1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
|
/*
* Copyright (C) 2007-2025 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#include <fstream>
#include <sstream>
#include <string>
#include <gmpxx.h>
#ifdef NMZ_COCOA
#include "libnormaliz/nmz_integrate.h"
#endif
#include "libnormaliz/nmz_polynomial.h"
#include "libnormaliz/vector_operations.h"
#include "libnormaliz/list_and_map_operations.h"
namespace libnormaliz {
using namespace std;
//-------------------------------------------------------------------
// OurTerm
//-------------------------------------------------------------------
template<typename Number>
OurTerm<Number>::OurTerm(){
}
template<typename Number>
OurTerm<Number>::OurTerm(const Number& c, const map<key_t, long>& mon, const dynamic_bitset& supp){
coeff = c;
monomial = mon;
support = supp;
mon2vars_expos();
}
template<typename Number>
OurTerm<Number>::OurTerm(const pair<vector<key_t>, Number>& t, size_t dim){
coeff = t.second;
monomial = count_in_map<key_t, long>(t.first);
support = dynamic_bitset(dim);
for(auto& m: monomial)
support[m.first] = 1;
mon2vars_expos();
}
template<typename Number>
void OurTerm<Number>::mon2vars_expos(){
vars.clear();
for(auto& M: monomial){
for(size_t i = 0; i < M.second; ++i)
vars.push_back(M.first);
}
}
template<typename Number>
Number OurTerm<Number>::evaluate(const vector<Number>& argument) const{
Number value = coeff;
for(size_t i = 0; i < vars.size(); ++i)
value *= argument[vars[i]];
return value;
}
template<typename Number>
void OurTerm<Number>::shift_coordinates(const int& shift){
OurTerm<Number> transformed;
transformed.support = dynamic_bitset(support.size() + shift);
for(auto F: monomial){
key_t cc = F.first;
if(shift < 0)
assert(cc >= -shift);
cc += shift;
transformed.support[cc] = 1;
(transformed.monomial)[cc] = F.second;
}
transformed.coeff = coeff;
*this = transformed;
mon2vars_expos();
}
template<typename Number>
void OurTerm<Number>::swap_coordinates(const key_t& first, const key_t& second){
OurTerm<Number> transformed;
transformed.support = dynamic_bitset(support.size());
transformed.coeff = coeff;
for(auto F: monomial){
key_t cc = F.first;
if(cc == first){
cc = second;
}
else
if(cc == second)
cc = first;
transformed.monomial[cc] = F.second;
transformed.support[cc] = 1;
}
*this = transformed;
mon2vars_expos();
}
template<typename Number>
void OurTerm<Number>::cyclic_shift_right(const key_t& col){
v_cyclic_shift_right(support, col);
vector<long> expo_vec(support.size());
for(auto& E: monomial)
expo_vec[E.first] = E.second;
v_cyclic_shift_right(expo_vec, col);
monomial.clear();
for(int i = 0; i< expo_vec.size(); ++i){
if(expo_vec[i] >0 )
monomial[i] = expo_vec[i];
}
mon2vars_expos();
}
template<typename Number>
void OurTerm<Number>::permute_variables(const vector<key_t>& perm){
vector<long> expo_vec(support.size());
map<key_t, long> new_mon;
for( auto& E: monomial)
expo_vec[E.first] = E.second;
// cout << "EEEEEEEEEEEEEEEE " << expo_vec;
expo_vec = v_permute_coordinates(expo_vec, perm);
// cout << "FFFFFFFFFFFFFFFF " << expo_vec;
for(size_t i = 0; i < perm.size(); ++i){
if(expo_vec[i] != 0)
new_mon[i] = expo_vec[i];
}
monomial = new_mon;
support = v_permute_coordinates(support, perm);
mon2vars_expos();
}
template<typename Number>
void OurTerm<Number>::multiply_by_constant(const Number& factor){
coeff *= factor;
}
/*
template<typename Number>
bool OurTerm<Number>::check_restriction(const dynamic_bitset& set_of_var) const{
return support.is_subset_of(set_of_var);
} */
template<typename Number>
bool OurTerm<Number>::is_restrictable_inequ(const dynamic_bitset& set_of_var) const{
