facProd *= PolData.Factorial[v[i]];
}
I += facProd * PolData.FactQuot[deg + rank - 1]; // maxFact/Factorial[deg+rank-1];
}
BigRat Irat;
Irat = I;
return Irat / PolData.Factorial.back();
}
template <typename Number>
BigRat substituteAndIntegrate(const vector<vector<Number> >& A,
const vector<Number>& degrees,
const BigInt& lcmDegs,
const SparsePolyRing& R,
const PolynomialData& PolData) {
// applies linear substitution y --> y*(lcmDegs*A/degrees) to all factors in FF
// where row A[i] is divided by degrees[i]
// After substitution the polynomial is integrated over the unit simplex
// and the integral is returned
size_t i;
size_t m = A.size();
long rank = (long)m; // we prefer rank to be of type long
vector<RingElem> v(m, zero(R));
BigInt quot;
for (i = 0; i < m; i++) {
quot = lcmDegs / degrees[i];
v[i] = indets(R)[i + 1] * quot;
}
vector<RingElem> w = VxM(v, A);
vector<RingElem> w1(w.size() + 1, zero(R));
w1[0] = RingElem(R, lcmDegs);
for (i = 1; i < w1.size(); ++i) // we have to shift w since the (i+1)st variable
w1[i] = w[i - 1]; // corresponds to coordinate i (counted from 0)
// RingHom phi=PolyAlgebraHom(R,R,w1);
RingElem G1(zero(R));
list<RingElem> sortedFactors;
for (i = 0; i < PolData.FF.myFactors.size(); ++i) {
// G1=phi(FF.myFactors[i]);
G1 = mySubstitution(PolData.FF.myFactors[i], w1);
for (int nn = 0; nn < PolData.FF.myMultiplicities[i]; ++nn)
sortedFactors.push_back(G1);
}
sortedFactors.sort(compareLength);
RingElem G(one(R));
for (const auto& sf : sortedFactors)
G *= sf;
// verboseOutput() << "Evaluating integral over unit simplex" << endl;
// dynamic_bitset dummyInd;
// vector<long> dummyDeg(degrees.size(),1);
return (IntegralUnitSimpl(G, R, PolData, rank)); // orderExpos(G,dummyDeg,dummyInd,false)
}
template <typename Integer>
void readGens(Cone<Integer>& C, Matrix<long>& gens, const vector<long>& grading, bool check_ascending) {
// get from C for nmz_integrate functions
size_t i, j;
size_t nrows, ncols;
nrows = C.getBasicTriangulation().second.nr_of_rows();
ncols = C.getEmbeddingDim();
gens.resize(nrows, ncols);
for (i = 0; i < nrows; i++) {
for (j = 0; j < ncols; j++) {
convert(gens[i], C.getBasicTriangulation().second[i]);
}
if (check_ascending) {
long degree, prevDegree = 1;
degree = v_scalar_product(gens[i], grading);
if (degree < prevDegree) {
throw FatalException(" Degrees of generators not weakly ascending!");
}
prevDegree = degree;
}
}
}
void integrate(SignedDec<mpz_class>& SD, const bool do_virt_mult) {
GlobalManager CoCoAFoundations;
try {
bool verbose_INTsave = verbose_INT;
verbose_INT = SD.verbose;
if (verbose_INT) {
verboseOutput() << "==========================================================" << endl;
verboseOutput() << "Integration over signed decomposition" << endl;
verboseOutput() << "==========================================================" << endl << endl;
}
long dim = SD.dim;
bool do_transformation = false;
long rank = dim; // we are in the full dimensional case or:
if (SD.Embedding.nr_of_rows() > 0) {
dim = SD.Embedding[0].size();
do_transformation = true;
}
vector<mpz_class> grading = SD.GradingOnPrimal; // to use the same names as in the standard integrate(...)
