1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
/*
* Normaliz
* Copyright (C) 2007-2025 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
//---------------------------------------------------------------------------
#include <map>
#include "libnormaliz/integer.h"
#include "libnormaliz/matrix.h"
#include "libnormaliz/nmz_nauty.h"
#include "libnormaliz/normaliz_exception.h"
#include "libnormaliz/vector_operations.h"
#include "libnormaliz/dynamic_bitset.h"
#ifdef NMZ_NAUTY
// #define MAXN 5000 /* Define this before including nauty.h */
// we use dynamic allocation
extern "C" {
extern volatile int nauty_kill_request;
}
#ifdef NMZ_NAUTYNAUTY
#include <nauty/nauty.h>
#else
#include <nauty.h>
#endif
namespace libnormaliz {
void kill_nauty() {
nauty_kill_request = 1;
}
extern vector<vector<vector<long> > > CollectedAutoms;
void getmyautoms(int count, int* perm, int* orbits, int numorbits, int stabvertex, int n) {
int i;
int tn = 0;
if (omp_in_parallel())
tn = omp_get_ancestor_thread_num(omp_get_level());
vector<long> this_perm(n);
for (i = 0; i < n; ++i)
this_perm[i] = perm[i];
CollectedAutoms[tn].push_back(this_perm);
}
/* The computation of automorphism groups and isomorphism types uses nauty.
* We start from a matrix that defines our polyhedron up to isomorphism:
* two such matrices have the same isomorphism type if they differ only by
* a permutation of the rows followed by a permutation of the colimns.
*
* What matrixis taken, depends on the type of automorphism group (or isomorphism
* classes) that are computed.
*
* The given matrices are transformed as follows: we replace the true eentries by
* indices in a vector listing the values of the entries. In this way the pattern
* of equality is preserved.
*
* From this matrix of indices we produce a BinaryMatrix (= layers of 0-1-matrices
* representing the indices vertically) that can be directly transformed into a graph
* whose automorphuism group is then computed by nauty. (For isomorphism types we just
* need the canonical type.). See the nauty manual for this trick.
*
* Taking the entries of the matrix themselves instead of their indices in the value vector
* can create a problem: they can by very large (especially in makeMMFromGensOnly(..)) and this
* slows down nauty considerably. By taking the indices we keep the BinaryMatrix as small
* as possible.
*
* There is one crucial point for isomorphism classes. See the comment in makeMM(...): we must take
* care that the canonical type does not depend on the order in which the values in our matrix
* are produced (or processed).
*
*/
template <typename Integer>
void makeMM_euclidean(BinaryMatrix<Integer>& MM, const Matrix<Integer>& Generators, const Matrix<Integer>& SpecialLinForms) {
key_t i, j;
size_t mm = Generators.nr_of_rows();
size_t nn = mm + SpecialLinForms.nr_of_rows();
Matrix<long> MVal(mm, nn);
long new_val = 0;
Integer val;
std::map<Integer, long> Values;
vector<Integer> VV;
for (i = 0; i < mm; ++i) {
vector<Integer> minus = Generators[i];
Integer MinusOne = -1;
v_scalar_multiplication(minus, MinusOne);
INTERRUPT_COMPUTATION_BY_EXCEPTION
for (j = 0; j < nn; ++j) {
if (j < mm) {
vector<Integer> diff = v_add(minus, Generators[j]);
val = v_scalar_product(diff, diff);
}
else {
val = v_scalar_product(Generators[i], SpecialLinForms[j - mm]);
}
auto v = Values.find(val);
if (v != Values.end()) {
MVal[i][j] = v->second;
}
else {
Values[val] = new_val;
MVal[i][j] = new_val;
new_val++;
VV.push_back(val);
}
}
}
// for the following see the comment in makeMM
sort(VV.begin(), VV.end());
vector<long> new_index(VV.size());
for (size_t j = 0; j < VV.size(); ++j) {
long old_index = Values[VV[j]];
new_index[old_index] = j;
}
for (i = 0; i < mm; ++i) {
for (j = 0; j < nn; ++j) {
MM.insert(new_index[MVal[i][j]], i, j);
}
}
MM.set_values(VV);
}
template <typename Integer>
void makeMM(BinaryMatrix<Integer>& MM,
const Matrix<Integer>& Generators,
const Matrix<Integer>& LinForms,
AutomParam::Quality quality) {
/* The matrix determining the automorphism group (or isomorphism class)
* is given by the scalar products of the generators and the linear forms.
*
* For the combinatorial automorph group we replace the non-zero values of the scalar products by 1. This gives
* thwe 0-1 complement of the inciodence matrix -- does not matter.