return support.is_subset_of(set_of_var) || (coeff <= 0);
}
//-------------------------------------------------------------------
// OurPolynomial
//-------------------------------------------------------------------
template<typename Number>
OurPolynomial<Number>::OurPolynomial(){
vectorized = false;
}
template<typename Number>
OurPolynomial<Number>::OurPolynomial(const map<vector<key_t>, Number>& poly, size_t dim){
vectorized = false;
support = dynamic_bitset(dim);
for(auto& t: poly){
pair<vector<key_t>, Number> t_0 = make_pair(t.first, t.second);
this->push_back(OurTerm<Number>(t_0,dim));
support |= this->back().support;
}
highest_indet = -1;
for(size_t i = 0; i < support.size(); ++i){
if(support[i])
highest_indet = i;
}
}
template<typename Number>
OurPolynomial<Number>::OurPolynomial(const vector<Number>& linear_form){
vectorized = false;
for(size_t i = 0; i < linear_form.size(); ++i){
if(linear_form[i] == 0)
continue;
dynamic_bitset term_supp(linear_form.size());
term_supp[i] = true;
map<key_t, long> term_mon;
term_mon[i] = 1;
this->push_back(OurTerm<Number>(linear_form[i], term_mon, term_supp));
}
this->support = v_support(linear_form);
}
template<typename Number>
key_t OurPolynomial<Number>::get_highest_indet() const{
return highest_indet;
}
template<typename Number>
void OurPolynomial<Number>::shift_coordinates(const int& shift){
support = dynamic_bitset(support.size() + shift);
for(auto& M: *this){
M.shift_coordinates(shift);
support |= M.support;
}
if(highest_indet >0){
highest_indet +=shift;
assert(highest_indet >= 0);
}
}
template<typename Number>
void OurPolynomial<Number>::swap_coordinates(const key_t& first, const key_t& second){
for(auto& M: *this){
M.swap_coordinates(first, second);
}
bool temp = support[first];
support[first] = support[second];
support[second] = temp;
highest_indet = -1;
for(size_t i = 0; i < support.size(); ++i){
if(support[i])
highest_indet = i;
}
}
template<typename Number>
Number OurPolynomial<Number>::evaluate(const vector<Number>& argument) const{
Number value = 0;
if(vectorized){
return evaluate_vectorized(argument);
}
for(auto& T: *this){
value += T.evaluate(argument);
if(!check_range(value))
throw ArithmeticException("Overflow in evaluation of polynomial");
}
return value;
}
template<typename Number>
Number OurPolynomial<Number>::evaluate_vectorized(const vector<Number>& argument) const{
Number value = const_term;
for(size_t i = 0; i < expo_1_pos.size(); ++i){
value += argument[expo_1_pos[i]] * argument[expo_2_pos[i]];
}
for(size_t i = 0; i < expo_1_neg.size(); ++i){
value -= argument[expo_1_neg[i]] * argument[expo_2_neg[i]];
}
return value;
}
template<typename Number>
OurPolynomial<Number> OurPolynomial<Number>::restrict_to(const dynamic_bitset& variables) const{
OurPolynomial<Number> Rest;
for(auto& T: *this){
if(T.support.is_subset_of(variables))
Rest.push_back(T);
}
return Rest;
}
// splits the polynomial into two parts: terms whose support is contained in support_variables
// and the remaining terms
template<typename Number>
pair<OurPolynomial<Number>, OurPolynomial<Number> > OurPolynomial<Number>::split(const dynamic_bitset& support_variables) const{
OurPolynomial<Number> Rest;
OurPolynomial<Number> LeftOver;
for(auto& T: *this){
if(T.support.is_subset_of(support_variables))
Rest.push_back(T);
else
LeftOver.push_back(T);
}
return make_pair(Rest, LeftOver);
}
template<typename Number>
bool OurPolynomial<Number>::check_linearity(const dynamic_bitset& critical_variables, dynamic_bitset& support_linear) const{
for(auto& T: *this){
dynamic_bitset common = T.support & critical_variables;