mpz_class gradingDenom = v_gcd(grading);
SparsePolyRing R = NewPolyRing_DMPI(RingQQ(), dim + 1, lex);
SparsePolyRing RZZ = NewPolyRing_DMPI(RingZZ(), PPM(R)); // same indets and ordering as R
INTERRUPT_COMPUTATION_BY_EXCEPTION
PolynomialData PolData;
processInputPolynomial(SD.Polynomial, R, RZZ, do_virt_mult, dim, PolData);
SD.DegreeOfPolynomial = PolData.degree;
if (verbose_INT) {
verboseOutput() << "********************************************" << endl;
verboseOutput() << SD.size_hollow_triangulation << " simplicial cones to be evaluated" << endl;
verboseOutput() << "********************************************" << endl;
}
size_t progress_step = 10;
if (SD.size_hollow_triangulation >= 1000000)
progress_step = 100;
size_t nrSimplDone = 0;
vector<AdditionPyramid<BigRat> > I_thread(omp_get_max_threads());
vector<mpz_class> Collect_mpz(omp_get_max_threads(), 0);
std::exception_ptr tmp_exception;
bool skip_remaining = false;
int omp_start_level = omp_get_level();
#pragma omp parallel
{
mpz_class det, det_dual;
vector<mpz_class> degrees(rank);
Matrix<mpz_class> A(rank, dim);
Matrix<mpz_class> A_0(rank, rank);
BigRat ISimpl; // integral over a simplex
mpz_class prodDeg; // product of the degrees of the generators
RingElem h(zero(R));
mpz_class MinusOne = -1;
vector<BigInt> degreesBigInt(rank);
BigInt lcmDegsBigInt;
vector<vector<BigInt> > ABigInt(A.nr_of_rows());
for (size_t i = 0; i < A.nr_of_rows(); ++i)
ABigInt[i].resize(A.nr_of_columns());
BigInt prodDegBigInt;
BigInt detBigInt;
auto S = SD.SubfacetsBySimplex->begin();
size_t nr_subfacets_by_simplex = SD.SubfacetsBySimplex->size();
int tn = 0;
if (omp_in_parallel())
tn = omp_get_ancestor_thread_num(omp_start_level + 1);
size_t ppos = 0;
#pragma omp for schedule(dynamic)
for (size_t fac = 0; fac < nr_subfacets_by_simplex; ++fac) {
if (skip_remaining)
continue;
for (; fac > ppos; ++ppos, ++S)
;
for (; fac < ppos; --ppos, --S)
;
try {
list<dynamic_bitset> SubfacetsOfSimplex; // now we reproduce the subfacets of the hollow triangulation
for (size_t i = 0; i < SD.nr_gen; ++i) { // coming from simplex S
if (S->second[i]) {
SubfacetsOfSimplex.push_back(S->first);
SubfacetsOfSimplex.back()[i] = 0;
}
}
for (auto& Subfacet : SubfacetsOfSimplex) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
size_t g = 0; // select generators in subfacet
Matrix<mpz_class> DualSimplex(rank, rank);
for (size_t i = 0; i < SD.nr_gen; ++i) {
if (Subfacet[i] == 1) {
DualSimplex[g] = SD.Generators[i];
g++;
}
}
DualSimplex[rank - 1] = SD.Generic;
if (do_transformation) {
DualSimplex.simplex_data(identity_key(rank), A_0, det_dual, true);
A = A_0.multiplication(SD.Embedding);
degrees = A_0.MxV(grading);
det = A_0.vol();
}
else {
DualSimplex.simplex_data(identity_key(rank), A, det_dual, true);
degrees = A.MxV(grading);
det = A.vol();
}
long our_sign = 1;
mpz_class lcmDegs = 1;
prodDeg = 1;
for (int i = 0; i < rank; ++i) {
if (degrees[i] < 0) {
our_sign = -our_sign;
degrees[i] = -degrees[i];
v_scalar_multiplication(A[i], MinusOne);
}
degrees[i] /= gradingDenom;
lcmDegs = libnormaliz::lcm(lcmDegs, degrees[i]);
prodDeg *= degrees[i];
}
// cout << "-----------------" << endl;
// A.pretty_print(cout);
// cout << "-----------------" << endl;
// We transfer our data to CoCoALib types. This is not necessary if we come from long
// since CoCoALib allows multiplication by long etc. Not so for mpz_class
lcmDegsBigInt = BigIntFromMPZ(lcmDegs.get_mpz_t());
for (size_t i = 0; i < A.nr_of_rows(); ++i) {
for (size_t j = 0; j < A.nr_of_columns(); ++j) {
ABigInt[i][j] = BigIntFromMPZ(A[i][j].get_mpz_t());
// cout << ABigInt[i][j] << " ";
}
// cout << endl;
}
for (size_t i = 0; i < degrees.size(); ++i)
degreesBigInt[i] = BigIntFromMPZ(degrees[i].get_mpz_t());
prodDegBigInt = BigIntFromMPZ(prodDeg.get_mpz_t());
detBigInt = BigIntFromMPZ(det.get_mpz_t());
ISimpl = (detBigInt * substituteAndIntegrate(ABigInt, degreesBigInt, lcmDegsBigInt, RZZ, PolData)) /
prodDegBigInt;
ISimpl *= our_sign;
ISimpl /= power(lcmDegsBigInt, PolData.degree); // done here because lcmDegs not used globally
if (SD.approximate) {
BigInt Num = num(ISimpl);
BigInt Den = den(ISimpl);
Num *= BigIntFromMPZ(SD.approx_denominator.get_mpz_t());
Num /= Den;
Collect_mpz[tn] += mpz(Num);
}
else {
I_thread[tn].add(ISimpl);
}
// a little bit of progress report
if ((++nrSimplDone) % progress_step == 0 && verbose_INT)
#pragma omp critical(PROGRESS)
verboseOutput() << nrSimplDone << " simplicial cones done" << endl;
} // S
} // try
catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
} // fac
} // parallel
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
BigRat I; // accumulates the integral
if (SD.approximate) {
mpz_class Total = 0;
for (size_t i = 0; i < Collect_mpz.size(); ++i) {
Total += Collect_mpz[i];
}
BigInt Total_BigInt = BigIntFromMPZ(Total.get_mpz_t());
I = Total_BigInt;
I /= BigIntFromMPZ(SD.approx_denominator.get_mpz_t());
}
else {
I = 0;
for (size_t i = 0; i < I_thread.size(); ++i) {
I += I_thread[i].sum();
}
}
// I /= power(lcmDegs, PolData.degree);
BigRat RFrat;
IsRational(RFrat, PolData.FF.myRemainingFactor); // from RingQQ to BigRat
// cout << "RRRRRR " << RFrat << endl;
I *= RFrat;
// See comment below for this correction
if (gradingDenom != 1) {
I *= BigIntFromMPZ(gradingDenom.get_mpz_t());
}
string result = "Integral";
if (do_virt_mult)
result = "Virtual multiplicity";
BigRat VM = I;
if (do_virt_mult) {
VM *= factorial(PolData.degree + rank - 1);
SD.VirtualMultiplicity = mpq(VM);
}
else {
BigRat I_fact = I * factorial(rank - 1);
mpq_class Int_bridge = mpq(I_fact);
nmz_float EuclInt = mpq_to_nmz_float(Int_bridge);
// EuclInt *= C.euclidean_corr_factor(); // done in cone.cpp!