*/
key_t i, j;
size_t mm = Generators.nr_of_rows();
size_t nn = LinForms.nr_of_rows();
Matrix<long> MVal(mm, nn);
bool zero_one = false;
if (quality == AutomParam::combinatorial)
zero_one = true;
long new_val = 0;
Integer val;
std::map<Integer, long> Values;
vector<Integer> VV;
for (i = 0; i < mm; ++i) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
for (j = 0; j < nn; ++j) {
val = v_scalar_product(Generators[i], LinForms[j]);
// cout << "SSSS " << val << endl;
if (zero_one && val != 0)
val = 1;
auto v = Values.find(val);
if (v != Values.end()) {
MVal[i][j] = v->second;
}
else {
Values[val] = new_val;
MVal[i][j] = new_val;
new_val++;
VV.push_back(val);
}
}
}
// At this point the order of the values stored in VV depends on the order in
// which they are computed. This is no problem in the computation of automorphism groups,
// but for isomorphism types we must make sure that two matrices Val that differ
// only by row and column transformations produce binary matrices MVal that again differ only
// by such permutations. Therefore we must order the values and replace the entries of MVal
// accordingly: the smallest entry of Val is represented by 0 in MVal etc.
sort(VV.begin(), VV.end());
vector<long> new_index(VV.size());
for (size_t j = 0; j < VV.size(); ++j) {
long old_index = Values[VV[j]];
new_index[old_index] = j;
}
for (i = 0; i < mm; ++i) {
for (j = 0; j < nn; ++j) {
MM.insert(new_index[MVal[i][j]], i, j);
// cout << "MM " << i << " " << j << " " << MVal[i][j] << endl;
}
}
MM.set_values(VV);
}
template <typename Integer>
void makeMMFromGensOnly_inner(BinaryMatrix<Integer>& MM,
const Matrix<Integer>& Generators,
const Matrix<Integer>& SpecialLinForms,
AutomParam::Quality quality) {
/* Here we use only generators, following
*
* D. Bremner , M. D. Sikiri\'c , D. V. Pasechnik, Th. Rehn and A. Schürmann,
\emph{Computing symmetry groups of polyhedra.}
LMS J. Comp. Math. 17 (2014), 565--581.
*
* In the euclidean case (branched off makeMMFromGensOnly(...)) , we must preserve the norms of the difference vectors
* of the vertices of the polytope.
*
*/
if (quality == AutomParam::euclidean) {
makeMM_euclidean(MM, Generators, SpecialLinForms);
return;
}
size_t mm = Generators.nr_of_rows();
size_t dim = Generators.nr_of_columns();
Matrix<Integer> ScalarProd(dim, dim);
for (size_t i = 0; i < mm; ++i) {
for (size_t j = 0; j < dim; ++j) {
for (size_t k = 0; k < dim; ++k) {
ScalarProd[j][k] += Generators[i][j] * Generators[i][k];
}
}
}
Integer dummy;
Matrix<Integer> SPInv = ScalarProd.invert(dummy);
Matrix<Integer> LinForms = Generators.multiplication(SPInv);
LinForms.append(SpecialLinForms);
makeMM(MM, Generators, LinForms, quality);
}
template <typename Integer>
void makeMMFromGensOnly(BinaryMatrix<Integer>& MM,
const Matrix<Integer>& Generators,
const Matrix<Integer>& SpecialLinForms,
AutomParam::Quality quality) {
if (quality == AutomParam::euclidean) {
makeMMFromGensOnly_inner(MM, Generators, SpecialLinForms, quality);
return;
}
Matrix<mpz_class> Generators_mpz; // we go through mpz_class since taking inverse matrices
convert(Generators_mpz, Generators); // is extremely critical, and we don't want to risk
Matrix<mpz_class> SpecialLinForms_mpz; // an overflow exception at this point
convert(SpecialLinForms_mpz, SpecialLinForms);
BinaryMatrix<mpz_class> MM_mpz(MM.get_nr_rows(), MM.get_nr_columns());
makeMMFromGensOnly_inner(MM_mpz, Generators_mpz, SpecialLinForms_mpz, quality);
MM.get_data_mpz(MM_mpz);
}
template <>
void makeMMFromGensOnly(BinaryMatrix<renf_elem_class>& MM,
const Matrix<renf_elem_class>& Generators,
const Matrix<renf_elem_class>& SpecialLinForms,
AutomParam::Quality quality) {
makeMMFromGensOnly_inner(MM, Generators, SpecialLinForms, quality);
}
// This routine starts from generators x and linear forms f. They define a rectangular
// matrix with entries f(x), with x corresponding to a row and f to a column
// This rectangular matrix is then interpreted as the weight pattern on a complete
// bipartite graph.