if(common.count() == 0)
return false;
support_linear |= common;
}
return true;
}
template<typename Number>
void OurPolynomial<Number>::vectorize_deg_2(){
vector<key_t> fact_1_pos, fact_2_pos;
vector<key_t> fact_1_neg, fact_2_neg;
// vector<Number> coe;
Number ct = 0;
for(auto& T: *this){
if(T.vars.size() != 2 && T.vars.size() != 0)
return;
if(T.vars.size() == 0){
ct += T.coeff;
continue;
}
if(T.vars.size() == 2){
if(T.coeff !=1 && T.coeff != -1)
return;
if(T.coeff == 1){
fact_1_pos.push_back(T.vars[0]);
fact_2_pos.push_back(T.vars[1]);
}
if(T.coeff == -1){
fact_1_neg.push_back(T.vars[0]);
fact_2_neg.push_back(T.vars[1]);
}
// coe.push_back(T.coeff);
}
}
expo_1_pos = fact_1_pos;
expo_2_pos = fact_2_pos;
expo_1_neg = fact_1_neg;
expo_2_neg = fact_2_neg;
// coeffs = coe;
const_term = ct;
vectorized = true;
(*this).clear();
}
template<typename Number>
Number OurPolynomial<Number>::evaluate_restricted(const vector<Number>& argument, const dynamic_bitset& set_of_var) const{
Number value = 0;
for(auto& T: *this){
if(T.support.is_subset_of(set_of_var))
value += T.evaluate(argument);
if(!check_range(value))
throw ArithmeticException("Overflow in evaluation of polynomial");
}
return value;
}
template<typename Number>
void OurPolynomial<Number>::cyclic_shift_right(const key_t& col){
for(auto& T: *this)
T.cyclic_shift_right(col);
v_cyclic_shift_right(support, col);
highest_indet = -1;
for(size_t i = 0; i < support.size(); ++i){
if(support[i])
highest_indet = i;
}
}
template<typename Number>
void OurPolynomial<Number>::permute_variables(const vector<key_t>& perm){
for(auto& T: *this)
T.permute_variables(perm);
support = v_permute_coordinates(support, perm);
highest_indet = -1;
for(size_t i = 0; i < support.size(); ++i)
if(support[i])
highest_indet = i;
}
template<typename Number>
void OurPolynomial<Number>::multiply_by_constant(const Number& factor){
for(auto& T: *this)
T.multiply_by_constant(factor);
}
template<typename Number>
bool OurPolynomial<Number>::is_restrictable_inequ(const dynamic_bitset& set_of_var) const{
size_t nr_negative = 0;
for(auto& T: *this){
if(!T.is_restrictable_inequ(set_of_var))
return false;
if(T.support.is_subset_of(set_of_var) && T.coeff < 0)
nr_negative++;
}
return nr_negative >= 4;
}
/*
template<typename Number>
bool OurPolynomial<Number>::check_restriction(const dynamic_bitset& set_of_var) const{
for(auto& T: *this){
if(!T.check_restriction(set_of_var))
return false;
}
return true;
}*/
//-------------------------------------------------------------------
// OurPolynomialCong
//-------------------------------------------------------------------
template<typename Number>
OurPolynomialCong<Number>::OurPolynomialCong(){
}
template<typename Number>
OurPolynomialCong<Number>::OurPolynomialCong(const OurPolynomial<Number>& pol, const Number& mod){
poly = pol;
modulus = mod;
}
template<typename Number>
OurPolynomialCong<Number>::OurPolynomialCong(vector<Number> cong){
modulus = cong.back();
cong.pop_back();
poly = OurPolynomial<Number>(cong);
}
template<typename Number>
bool OurPolynomialCong<Number>::check(const vector<Number>& v) const{
if(poly.evaluate(v) % modulus != 0)
return false;
return true;
}
template<>
bool OurPolynomialCong<renf_elem_class>::check(const vector<renf_elem_class>& v) const{
assert(false);
return false;
}
//-------------------------------------------------------------------
// OurPolynomialSystem
//-------------------------------------------------------------------
template<typename Number>
OurPolynomialSystem<Number>::OurPolynomialSystem(){
}
template<typename Number>