SD.Integral = mpq(I);
SD.RawEuclideanIntegral = EuclInt;
}
if (verbose_INT) {
verboseOutput() << "********************************************" << endl;
verboseOutput() << result << " is " << endl << VM << endl;
verboseOutput() << "********************************************" << endl;
}
verbose_INT = verbose_INTsave;
} // try global
catch (const CoCoA::ErrorInfo& err) {
cerr << "***ERROR*** UNCAUGHT CoCoA error";
ANNOUNCE(cerr, err);
throw NmzCoCoAException("");
}
}
template <typename Integer>
void integrate(Cone<Integer>& C, const bool do_virt_mult) {
GlobalManager CoCoAFoundations;
std::exception_ptr tmp_exception;
try {
long dim = C.getEmbeddingDim();
// testPolynomial(C.getIntData().getPolynomial(),dim);
bool verbose_INTsave = verbose_INT;
verbose_INT = C.get_verbose();
if (verbose_INT) {
verboseOutput() << "==========================================================" << endl;
verboseOutput() << "Integration" << endl;
verboseOutput() << "==========================================================" << endl << endl;
}
vector<long> grading;
convert(grading, C.getGrading());
long gradingDenom;
convert(gradingDenom, C.getGradingDenom());
long rank = C.getRank();
SparsePolyRing R = NewPolyRing_DMPI(RingQQ(), dim + 1, lex);
SparsePolyRing RZZ = NewPolyRing_DMPI(RingZZ(), PPM(R)); // same indets and ordering as R
INTERRUPT_COMPUTATION_BY_EXCEPTION
PolynomialData PolData;
processInputPolynomial(C.getIntData().getPolynomial(), R, RZZ, do_virt_mult, dim, PolData);
C.getIntData().setDegreeOfPolynomial(PolData.degree);
Matrix<long> gens;
readGens(C, gens, grading, false);
if (verbose_INT)
verboseOutput() << "Generators read" << endl;
BigInt lcmDegs(1);
for (size_t i = 0; i < gens.nr_of_rows(); ++i) {
long deg = v_scalar_product(gens[i], grading);
deg /= gradingDenom;
lcmDegs = lcm(lcmDegs, deg);
}
size_t tri_size = C.getBasicTriangulation().first.size(); // also computes triangulation
size_t k_start = 0, k_end = tri_size;
for (size_t k = 0; k < tri_size; ++k)
for (size_t j = 1; j < C.getBasicTriangulation().first[k].key.size(); ++j)
if (!(C.getBasicTriangulation().first[k].key[j - 1] < C.getBasicTriangulation().first[k].key[j]))
throw FatalException("Key in triangulation not ordered");
if (verbose_INT)
verboseOutput() << "BasicTriangulation is ordered" << endl;
size_t eval_size;
if (k_start >= k_end)
eval_size = 0;
else
eval_size = k_end - k_start;
if (verbose_INT) {
/* if (pseudo_par) {
verboseOutput() << "********************************************" << endl;
verboseOutput() << "Parallel block " << block_nr << endl;
}*/
verboseOutput() << "********************************************" << endl;
verboseOutput() << eval_size << " simplicial cones to be evaluated" << endl;
verboseOutput() << "********************************************" << endl;
}
size_t progress_step = 10;
if (tri_size >= 1000000)
progress_step = 100;
size_t nrSimplDone = 0;
vector<AdditionPyramid<BigRat> > I_thread(omp_get_max_threads());
bool skip_remaining = false;
#pragma omp parallel
{
long det; // rank = C.getBasicTriangulation().first[0].key.size();
vector<long> degrees(rank);
Matrix<long> A(rank, dim);
BigRat ISimpl; // integral over a simplex
BigInt prodDeg; // product of the degrees of the generators
RingElem h(zero(R));
#pragma omp for schedule(dynamic)
for (size_t k = k_start; k < k_end; ++k) {
if (skip_remaining)
continue;
try {
INTERRUPT_COMPUTATION_BY_EXCEPTION
convert(det, C.getBasicTriangulation().first[k].vol);
for (long i = 0; i < rank; ++i) // select submatrix defined by key
A[i] = gens[C.getBasicTriangulation().first[k].key[i]];
degrees = A.MxV(grading);
prodDeg = 1;
for (long i = 0; i < rank; ++i) {
degrees[i] /= gradingDenom;
prodDeg *= degrees[i];
}
// We apply the transformation formula for integrals -- but see below for the correction if the lattice
// height of 0 over the simplex is different from 1
ISimpl = (det * substituteAndIntegrate(A.get_elements(), degrees, lcmDegs, RZZ, PolData)) / prodDeg;
I_thread[omp_get_thread_num()].add(ISimpl);
// a little bit of progress report
if ((++nrSimplDone) % progress_step == 0 && verbose_INT)
#pragma omp critical(PROGRESS)
verboseOutput() << nrSimplDone << " simplicial cones done" << endl;
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
} // triang
} // parallel
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
BigRat I; // accumulates the integral
I = 0;
for (size_t i = 0; i < I_thread.size(); ++i)
I += I_thread[i].sum();
I /= power(lcmDegs, PolData.degree);
BigRat RFrat;
IsRational(RFrat, PolData.FF.myRemainingFactor); // from RingQQ to BigRat
I *= RFrat;
// We integrate over the polytope P which is the intersection of the cone
// with the hyperplane at degree 1. Our transformation formula
// is only correct if assumes that P has the same lattice volume as
// the convex hull of P and 0. Lattice volume comes from the effective lattice.
