File: nmz_polynomial.cpp

package info (click to toggle)
normaliz 3.11.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 40,448 kB
  • sloc: cpp: 48,104; makefile: 2,247; sh: 1
file content (783 lines) | stat: -rw-r--r-- 21,752 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
/*
 * Copyright (C) 2007-2025  W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 * As an exception, when this program is distributed through (i) the App Store
 * by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
 * by Google Inc., then that store may impose any digital rights management,
 * device limits and/or redistribution restrictions that are required by its
 * terms of service.
 */


#include <fstream>
#include <sstream>
#include <string>
#include <gmpxx.h>

#ifdef NMZ_COCOA
#include "libnormaliz/nmz_integrate.h"
#endif

#include "libnormaliz/nmz_polynomial.h"
#include "libnormaliz/vector_operations.h"
#include "libnormaliz/list_and_map_operations.h"

namespace libnormaliz {

using namespace std;

//-------------------------------------------------------------------
//       OurTerm
//-------------------------------------------------------------------



template<typename Number>
OurTerm<Number>::OurTerm(){

}


template<typename Number>
OurTerm<Number>::OurTerm(const Number& c, const map<key_t, long>& mon, const dynamic_bitset& supp){
    coeff = c;
    monomial = mon;
    support = supp;
    mon2vars_expos();
}


template<typename Number>
OurTerm<Number>::OurTerm(const pair<vector<key_t>, Number>& t, size_t dim){
    coeff = t.second;
    monomial = count_in_map<key_t, long>(t.first);
    support = dynamic_bitset(dim);
    for(auto& m: monomial)
        support[m.first] = 1;
    mon2vars_expos();
}

template<typename Number>
void OurTerm<Number>::mon2vars_expos(){
    vars.clear();
    for(auto& M: monomial){
        for(size_t i = 0; i < M.second; ++i)
            vars.push_back(M.first);
    }
}

template<typename Number>
Number OurTerm<Number>::evaluate(const vector<Number>& argument) const{

    Number value = coeff;
    for(size_t i = 0; i < vars.size(); ++i)
        value *= argument[vars[i]];
    return value;
}

template<typename Number>
void OurTerm<Number>::shift_coordinates(const int& shift){

    OurTerm<Number> transformed;
    transformed.support = dynamic_bitset(support.size() + shift);
    for(auto F: monomial){
        key_t cc = F.first;
        if(shift < 0)
            assert(cc >= -shift);
        cc += shift;
        transformed.support[cc] = 1;
        (transformed.monomial)[cc] = F.second;
    }
    transformed.coeff = coeff;
    *this = transformed;
    mon2vars_expos();
}

template<typename Number>
void OurTerm<Number>::swap_coordinates(const key_t& first, const key_t& second){

    OurTerm<Number> transformed;
    transformed.support = dynamic_bitset(support.size());
    transformed.coeff = coeff;
    for(auto F: monomial){
        key_t cc = F.first;

        if(cc == first){
            cc = second;
        }
        else
            if(cc == second)
                cc = first;
        transformed.monomial[cc] = F.second;
        transformed.support[cc] = 1;
    }
    *this = transformed;
    mon2vars_expos();
}

template<typename Number>
void OurTerm<Number>::cyclic_shift_right(const key_t& col){

    v_cyclic_shift_right(support, col);
    vector<long> expo_vec(support.size());
    for(auto& E: monomial)
        expo_vec[E.first] = E.second;
    v_cyclic_shift_right(expo_vec, col);
    monomial.clear();
    for(int i = 0; i< expo_vec.size(); ++i){
        if(expo_vec[i] >0 )
            monomial[i] = expo_vec[i];
    }
    mon2vars_expos();
}

template<typename Number>
void OurTerm<Number>::permute_variables(const vector<key_t>& perm){
    vector<long> expo_vec(support.size());
    map<key_t, long> new_mon;
    for( auto& E: monomial)
        expo_vec[E.first] = E.second;
    // cout << "EEEEEEEEEEEEEEEE " << expo_vec;
    expo_vec = v_permute_coordinates(expo_vec, perm);
    // cout << "FFFFFFFFFFFFFFFF " << expo_vec;
    for(size_t i = 0; i < perm.size(); ++i){
        if(expo_vec[i] != 0)
            new_mon[i] = expo_vec[i];
    }
    monomial = new_mon;
    support = v_permute_coordinates(support, perm);
    mon2vars_expos();
}

template<typename Number>
void OurTerm<Number>::multiply_by_constant(const Number& factor){
    coeff *= factor;
}