// Via a binary matrix the weights are translated into a grpah with "layers"
// where each layer corresponds to a place in the binary expansion of the entries.
//
// But the function can be used also for 0-1-matrices where the entries
// of the rectangular matrix are somplified to 0 or 1.
template <typename Integer>
nauty_result<Integer> compute_automs_by_nauty_Gens_LF(const Matrix<Integer>& Generators,
size_t nr_special_gens,
const Matrix<Integer>& LinForms,
const size_t nr_special_linforms,
AutomParam::Quality quality) {
int tn = 0;
if (omp_in_parallel())
tn = omp_get_ancestor_thread_num(omp_get_level());
CollectedAutoms[tn].clear();
static DEFAULTOPTIONS_GRAPH(options);
statsblk stats;
options.userautomproc = getmyautoms;
options.getcanon = TRUE;
int n, m;
options.writeautoms = FALSE;
options.defaultptn = FALSE;
size_t mm = Generators.nr_of_rows();
size_t mm_pure = mm - nr_special_gens;
size_t nn = LinForms.nr_of_rows();
size_t nn_pure = nn - nr_special_linforms;
BinaryMatrix<Integer> MM(mm, nn);
makeMM(MM, Generators, LinForms, quality);
size_t ll = MM.get_nr_layers();
size_t layer_size = mm + nn;
n = ll * layer_size;
m = SETWORDSNEEDED(n);
nauty_check(WORDSIZE, m, n, NAUTYVERSIONID);
std::vector<graph> g(m * n);
std::vector<graph> cg(m * n);
std::vector<int> lab(n);
std::vector<int> ptn(n);
std::vector<int> orbits(n);
EMPTYGRAPH(g.data(), m, n);
key_t i, j, k;
for (i = 0; i < layer_size; ++i) { // make vertical edges over all layers
for (k = 1; k < ll; ++k)
ADDONEEDGE(g.data(), (k - 1) * layer_size + i, k * layer_size + i, m);
}
for (i = 0; i < mm; ++i) { // make horizontal edges layer by layer
for (j = 0; j < nn; ++j) {
for (k = 0; k < ll; ++k) {
if (MM.test(i, j, k)) // k is the number of layers below the current one
ADDONEEDGE(g.data(), k * layer_size + i, k * layer_size + mm + j, m);
}
}
}
for (int ii = 0; ii < n; ++ii) { // prepare labelling and partitions
lab[ii] = ii;
ptn[ii] = 1;
}
for (k = 0; k < ll; ++k) { // make partitions layer by layer
ptn[k * layer_size + mm_pure - 1] = 0; // row vertices in one partition
for (size_t s = 0; s < nr_special_gens; ++s) // speciall generators in extra partitions (makes them fixed points)
ptn[k * layer_size + mm_pure + s] = 0;
ptn[(k + 1) * layer_size - 1] = 0; // column indices in the next
for (size_t s = 0; s < nr_special_linforms; ++s) // special linear forms in extra partitions
ptn[(k + 1) * layer_size - 2 - s] = 0;
}
densenauty(g.data(), lab.data(), ptn.data(), orbits.data(), &options, &stats, m, n, cg.data());
if (stats.errstatus == NAUKILLED) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
}
// vector<vector<long> > AutomsAndOrbits(2*CollectedAutoms[tn].size());
// AutomsAndOrbits.reserve(2*CollectedAutoms[tn].size()+3);
nauty_result<Integer> result;
for (k = 0; k < CollectedAutoms[tn].size(); ++k) {
vector<key_t> GenPerm(mm_pure);
for (i = 0; i < mm_pure; ++i)
GenPerm[i] = CollectedAutoms[tn][k][i];
result.GenPerms.push_back(GenPerm);
vector<key_t> LFPerm(nn_pure); // we remove the special linear forms here
for (i = mm; i < mm + nn_pure; ++i)
LFPerm[i - mm] = CollectedAutoms[tn][k][i] - mm;
result.LinFormPerms.push_back(LFPerm);
}
vector<key_t> GenOrbits(mm_pure);
for (i = 0; i < mm_pure; ++i)
GenOrbits[i] = orbits[i];
result.GenOrbits = GenOrbits;
vector<key_t> LFOrbits(nn_pure); // we remove the special linear forms here
for (i = 0; i < nn_pure; ++i)
LFOrbits[i] = orbits[i + mm] - mm;
result.LinFormOrbits = LFOrbits;
result.order = mpz_class(stats.grpsize1);
if (stats.grpsize2 != 0) {
mpz_class power_mpz = mpz_class(stats.grpsize2);
long power = convertToLong(power_mpz);
for (long i = 0; i < power; ++i)
result.order *= 10;
}
vector<key_t> row_order(mm), col_order(nn); // the special gens and linforms go into
for (key_t i = 0; i < mm; ++i) // these data
row_order[i] = lab[i];
for (key_t i = 0; i < nn; ++i)
col_order[i] = lab[mm + i] - mm;
result.CanLabellingGens = row_order;
result.CanType = MM.reordered(row_order, col_order);
nauty_freedyn();
return result;
}
//====================================================================
// The following routine uses only "generators" x and special linear forms f
// Together they correspond to the vertices of a graph.