// Therefore we need a correction factor if the restriction of the absolute
// grading to the effective lattice is (grading on eff latt)/g with g>1.
// this amounts to multiplying the integral by g.
vector<Integer> test_grading = C.getSublattice().to_sublattice_dual_no_div(C.getGrading());
Integer corr_factor = v_gcd(test_grading);
if (corr_factor != gradingDenom) {
mpz_class corr_mpz = convertTo<mpz_class>(corr_factor);
// I*=BigInt(corr_mpz.get_mpz_t());
I *= BigIntFromMPZ(corr_mpz.get_mpz_t());
}
string result = "Integral";
if (do_virt_mult)
result = "Virtual multiplicity";
BigRat VM = I;
if (do_virt_mult) {
VM *= factorial(PolData.degree + rank - 1);
C.getIntData().setVirtualMultiplicity(mpq(VM));
}
else {
BigRat I_fact = I * factorial(rank - 1);
mpq_class Int_bridge = mpq(I_fact);
nmz_float EuclInt = mpq_to_nmz_float(Int_bridge);
EuclInt *= C.euclidean_corr_factor();
C.getIntData().setIntegral(mpq(I));
C.getIntData().setEuclideanIntegral(EuclInt);
}
if (verbose_INT) {
verboseOutput() << "********************************************" << endl;
verboseOutput() << result << " is " << endl << VM << endl;
verboseOutput() << "********************************************" << endl;
}
verbose_INT = verbose_INTsave;
} // try
catch (const CoCoA::ErrorInfo& err) {
cerr << "***ERROR*** UNCAUGHT CoCoA error";
ANNOUNCE(cerr, err);
throw NmzCoCoAException("");
}
}
CyclRatFunct evaluateFaceClasses(const vector<vector<CyclRatFunct> >& GFP, map<vector<long>, RingElem>& faceClasses) {
// computes the generating rational functions
// for the denominator classes collected from proper faces and returns the sum
SparsePolyRing R = owner(faceClasses.begin()->second);
CyclRatFunct H(zero(R));
// vector<CyclRatFunct> h(omp_get_max_threads(),CyclRatFunct(zero(R)));
// vector<CyclRatFunct> h(1,CyclRatFunct(zero(R)));
long mapsize = faceClasses.size();
if (verbose_INT) {
// verboseOutput() << "--------------------------------------------" << endl;
verboseOutput() << "Evaluating " << mapsize << " face classes" << endl;
// verboseOutput() << "--------------------------------------------" << endl;
}
#pragma omp parallel
{
auto den = faceClasses.begin();
long mpos = 0;
CyclRatFunct h(zero(R));
#pragma omp for schedule(dynamic)
for (long dc = 0; dc < mapsize; ++dc) {
for (; mpos < dc; ++mpos, ++den)
;
for (; mpos > dc; --mpos, --den)
;
// verboseOutput() << "mpos " << mpos << endl;
h = genFunct(GFP, den->second, den->first);
h.simplifyCRF();
if (false) { // verbose_INT
#pragma omp critical(VERBOSE)
{
verboseOutput() << "Class ";
for (size_t i = 0; i < den->first.size(); ++i)
verboseOutput() << den->first[i] << " ";
verboseOutput() << "NumTerms " << NumTerms(den->second) << endl;
// verboseOutput() << "input " << den->second << endl;
}
}
// h.showCoprimeCRF();
#pragma omp critical(ADDCLASSES)
H.addCRF(h);
}
} // parallel
faceClasses.clear();
H.simplifyCRF();
return (H);
}
struct denomClassData {
vector<long> degrees;
size_t simplDue;
size_t simplDone;
};
CyclRatFunct evaluateDenomClass(const vector<vector<CyclRatFunct> >& GFP, pair<denomClassData, vector<RingElem> >& denomClass) {
// computes the generating rational function
// for a denominator class and returns it
SparsePolyRing R = owner(denomClass.second[0]);
if (verbose_INT) {
#pragma omp critical(PROGRESS)
{
verboseOutput() << "--------------------------------------------" << endl;
verboseOutput() << "Evaluating denom class ";
for (size_t i = 0; i < denomClass.first.degrees.size(); ++i)
verboseOutput() << denomClass.first.degrees[i] << " ";
verboseOutput() << "NumTerms " << NumTerms(denomClass.second[0]) << endl;
// verboseOutput() << denomClass.second << endl;
verboseOutput() << "--------------------------------------------" << endl;
}
}
CyclRatFunct h(zero(R));
h = genFunct(GFP, denomClass.second[0], denomClass.first.degrees);
denomClass.second[0] = 0; // to save memory
h.simplifyCRF();
return (h);
}