/*
template<typename Number>
bool OurTerm<Number>::check_restriction(const dynamic_bitset& set_of_var)  const{
    return support.is_subset_of(set_of_var);
} */

template<typename Number>
bool OurTerm<Number>::is_restrictable_inequ(const dynamic_bitset& set_of_var)  const{
    return support.is_subset_of(set_of_var) || (coeff <= 0);
}

//-------------------------------------------------------------------
//             OurPolynomial
//-------------------------------------------------------------------


template<typename Number>
OurPolynomial<Number>::OurPolynomial(){
    vectorized = false;
}


template<typename Number>
OurPolynomial<Number>::OurPolynomial(const map<vector<key_t>, Number>& poly, size_t dim){

    vectorized = false;
    support = dynamic_bitset(dim);
    for(auto& t: poly){
        pair<vector<key_t>, Number> t_0 = make_pair(t.first, t.second);
        this->push_back(OurTerm<Number>(t_0,dim));
        support |= this->back().support;
    }
    highest_indet = -1;
    for(size_t i = 0; i < support.size(); ++i){
        if(support[i])
            highest_indet = i;
    }
}

template<typename Number>
OurPolynomial<Number>::OurPolynomial(const vector<Number>& linear_form){

    vectorized = false;
    for(size_t i = 0; i < linear_form.size(); ++i){
        if(linear_form[i] == 0)
            continue;
        dynamic_bitset term_supp(linear_form.size());
        term_supp[i] = true;
        map<key_t, long> term_mon;
        term_mon[i] = 1;
        this->push_back(OurTerm<Number>(linear_form[i], term_mon, term_supp));
    }
    this->support = v_support(linear_form);
}

template<typename Number>
key_t OurPolynomial<Number>::get_highest_indet() const{
        return highest_indet;
}

template<typename Number>
void OurPolynomial<Number>::shift_coordinates(const int& shift){

    support = dynamic_bitset(support.size() + shift);
    for(auto& M: *this){
        M.shift_coordinates(shift);
        support |= M.support;
    }
    if(highest_indet >0){
        highest_indet +=shift;
        assert(highest_indet >= 0);
    }
}

template<typename Number>
void OurPolynomial<Number>::swap_coordinates(const key_t& first, const key_t& second){

    for(auto& M: *this){
        M.swap_coordinates(first, second);
    }

    bool temp = support[first];
    support[first] = support[second];
    support[second] = temp;
    highest_indet = -1;
    for(size_t i = 0; i < support.size(); ++i){
        if(support[i])
            highest_indet = i;
    }
}

template<typename Number>
Number OurPolynomial<Number>::evaluate(const vector<Number>& argument) const{

    Number value = 0;
    if(vectorized){
        return evaluate_vectorized(argument);
    }
    for(auto& T: *this){
        value += T.evaluate(argument);
        if(!check_range(value))
             throw ArithmeticException("Overflow in evaluation of polynomial");
    }
    return value;
}

template<typename Number>
Number OurPolynomial<Number>::evaluate_vectorized(const vector<Number>& argument) const{

    Number value = const_term;
    for(size_t i = 0; i <  expo_1_pos.size(); ++i){
        value += argument[expo_1_pos[i]] *  argument[expo_2_pos[i]];
    }
    for(size_t i = 0; i <  expo_1_neg.size(); ++i){
        value -= argument[expo_1_neg[i]] *  argument[expo_2_neg[i]];
    }
    return value;
}


template<typename Number>
OurPolynomial<Number> OurPolynomial<Number>::restrict_to(const dynamic_bitset& variables) const{
    OurPolynomial<Number> Rest;
    for(auto& T: *this){
     if(T.support.is_subset_of(variables))
         Rest.push_back(T);
    }
    return Rest;
}