OurPolynomialSystem<Number>::OurPolynomialSystem(const set<map<vector<key_t>, Number> >& Polys, size_t dim){
for(auto& p: Polys)
this->push_back(OurPolynomial<Number>(p, dim + 1)); // sme conventions for dim as in making from strings by CoCoA below
}
template<typename Number>
bool OurPolynomialSystem<Number>::check(const vector<Number>& argument, const bool is_equations, const bool exact_length) const{
Number test;
for(auto& P: *this){
if(P.highest_indet > argument.size() -1)
continue;
if(P.highest_indet < argument.size() - 1 && exact_length)
continue;
test = P.evaluate(argument);
if(is_equations && test != 0)
return false;
if(!is_equations && test < 0)
return false;
}
return true;
}
template<typename Number>
void OurPolynomialSystem<Number>::shift_coordinates(const int& shift){
for(auto& P: *this)
P.shift_coordinates(shift);
}
template<typename Number>
void OurPolynomialSystem<Number>::swap_coordinates(const key_t& first, const key_t& second){
for(auto& P: *this)
P.swap_coordinates(first, second);
}
template<typename Number>
void OurPolynomialSystem<Number>::cyclic_shift_right(const key_t& col){
for(auto& P: *this)
P.cyclic_shift_right(col);
}
template<typename Number>
void OurPolynomialSystem<Number>::permute_variables(const vector<key_t>& perm){
for(auto& P: *this)
P.permute_variables(perm);
}
template<typename Number>
void OurPolynomialSystem<Number>::multiply_by_constant(const Number& factor){
for(auto& P: *this)
P.multiply_by_constant(factor);
}
#ifdef NMZ_COCOA
template<typename Number>
OurPolynomial<Number>::OurPolynomial(const string& poly_string, const size_t dim, const bool verbose){
GlobalManager CoCoAFoundations;
/*SparsePolyRing RQQ = NewPolyRing_DMPI(RingQQ(), dim + 1, lex);
string poly_string_new("x[1]^2/2+1/3");
RingElem FQQ = ReadExpr(RQQ, poly_string_new);
cout << "FFF " << FQQ << endl;*/
vectorized = false;
if(verbose)
verboseOutput() << poly_string << endl;
SparsePolyRing RQQ = NewPolyRing_DMPI(RingQQ(), dim + 1, lex);
RingElem FQQ = ReadExpr(RQQ, poly_string);
// cout << "DDDD " << FQQ << endl;
FQQ = ClearDenom(FQQ);
// cout << "FFFF " << FQQ << endl;
SparsePolyRing R = NewPolyRing_DMPI(RingZZ(), dim + 1, lex); // in the input shift_coordinates numbered from 1
RingElem F = makeZZCoeff(FQQ, R);
// cout << "ZZZZ " << F << endl;
vector<long> v(NumIndets(R));
BigInt BI_coeff;
mpz_class mpz_coeff;
long max_indet = -1;
support = dynamic_bitset(dim +1);
INTERRUPT_COMPUTATION_BY_EXCEPTION
SparsePolyIter mon = BeginIter(F);
for (; !IsEnded(mon); ++mon) {
OurTerm<Number> T;
IsInteger(BI_coeff, coeff(mon)); // in two steps from the coefficient of the term
mpz_coeff = mpz(BI_coeff); // to mpz_class
T.coeff = convertTo<Number>(mpz_coeff); // and one more conversion
exponents(v, PP(mon)); // this function gives the exponent vector back as v
T.support = v_support(v);
for(long i = 0; i < v.size(); ++i){
if(v[i] != 0){
if(i > max_indet)
max_indet = i;
T.monomial[i] = v[i];
}
}
this->push_back(T);
support |= T.support;
}
highest_indet = max_indet;
}
template<typename Number>
RingElem OurTerm<Number>::ToCoCoA(SparsePolyRing R) const{
mpq_class c;
c = convertTo<mpq_class>(coeff);
BigRat ccc = BigRatFromMPQ(c.get_mpq_t());
RingElem h(R,ccc);
for(auto& v:vars)
h *= indet(R,v);
return h;
}
/*
// We need the special version for long long to avoid a conversion problem
template<>
RingElem OurTerm<long long>::ToCoCoA(SparsePolyRing R) const{
mpz_class c_mpz = convertTo<mpz_class>(coeff);
mpq_class c = c_mpz;
BigRat ccc = BigRatFromMPQ(c.get_mpq_t());
RingElem h(R,ccc);
for(auto& v:vars)
h *= indet(R,v);
return h;
}
// Another special version ...