// The weights on the graph come from a SYMMETRIC matrix of "values" form
// where each entry corresponds to val(x,y) = val(y,x).
// The numbers f(x) are attached as an extra column.
// It would be possible to apply the precerding function to this situation,
// but the graph is more compact here.
// The layers of the binary matrix have the same meaning as above.
template <typename Integer>
nauty_result<Integer> compute_automs_by_nauty_FromGensOnly(const Matrix<Integer>& Generators,
size_t nr_special_gens,
const Matrix<Integer>& SpecialLinForms,
AutomParam::Quality quality) {
size_t mm = Generators.nr_of_rows();
size_t mm_pure = mm - nr_special_gens;
size_t nr_special_linforms = SpecialLinForms.nr_of_rows();
/*cout << "--------------------" << endl;
Generators.pretty_print(cout);
cout << "--------------------" << endl;
SpecialLinForms.pretty_print(cout);
cout << "--------------------" << endl;*/
// LinForms.append(SpecialLinForms);
int tn = 0;
if (omp_in_parallel())
tn = omp_get_ancestor_thread_num(omp_get_level());
CollectedAutoms[tn].clear();
static DEFAULTOPTIONS_GRAPH(options);
statsblk stats;
options.userautomproc = getmyautoms;
options.getcanon = TRUE;
int n, m;
options.writeautoms = FALSE;
options.defaultptn = FALSE;
INTERRUPT_COMPUTATION_BY_EXCEPTION
BinaryMatrix<Integer> MM(mm, mm + nr_special_linforms);
makeMMFromGensOnly(MM, Generators, SpecialLinForms, quality);
size_t ll = MM.get_nr_layers();
size_t layer_size = mm + nr_special_linforms;
n = ll * layer_size; // total number of vertices
m = SETWORDSNEEDED(n);
nauty_check(WORDSIZE, m, n, NAUTYVERSIONID);
std::vector<graph> g(m * n);
std::vector<graph> cg(m * n);
std::vector<int> lab(n);
std::vector<int> ptn(n);
std::vector<int> orbits(n);
EMPTYGRAPH(g.data(), m, n);
key_t i, j, k;
for (i = 0; i < layer_size; ++i) { // make vertical edges over all layers
for (k = 1; k < ll; ++k)
ADDONEEDGE(g.data(), (k - 1) * layer_size + i, k * layer_size + i, m);
}
for (i = 0; i < mm; ++i) { // make horizontal edges layer by layer
for (j = 0; j <= i; ++j) { // take lower triangular matrix inclcudung diagonal
for (k = 0; k < ll; ++k) {
if (MM.test(i, j, k)) // k is the number of layers below the current one
ADDONEEDGE(g.data(), k * layer_size + i, k * layer_size + j, m);
}
}
}
// we add the edges that connect generators and special linear forms
for (i = mm; i < mm + nr_special_linforms; ++i) {
for (j = 0; j < mm; ++j) {
for (k = 0; k < ll; ++k) {
if (MM.test(j, i, k)) { // here we use that the special linear forms appear in columns: i <--> j
ADDONEEDGE(g.data(), k * layer_size + i, k * layer_size + j, m);
}
}
}
}
for (int ii = 0; ii < n; ++ii) { // prepare partitions
lab[ii] = ii; // label of vertex
ptn[ii] = 1; // indicatorvector for partitions: 0 indicates end of partition
}
for (k = 0; k < ll; ++k) { // make partitions layer by layer
ptn[k * layer_size + mm_pure - 1] = 0; // row vertices in one partition
for (size_t s = 0; s < nr_special_gens; ++s) // speciall generators in extra partitions (makes them fixed points)
ptn[k * layer_size + mm_pure + s] = 0;
for (size_t s = 0; s < nr_special_linforms; ++s) // special linear forms in extra partitions
ptn[(k + 1) * layer_size - 1 - s] = 0;
}
/*cout << "+++++++++++++" << endl;
cout << ptn;
cout << "+++++++++++++" << endl;*/
INTERRUPT_COMPUTATION_BY_EXCEPTION
densenauty(g.data(), lab.data(), ptn.data(), orbits.data(), &options, &stats, m, n, cg.data());
if (stats.errstatus == NAUKILLED) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