void transferFacePolys(deque<pair<vector<long>, RingElem> >& facePolysThread, map<vector<long>, RingElem>& faceClasses) {
// verboseOutput() << "In Transfer " << facePolysThread.size() << endl;
for (size_t i = 0; i < facePolysThread.size(); ++i) {
auto den_found = faceClasses.find(facePolysThread[i].first);
if (den_found != faceClasses.end()) {
den_found->second += facePolysThread[i].second;
}
else {
faceClasses.insert(facePolysThread[i]);
if (false) { // verbose_INT
#pragma omp critical(VERBOSE)
{
verboseOutput() << "New face class " << faceClasses.size() << " degrees ";
for (size_t j = 0; j < facePolysThread[i].first.size(); ++j)
verboseOutput() << facePolysThread[i].first[j] << " ";
verboseOutput() << endl << flush;
}
}
} // else
}
facePolysThread.clear();
}
libnormaliz::HilbertSeries nmzHilbertSeries(const CyclRatFunct& H, mpz_class& commonDen) {
size_t i;
vector<RingElem> HCoeff0 = ourCoeffs(H.num, 0); // we must convert the coefficients
BigInt commonDenBI(1); // and find the common denominator
vector<BigRat> HCoeff1(HCoeff0.size());
for (i = 0; i < HCoeff0.size(); ++i) {
IsRational(HCoeff1[i], HCoeff0[i]); // to BigRat
commonDenBI = lcm(den(HCoeff1[i]), commonDenBI);
}
commonDen = mpz(commonDenBI); // convert it to mpz_class
BigInt HC2;
vector<mpz_class> HCoeff3(HCoeff0.size());
for (i = 0; i < HCoeff1.size(); ++i) {
HC2 = num(HCoeff1[i] * commonDenBI); // to BigInt
HCoeff3[i] = mpz(HC2); // to mpz_class
}
vector<long> denomDeg = denom2degrees(H.denom);
libnormaliz::HilbertSeries HS(HCoeff3, count_in_map<long, long>(denomDeg));
// HS.simplify();
return (HS);
}
bool compareDegrees(const STANLEYDATA_int& A, const STANLEYDATA_int& B) {
return (A.degrees < B.degrees);
}
bool compareFaces(const SIMPLINEXDATA_INT& A, const SIMPLINEXDATA_INT& B) {
return (A.card > B.card);
}
void prepare_inclusion_exclusion_simpl(const STANLEYDATA_int& S,
const vector<pair<dynamic_bitset, long> >& inExCollect,
vector<SIMPLINEXDATA_INT>& inExSimplData) {
size_t dim = S.key.size();
vector<key_type> key = S.key;
// for (size_t i = 0; i < dim; ++i)
// key[i];
dynamic_bitset intersection(dim), Excluded(dim);
Excluded.set();
for (size_t j = 0; j < dim; ++j) // enough to test the first offset (coming from the zero vector)
if (S.offsets[0][j] == 0)
Excluded.reset(j);
map<dynamic_bitset, long> inExSimpl; // local version of nExCollect
for (const auto& F : inExCollect) {
// verboseOutput() << "F " << F.first << endl;
bool still_active = true;
for (size_t i = 0; i < dim; ++i)
if (Excluded[i] && !F.first.test(key[i])) {
still_active = false;
break;
}
if (!still_active)
continue;
intersection.reset();
for (size_t i = 0; i < dim; ++i) {
if (F.first.test(key[i]))
intersection.set(i);
}
auto G = inExSimpl.find(intersection);
if (G != inExSimpl.end())
G->second += F.second;
else
inExSimpl.insert(pair<dynamic_bitset, long>(intersection, F.second));
}
SIMPLINEXDATA_INT HilbData;
inExSimplData.clear();
vector<long> degrees;
for (const auto& G : inExSimpl) {
if (G.second != 0) {
HilbData.GenInFace = G.first;
HilbData.mult = G.second;
HilbData.card = G.first.count();
degrees.clear();
for (size_t j = 0; j < dim; ++j)
if (G.first.test(j))
degrees.push_back(S.degrees[j]);
HilbData.degrees = degrees;
HilbData.denom = degrees2denom(degrees);
inExSimplData.push_back(HilbData);
}
}
sort(inExSimplData.begin(), inExSimplData.end(), compareFaces);
/* for(size_t i=0;i<inExSimplData.size();++i)
verboseOutput() << inExSimplData[i].GenInFace << " ** " << inExSimplData[i].card << " || " << inExSimplData[i].mult << "
++ "<< inExSimplData[i].denom << endl; verboseOutput() << "InEx prepared" << endl; */
}
template <typename Integer>
void readInEx(Cone<Integer>& C, vector<pair<dynamic_bitset, long> >& inExCollect, const size_t nrGen) {
size_t inExSize = C.getInclusionExclusionData().size(), keySize;
long mult;
dynamic_bitset indicator(nrGen);
for (size_t i = 0; i < inExSize; ++i) {
keySize = C.getInclusionExclusionData()[i].first.size();
indicator.reset();
for (size_t j = 0; j < keySize; ++j) {