// splits the polynomial into two parts: terms whose support is contained in support_variables
// and the remaining terms
template<typename Number>
pair<OurPolynomial<Number>, OurPolynomial<Number> > OurPolynomial<Number>::split(const dynamic_bitset& support_variables) const{
    OurPolynomial<Number> Rest;
    OurPolynomial<Number> LeftOver;
    for(auto& T: *this){
     if(T.support.is_subset_of(support_variables))
         Rest.push_back(T);
    else
        LeftOver.push_back(T);
    }
    return make_pair(Rest, LeftOver);
}


template<typename Number>
bool OurPolynomial<Number>::check_linearity(const dynamic_bitset& critical_variables, dynamic_bitset& support_linear) const{
    for(auto& T: *this){
        dynamic_bitset common = T.support & critical_variables;
        if(common.count() == 0)
            return false;
        support_linear |= common;
    }
    return true;
}

template<typename Number>
void OurPolynomial<Number>::vectorize_deg_2(){
    vector<key_t> fact_1_pos, fact_2_pos;
    vector<key_t> fact_1_neg, fact_2_neg;
    // vector<Number> coe;
    Number ct = 0;
    for(auto& T: *this){
        if(T.vars.size() != 2 && T.vars.size() != 0)
            return;
        if(T.vars.size() == 0){
            ct += T.coeff;
            continue;
        }
        if(T.vars.size() == 2){
            if(T.coeff !=1 && T.coeff != -1)
                return;
            if(T.coeff == 1){
                fact_1_pos.push_back(T.vars[0]);
                fact_2_pos.push_back(T.vars[1]);
            }
            if(T.coeff == -1){
                fact_1_neg.push_back(T.vars[0]);
                fact_2_neg.push_back(T.vars[1]);
            }
            // coe.push_back(T.coeff);
        }
    }
    expo_1_pos = fact_1_pos;
    expo_2_pos = fact_2_pos;
    expo_1_neg = fact_1_neg;
    expo_2_neg = fact_2_neg;
    // coeffs = coe;
    const_term = ct;
    vectorized = true;
    (*this).clear();
}



template<typename Number>
Number OurPolynomial<Number>::evaluate_restricted(const vector<Number>& argument, const dynamic_bitset& set_of_var) const{
    Number value = 0;
    for(auto& T: *this){
        if(T.support.is_subset_of(set_of_var))
            value += T.evaluate(argument);
        if(!check_range(value))
             throw ArithmeticException("Overflow in evaluation of polynomial");
    }
    return value;

}

template<typename Number>
void OurPolynomial<Number>::cyclic_shift_right(const key_t& col){
    for(auto& T: *this)
        T.cyclic_shift_right(col);

    v_cyclic_shift_right(support, col);
    highest_indet = -1;
    for(size_t i = 0; i < support.size(); ++i){
        if(support[i])
            highest_indet = i;
    }
}


template<typename Number>
void OurPolynomial<Number>::permute_variables(const vector<key_t>& perm){
    for(auto& T: *this)
        T.permute_variables(perm);
    support = v_permute_coordinates(support, perm);
    highest_indet = -1;
    for(size_t i = 0; i < support.size(); ++i)
        if(support[i])
            highest_indet = i;
}

template<typename Number>
void OurPolynomial<Number>::multiply_by_constant(const Number& factor){
    for(auto& T: *this)
        T.multiply_by_constant(factor);
}

template<typename Number>
bool OurPolynomial<Number>::is_restrictable_inequ(const dynamic_bitset& set_of_var)  const{
    size_t nr_negative = 0;
    for(auto& T: *this){
        if(!T.is_restrictable_inequ(set_of_var))
            return false;
        if(T.support.is_subset_of(set_of_var) && T.coeff < 0)
            nr_negative++;
    }
    return nr_negative >= 4;
}

/*
template<typename Number>
bool OurPolynomial<Number>::check_restriction(const dynamic_bitset& set_of_var)  const{
    for(auto& T: *this){
        if(!T.check_restriction(set_of_var))
            return false;
    }
    return true;
}*/