}
nauty_result<Integer> result;
for (k = 0; k < CollectedAutoms[tn].size(); ++k) {
vector<key_t> GenPerm(mm_pure);
for (i = 0; i < mm_pure; ++i) // remove special gens and lion forms
GenPerm[i] = CollectedAutoms[tn][k][i];
result.GenPerms.push_back(GenPerm);
}
vector<key_t> GenOrbits(mm_pure);
for (i = 0; i < mm_pure; ++i)
GenOrbits[i] = orbits[i];
result.GenOrbits = GenOrbits;
result.order = mpz_class(stats.grpsize1);
if (stats.grpsize2 != 0) {
mpz_class power_mpz = mpz_class(stats.grpsize2);
long power = convertToLong(power_mpz);
for (long i = 0; i < power; ++i)
result.order *= 10;
}
nauty_freedyn();
// cout << "::::::::::::::" << endl;
// cout << lab;
// cout << "::::::::::::::" << endl;
vector<key_t> row_order; //
for (key_t i = 0; i < layer_size; ++i)
if (lab[i] < (int)mm) // we suppoess the column of the special linear form
row_order.push_back(lab[i]);
/*vector<key_t> col_order(layer_size); // this includes the column of the special linear form
for(size_t i=0; i< col_order.size();++i)
col_order[i] = lab[i+mm] - mm; */
vector<key_t> col_order = row_order;
col_order.resize(layer_size); // this includes the column of the special linear form
for (size_t i = mm; i < col_order.size(); ++i)
col_order[i] = i;
result.CanLabellingGens = row_order;
/*cout << "********" << endl;
cout << row_order;
cout << endl;
cout << col_order;
cout << "=======" << endl;*/
// MM.pretty_print(cout);
// cout << "--------" << endl;
result.CanType = MM.reordered(row_order, col_order);
// result.CanType.pretty_print(cout);
// cout << "ORDER " << result.order << endl;
return result;
}
#ifndef NMZ_MIC_OFFLOAD // offload with long is not supported
template nauty_result<long> compute_automs_by_nauty_Gens_LF(const Matrix<long>& Generators,
size_t nr_special_gens,
const Matrix<long>& LinForms,
const size_t nr_special_linforms,
AutomParam::Quality quality);
template nauty_result<long> compute_automs_by_nauty_FromGensOnly(const Matrix<long>& Generators,
size_t nr_special_gens,
const Matrix<long>& SpecialLinForms,
AutomParam::Quality quality);
#endif // NMZ_MIC_OFFLOAD
template nauty_result<long long> compute_automs_by_nauty_Gens_LF(const Matrix<long long>& Generators,
size_t nr_special_gens,
const Matrix<long long>& LinForms,
const size_t nr_special_linforms,
AutomParam::Quality quality);
template nauty_result<long long> compute_automs_by_nauty_FromGensOnly(const Matrix<long long>& Generators,
size_t nr_special_gens,
const Matrix<long long>& SpecialLinForms,
AutomParam::Quality quality);
template nauty_result<mpz_class> compute_automs_by_nauty_Gens_LF(const Matrix<mpz_class>& Generators,
size_t nr_special_gens,
const Matrix<mpz_class>& LinForms,
const size_t nr_special_linforms,
AutomParam::Quality quality);
template nauty_result<mpz_class> compute_automs_by_nauty_FromGensOnly(const Matrix<mpz_class>& Generators,
size_t nr_special_gens,
const Matrix<mpz_class>& SpecialLinForms,
AutomParam::Quality quality);
#ifdef ENFNORMALIZ
template nauty_result<renf_elem_class> compute_automs_by_nauty_Gens_LF(const Matrix<renf_elem_class>& Generators,
size_t nr_special_gens,
const Matrix<renf_elem_class>& LinForms,
const size_t nr_special_linforms,
AutomParam::Quality quality);
template nauty_result<renf_elem_class> compute_automs_by_nauty_FromGensOnly(const Matrix<renf_elem_class>& Generators,
size_t nr_special_gens,
const Matrix<renf_elem_class>& SpecialLinForms,
AutomParam::Quality quality);
#endif
} // namespace libnormaliz
#endif // NMZ_NAUTY
|