indicator.set(C.getInclusionExclusionData()[i].first[j]);
}
mult = C.getInclusionExclusionData()[i].second;
inExCollect.push_back(pair<dynamic_bitset, long>(indicator, mult));
}
}
template <typename Integer>
void readDecInEx(Cone<Integer>& C,
const long& dim, /* list<STANLEYDATA_int_INT>& StanleyDec, */
vector<pair<dynamic_bitset, long> >& inExCollect,
const size_t nrGen) {
// rads Stanley decomposition and InExSata from C
if (C.isComputed(ConeProperty::InclusionExclusionData)) {
readInEx(C, inExCollect, nrGen);
}
// STANLEYDATA_int_INT newSimpl;
// ong i=0;
// newSimpl.key.resize(dim);
long test;
auto SD = C.getStanleyDec_mutable().first.begin();
auto SD_end = C.getStanleyDec_mutable().first.end();
for (; SD != SD_end; ++SD) {
// swap(newSimpl.key,SD->key);
test = -1;
for (long i = 0; i < dim; ++i) {
if ((long)SD->key[i] <= test) {
throw FatalException("Key of simplicial cone not ascending or out of range");
}
test = SD->key[i];
}
/* swap(newSimpl.offsets,SD->offsets);
StanleyDec.push_back(newSimpl);
SD=C.getStanleyDec_mutable().erase(SD);*/
}
// C.resetStanleyDec();
}
template <typename Integer>
void generalizedEhrhartSeries(Cone<Integer>& C) {
GlobalManager CoCoAFoundations;
try {
bool verbose_INTsave = verbose_INT;
verbose_INT = C.get_verbose();
if (verbose_INT) {
verboseOutput() << "==========================================================" << endl;
verboseOutput() << "Weighted Ehrhart series " << endl;
verboseOutput() << "==========================================================" << endl << endl;
}
long i, j;
vector<long> grading;
convert(grading, C.getGrading());
long gradingDenom;
convert(gradingDenom, C.getGradingDenom());
long rank = C.getRank();
long dim = C.getEmbeddingDim();
// processing the input polynomial
SparsePolyRing R = NewPolyRing_DMPI(RingQQ(), dim + 1, lex);
SparsePolyRing RZZ = NewPolyRing_DMPI(RingZZ(), PPM(R)); // same indets and ordering as R
const RingElem& t = indets(RZZ)[0];
INTERRUPT_COMPUTATION_BY_EXCEPTION
PolynomialData PolData;
processInputPolynomial(C.getIntData().getPolynomial(), R, RZZ, false, dim, PolData);
C.getIntData().setDegreeOfPolynomial(PolData.degree);
if (rank == 0) {
vector<RingElem> compsF = homogComps(PolData.F);
CyclRatFunct HRat(compsF[0]);
mpz_class commonDen; // common denominator of coefficients of numerator of H
libnormaliz::HilbertSeries HS(nmzHilbertSeries(HRat, commonDen));
C.getIntData().setWeightedEhrhartSeries(make_pair(HS, commonDen));
C.getIntData().computeWeightedEhrhartQuasiPolynomial();
C.getIntData().setVirtualMultiplicity(0);
return;
}
Matrix<long> gens;
readGens(C, gens, grading, true);
if (verbose_INT)
verboseOutput() << "Generators read" << endl;
long maxDegGen = v_scalar_product(gens[gens.nr_of_rows() - 1], grading) / gradingDenom;
INTERRUPT_COMPUTATION_BY_EXCEPTION
// list<STANLEYDATA_int_INT> StanleyDec;
vector<pair<dynamic_bitset, long> > inExCollect;
readDecInEx(C, rank, inExCollect, gens.nr_of_rows());
if (verbose_INT)
verboseOutput() << "Stanley decomposition (and in/ex data) read" << endl;
list<STANLEYDATA_int>& StanleyDec = C.getStanleyDec_mutable().first;
size_t dec_size = StanleyDec.size();
// Now we sort the Stanley decomposition by denominator class (= degree class)
auto S = StanleyDec.begin();
vector<long> degrees(rank);
Matrix<long> A(rank, dim);
// prepare sorting by computing degrees of generators
BigInt lcmDets(1); // to become the lcm of all dets of simplicial cones
for (; S != StanleyDec.end(); ++S) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
for (i = 0; i < rank; ++i) // select submatrix defined by key
A[i] = gens[S->key[i]];
degrees = A.MxV(grading);
for (i = 0; i < rank; ++i)
degrees[i] /= gradingDenom; // must be divisible
S->degrees = degrees;
lcmDets = lcm(lcmDets, S->offsets.nr_of_rows());
}
if (verbose_INT)
verboseOutput() << "lcm(dets)=" << lcmDets << endl;
StanleyDec.sort(compareDegrees);
if (verbose_INT)
verboseOutput() << "Stanley decomposition sorted" << endl;