//-------------------------------------------------------------------
//             OurPolynomialCong
//-------------------------------------------------------------------

template<typename Number>
OurPolynomialCong<Number>::OurPolynomialCong(){

}

template<typename Number>
OurPolynomialCong<Number>::OurPolynomialCong(const OurPolynomial<Number>& pol, const Number& mod){
        poly = pol;
        modulus = mod;
}

template<typename Number>
OurPolynomialCong<Number>::OurPolynomialCong(vector<Number> cong){
        modulus = cong.back();
        cong.pop_back();
        poly = OurPolynomial<Number>(cong);
}

template<typename Number>
bool OurPolynomialCong<Number>::check(const vector<Number>& v) const{
    if(poly.evaluate(v) % modulus != 0)
        return false;
    return true;
}

template<>
bool OurPolynomialCong<renf_elem_class>::check(const vector<renf_elem_class>& v) const{
    assert(false);
    return false;
}

//-------------------------------------------------------------------
//             OurPolynomialSystem
//-------------------------------------------------------------------


template<typename Number>
OurPolynomialSystem<Number>::OurPolynomialSystem(){

}

template<typename Number>
OurPolynomialSystem<Number>::OurPolynomialSystem(const set<map<vector<key_t>, Number> >& Polys, size_t dim){
    for(auto& p: Polys)
        this->push_back(OurPolynomial<Number>(p, dim + 1)); // sme conventions for dim as in making from strings by CoCoA below
}

template<typename Number>
bool OurPolynomialSystem<Number>::check(const vector<Number>& argument, const bool is_equations, const bool exact_length) const{

    Number test;
    for(auto& P: *this){
        if(P.highest_indet > argument.size() -1)
            continue;
        if(P.highest_indet < argument.size() - 1 && exact_length)
            continue;
        test = P.evaluate(argument);
        if(is_equations && test != 0)
            return false;
        if(!is_equations && test < 0)
            return false;
    }
    return true;
}

template<typename Number>
void OurPolynomialSystem<Number>::shift_coordinates(const int& shift){
    for(auto& P: *this)
        P.shift_coordinates(shift);
}

template<typename Number>
void OurPolynomialSystem<Number>::swap_coordinates(const key_t& first, const key_t& second){
    for(auto& P: *this)
        P.swap_coordinates(first, second);
}

template<typename Number>
void OurPolynomialSystem<Number>::cyclic_shift_right(const key_t& col){
    for(auto& P: *this)
        P.cyclic_shift_right(col);
}

template<typename Number>
void OurPolynomialSystem<Number>::permute_variables(const vector<key_t>& perm){
    for(auto& P: *this)
        P.permute_variables(perm);
}

template<typename Number>
void OurPolynomialSystem<Number>::multiply_by_constant(const Number& factor){
    for(auto& P: *this)
        P.multiply_by_constant(factor);
}

#ifdef NMZ_COCOA

template<typename Number>
OurPolynomial<Number>::OurPolynomial(const string& poly_string, const size_t dim, const bool verbose){
    GlobalManager CoCoAFoundations;

    /*SparsePolyRing RQQ = NewPolyRing_DMPI(RingQQ(), dim + 1, lex);
    string poly_string_new("x[1]^2/2+1/3");
    RingElem FQQ = ReadExpr(RQQ, poly_string_new);
    cout << "FFF " << FQQ << endl;*/

    vectorized = false;

    if(verbose)
        verboseOutput() << poly_string << endl;

    SparsePolyRing RQQ = NewPolyRing_DMPI(RingQQ(), dim + 1, lex);
    RingElem FQQ = ReadExpr(RQQ, poly_string);

    // cout << "DDDD " << FQQ << endl;
    FQQ = ClearDenom(FQQ);

    // cout << "FFFF " << FQQ << endl;

    SparsePolyRing R = NewPolyRing_DMPI(RingZZ(), dim + 1, lex); // in the input shift_coordinates numbered from 1
    RingElem F = makeZZCoeff(FQQ, R);

    // cout << "ZZZZ " << F << endl;

    vector<long> v(NumIndets(R));
    BigInt BI_coeff;
    mpz_class mpz_coeff;
    long max_indet = -1;
    support = dynamic_bitset(dim +1);