template<>
RingElem OurTerm<mpz_class>::ToCoCoA(SparsePolyRing R) const{
mpq_class c = coeff;
BigRat ccc = BigRatFromMPQ(c.get_mpq_t());
RingElem h(R,ccc);
for(auto& v:vars)
h *= indet(R,v);
return h;
}
*/
template<typename Number>
RingElem OurPolynomial<Number>::ToCoCoA(SparsePolyRing R) const{
RingElem p = zero(R);
for(auto& T:*this)
p += T.ToCoCoA(R);
return p;
}
template<typename Number>
vector<RingElem> OurPolynomialSystem<Number>::ToCoCoA(SparsePolyRing R) const{
vector<RingElem> CS;
for(auto& P:*this)
CS.push_back(P.ToCoCoA(R));
return CS;
}
bool poly_reduce(RingElem& r, const RingElem&g, const PPMonoidElem& ini_g, const RingElem& h){
if(!IsDivisible(ini_g, LPP(h)))
return false;
PPMonoidElem quot_PP = ini_g/LPP(h);
RingElem quot_coeff = LC(g)/LC(h);
RingElem quot = monomial(owner(h), quot_coeff, quot_PP);
r = g - quot*h;
return true;
}
bool GB_reduce(const RingElem& f, vector<RingElem>& GB){
RingElem g = f;
RingElem r;
while(g != 0){
PPMonoidElem ini_g = LPP(g);
bool reducible = false;
for(auto& h: GB){
if(poly_reduce(r,g, ini_g, h)){
reducible = true;
g = r;
break;
}
}
if(!reducible)
break;
}
if(g != 0){
GB.push_back(g);
return false;
}
else
return true;
}
template<typename Number>
OurPolynomialSystem<Number>::OurPolynomialSystem(const vector<string>& poly_strings, size_t dim, bool verb){
verbose = verb;
for(auto& S: poly_strings){
OurPolynomial<Number> poly(S,dim,verbose);
this->push_back(poly);
}
}
template<typename Number>
OurPolynomialSystem<Number> OurPolynomialSystem<Number>::minimize_equations(const Matrix<Number>& LinEqus) const {
// cout << "RRRRRRRRRRRRRR " << LinEqus.rank() << endl;
size_t EmbDim = LinEqus.nr_of_columns();
CoCoA::GlobalManager CoCoAFoundations;
CoCoA::SparsePolyRing R = CoCoA::NewPolyRing_DMPI(CoCoA::RingQQ(), EmbDim , CoCoA::lex);
/* for(auto& p: HomPol)
cout << p << endl;*/
OurPolynomialSystem<Number> LinPolys;
for(size_t i = 0; i < LinEqus.nr_of_rows(); ++i){ // automatically homogeneous
LinPolys.push_back(OurPolynomial<Number>(LinEqus[i])); }
vector<RingElem> CLin = LinPolys.ToCoCoA(R);
vector<RingElem> CPol = ToCoCoA(R);
vector<RingElem> HomPol;
for(auto& p: CPol){
if(deg(p) > 2)
throw BadInputException("Minimization of polynomial is_equations only possible for degree <= 2");
if(deg(p) == 1)
HomPol.insert(HomPol.begin(), homogenize(p)); // make sure fegree 1 is inserted into GB before degree 2
else
HomPol.push_back(homogenize(p));
}
vector<RingElem> GB;
OurPolynomialSystem<Number> Minis;
for(auto& lf: CLin){
GB_reduce(lf,GB);
}
// size_t LGGGG = GB.size();
// cout << "GGGGGGGGGGGGGGGGGGGGGG " << GB.size() << endl;
for(size_t j = 0; j < this->size(); ++j){
if(!GB_reduce(HomPol[j],GB))
Minis.push_back((*this)[j]);
}
/* for(auto& p: Minis){
cout << endl;
cout << p.ToCoCoA(R) << endl;
}
cout << "MMMMMMMM " << Minis.size()<< " GGGGGGGGGGGG " << GB.size() - LGGGG << endl;*/
return Minis;
}
#endif // NMZ_COCOA
template class OurTerm<long>;
template class OurTerm<long long>;
template class OurTerm<mpz_class>;
#ifdef ENFNORMALIZ
template class OurTerm<renf_elem_class>;
#endif
template class OurPolynomial<long>;
template class OurPolynomial<long long>;
template class OurPolynomial<mpz_class>;
#ifdef ENFNORMALIZ
template class OurPolynomial<renf_elem_class>;
#endif
template class OurPolynomialCong<long>;
template class OurPolynomialCong<long long>;
template class OurPolynomialCong<mpz_class>;
#ifdef ENFNORMALIZ
template class OurPolynomialCong<renf_elem_class>;
#endif
template class OurPolynomialSystem<long>;
template class OurPolynomialSystem<long long>;
template class OurPolynomialSystem<mpz_class>;
#ifdef ENFNORMALIZ
template class OurPolynomialSystem<renf_elem_class>;
#endif
} // namespace
|