vector<pair<denomClassData, vector<RingElem> > > denomClasses;
denomClassData denomClass;
vector<RingElem> ZeroVectRingElem;
for (int j = 0; j < omp_get_max_threads(); ++j)
ZeroVectRingElem.push_back(zero(RZZ));
vector<map<vector<long>, RingElem> > faceClasses(
omp_get_max_threads()); // denominator classes for the faces
// contrary to denomClasses these cannot be sorted beforehand
vector<deque<pair<vector<long>, RingElem> > > facePolys(
omp_get_max_threads()); // intermediate storage
// contribution of faces first collected here, then transferred to faceClasses
// we now make class 0 to get started
S = StanleyDec.begin();
denomClass.degrees = S->degrees; // put degrees in class
denomClass.simplDone = 0;
denomClass.simplDue = 1; // already one simplex to be done
denomClasses.push_back(pair<denomClassData, vector<RingElem> >(denomClass, ZeroVectRingElem));
size_t dc = 0;
S->classNr = dc; // assignment of class 0 to first simpl in sorted order
auto prevS = StanleyDec.begin();
for (++S; S != StanleyDec.end(); ++S, ++prevS) {
if (S->degrees == prevS->degrees) { // compare to predecessor
S->classNr = dc; // assign class to simplex
denomClasses[dc].first.simplDue++; // number of simplices in class ++
}
else {
denomClass.degrees = S->degrees; // make new class
denomClass.simplDone = 0;
denomClass.simplDue = 1;
denomClasses.push_back(pair<denomClassData, vector<RingElem> >(denomClass, ZeroVectRingElem));
dc++;
S->classNr = dc;
}
}
if (verbose_INT)
verboseOutput() << denomClasses.size() << " denominator classes built" << endl;
vector<vector<CyclRatFunct> > GFP; // we calculate the table of generating functions
vector<CyclRatFunct> DummyCRFVect; // for\sum i^n t^ki vor various values of k and n
CyclRatFunct DummyCRF(zero(RZZ));
for (j = 0; j <= PolData.degree; ++j)
DummyCRFVect.push_back(DummyCRF);
for (i = 0; i <= maxDegGen; ++i) {
GFP.push_back(DummyCRFVect);
for (j = 0; j <= PolData.degree; ++j)
GFP[i][j] = genFunctPower1(RZZ, i, j);
}
CyclRatFunct H(zero(RZZ)); // accumulates the series
if (verbose_INT) {
verboseOutput() << "********************************************" << endl;
verboseOutput() << dec_size << " simplicial cones to be evaluated" << endl;
verboseOutput() << "********************************************" << endl;
}
size_t progress_step = 10;
if (dec_size >= 1000000)
progress_step = 100;
size_t nrSimplDone = 0;
std::exception_ptr tmp_exception;
bool skip_remaining = false;
int omp_start_level = omp_get_level();
#pragma omp parallel
{
long degree_b, i;
long det;
bool evaluateClass;
vector<long> degrees;
Matrix<long> A(rank, dim);
auto S = StanleyDec.begin();
RingElem h(zero(RZZ)); // for use in a simplex
CyclRatFunct HClass(zero(RZZ)); // for single class
size_t s, spos = 0;
#pragma omp for schedule(dynamic)
for (s = 0; s < dec_size; ++s) {
if (skip_remaining)
continue;
for (; spos < s; ++spos, ++S)
;
for (; spos > s; --spos, --S)
;
try {
INTERRUPT_COMPUTATION_BY_EXCEPTION
int tn;
if (omp_get_level() == omp_start_level)
tn = 0;
else
tn = omp_get_ancestor_thread_num(omp_start_level + 1);
det = S->offsets.nr_of_rows();
degrees = S->degrees;
for (i = 0; i < rank; ++i) // select submatrix defined by key
A[i] = gens[S->key[i]];
vector<SIMPLINEXDATA_INT> inExSimplData;
if (inExCollect.size() != 0)
prepare_inclusion_exclusion_simpl(*S, inExCollect, inExSimplData);
h = 0;
long iS = S->offsets.nr_of_rows(); // compute numerator for simplex being processed
for (i = 0; i < iS; ++i) {
degree_b = v_scalar_product(degrees, S->offsets[i]);
degree_b /= det;
h += power(t, degree_b) * affineLinearSubstitutionFL(PolData.FF, A.get_elements(), S->offsets[i], det,
RZZ, degrees, lcmDets, inExSimplData, facePolys[tn]);
}
evaluateClass = false; // necessary to evaluate class only once
// #pragma omp critical (ADDTOCLASS)
{
denomClasses[S->classNr].second[tn] += h;
#pragma omp critical(ADDTOCLASS)
{
denomClasses[S->classNr].first.simplDone++;
if (denomClasses[S->classNr].first.simplDone == denomClasses[S->classNr].first.simplDue)
evaluateClass = true;
}
}
if (evaluateClass) {
for (int j = 1; j < omp_get_max_threads(); ++j) {
denomClasses[S->classNr].second[0] += denomClasses[S->classNr].second[j];
denomClasses[S->classNr].second[j] = 0;
}
// denomClasses[S->classNr].second=0; // <-------------------------------------
HClass = evaluateDenomClass(GFP, denomClasses[S->classNr]);
#pragma omp critical(ACCUMULATE)
{ H.addCRF(HClass); }
}
// different strategy for faces, classes collected by threads
if (facePolys[tn].size() >= 20) {
transferFacePolys(facePolys[tn], faceClasses[tn]);
if (faceClasses[tn].size() > 20) {
HClass = evaluateFaceClasses(GFP, faceClasses[tn]);
#pragma omp critical(ACCUMULATE)
{ H.addCRF(HClass); }
}
}
#pragma omp critical(PROGRESS) // a little bit of progress report
{
if ((++nrSimplDone) % progress_step == 0 && verbose_INT)
verboseOutput() << nrSimplDone << " simplicial cones done "
<< endl; // nrActiveFaces-nrActiveFacesOld << " faces done" << endl;
// nrActiveFacesOld=nrActiveFaces;
}
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
} // Stanley dec
} // parallel
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
// collect the contribution of proper faces from inclusion/exclusion as far as not done yet
for (int i = 0; i < omp_get_max_threads(); ++i) {
transferFacePolys(facePolys[i], faceClasses[i]);
if (!faceClasses[i].empty())
H.addCRF(evaluateFaceClasses(GFP, faceClasses[i]));
}
// now we must return to rational coefficients
CyclRatFunct HRat(zero(R));
HRat.denom = H.denom;
HRat.num = makeQQCoeff(H.num, R);
HRat.num *= PolData.FF.myRemainingFactor;
HRat.num /= power(lcmDets, PolData.degree);
HRat.showCoprimeCRF();
mpz_class commonDen; // common denominator of coefficients of numerator of H
libnormaliz::HilbertSeries HS(nmzHilbertSeries(HRat, commonDen));
HS.get_variants(C.getIntData().getWeightedEhrhartSeries().first);
HS.simplify();
/* HS.set_nr_coeff_quasipol(C.getIntData().getWeightedEhrhartSeries().first.get_nr_coeff_quasipol());
HS.set_expansion_degree(C.getIntData().getWeightedEhrhartSeries().first.get_expansion_degree());
HS.set_period_bounded(C.getIntData().getWeightedEhrhartSeries().first.get_period_bounded()); */
C.getIntData().setWeightedEhrhartSeries(make_pair(HS, commonDen));
C.getIntData().computeWeightedEhrhartQuasiPolynomial();
if (C.getIntData().isWeightedEhrhartQuasiPolynomialComputed()) {
mpq_class genMultQ;
long deg = C.getIntData().getWeightedEhrhartQuasiPolynomial()[0].size() - 1;
long virtDeg = C.getRank() + C.getIntData().getDegreeOfPolynomial() - 1;
if (deg == virtDeg)
genMultQ = C.getIntData().getWeightedEhrhartQuasiPolynomial()[0][virtDeg];
genMultQ *= ourFactorial(virtDeg);
genMultQ /= C.getIntData().getWeightedEhrhartQuasiPolynomialDenom();
C.getIntData().setVirtualMultiplicity(genMultQ);
}
verbose_INT = verbose_INTsave;
return;
} // try
catch (const CoCoA::ErrorInfo& err) {
cerr << "***ERROR*** UNCAUGHT CoCoA error";
ANNOUNCE(cerr, err);
throw NmzCoCoAException("");
}
}
#ifndef NMZ_MIC_OFFLOAD // offload with long is not supported
template void integrate(Cone<long>& C, const bool do_virt_mult);
#endif // NMZ_MIC_OFFLOAD
template void integrate(Cone<long long>& C, const bool do_virt_mult);
template void integrate(Cone<mpz_class>& C, const bool do_virt_mult);
#ifndef NMZ_MIC_OFFLOAD // offload with long is not supported
// template void integrate(SignedDec<long>& C, const bool do_virt_mult);
#endif // NMZ_MIC_OFFLOAD
// template void integrate(SignedDec<long long>& C, const bool do_virt_mult);
// template void integrate(SignedDec<mpz_class>& C, const bool do_virt_mult);
#ifndef NMZ_MIC_OFFLOAD // offload with long is not supported
template void generalizedEhrhartSeries<long>(Cone<long>& C);
#endif // NMZ_MIC_OFFLOAD
template void generalizedEhrhartSeries<long long>(Cone<long long>& C);
template void generalizedEhrhartSeries<mpz_class>(Cone<mpz_class>& C);
} // namespace libnormaliz
#endif // NMZ_COCOA
|