    INTERRUPT_COMPUTATION_BY_EXCEPTION

    SparsePolyIter mon = BeginIter(F);

    for (; !IsEnded(mon); ++mon) {
        OurTerm<Number> T;

        IsInteger(BI_coeff, coeff(mon)); // in two steps from the coefficient of the term
        mpz_coeff = mpz(BI_coeff);    // to mpz_class
        T.coeff = convertTo<Number>(mpz_coeff); // and one more conversion

        exponents(v, PP(mon));  // this function gives the exponent vector back as v
        T.support = v_support(v);
        for(long i = 0; i < v.size(); ++i){
            if(v[i] != 0){
                if(i > max_indet)
                    max_indet = i;
                T.monomial[i] = v[i];
            }
        }
        this->push_back(T);
        support |= T.support;
    }
    highest_indet = max_indet;
}

template<typename Number>
RingElem OurTerm<Number>::ToCoCoA(SparsePolyRing R) const{

    mpq_class c;
    c = convertTo<mpq_class>(coeff);
    BigRat ccc = BigRatFromMPQ(c.get_mpq_t());
    RingElem h(R,ccc);
    for(auto& v:vars)
        h *= indet(R,v);
    return h;
}

/*
// We need the special version for long long to avoid a conversion problem
template<>
RingElem OurTerm<long long>::ToCoCoA(SparsePolyRing R) const{

    mpz_class c_mpz = convertTo<mpz_class>(coeff);
    mpq_class c = c_mpz;
    BigRat ccc = BigRatFromMPQ(c.get_mpq_t());
    RingElem h(R,ccc);
    for(auto& v:vars)
        h *= indet(R,v);
    return h;
}

// Another special version ...
template<>
RingElem OurTerm<mpz_class>::ToCoCoA(SparsePolyRing R) const{

    mpq_class c = coeff;
    BigRat ccc = BigRatFromMPQ(c.get_mpq_t());
    RingElem h(R,ccc);
    for(auto& v:vars)
        h *= indet(R,v);
    return h;
}
*/


template<typename Number>
RingElem OurPolynomial<Number>::ToCoCoA(SparsePolyRing R) const{

    RingElem p = zero(R);
    for(auto& T:*this)
        p += T.ToCoCoA(R);
    return p;
}

template<typename Number>
vector<RingElem> OurPolynomialSystem<Number>::ToCoCoA(SparsePolyRing R) const{

    vector<RingElem> CS;
    for(auto& P:*this)
        CS.push_back(P.ToCoCoA(R));
    return CS;
}

bool poly_reduce(RingElem& r, const RingElem&g, const PPMonoidElem& ini_g, const RingElem& h){

    if(!IsDivisible(ini_g, LPP(h)))
        return false;

    PPMonoidElem quot_PP = ini_g/LPP(h);
    RingElem quot_coeff = LC(g)/LC(h);
    RingElem quot = monomial(owner(h), quot_coeff, quot_PP);
    r = g - quot*h;
    return true;
}

bool GB_reduce(const RingElem& f, vector<RingElem>& GB){

    RingElem g = f;
    RingElem r;

    while(g != 0){
        PPMonoidElem ini_g = LPP(g);
        bool reducible = false;
        for(auto& h: GB){
            if(poly_reduce(r,g, ini_g, h)){
                reducible = true;
                g = r;
                break;
            }
        }
        if(!reducible)
            break;
    }
    if(g != 0){
        GB.push_back(g);
        return false;
    }
    else
        return true;
}

template<typename Number>
OurPolynomialSystem<Number>::OurPolynomialSystem(const vector<string>& poly_strings, size_t dim, bool verb){

    verbose = verb;
    for(auto& S: poly_strings){
        OurPolynomial<Number> poly(S,dim,verbose);
        this->push_back(poly);
    }
}

template<typename Number>
OurPolynomialSystem<Number> OurPolynomialSystem<Number>::minimize_equations(const Matrix<Number>& LinEqus) const {

    // cout << "RRRRRRRRRRRRRR  " << LinEqus.rank() << endl;

    size_t EmbDim = LinEqus.nr_of_columns();

    CoCoA::GlobalManager CoCoAFoundations;
    CoCoA::SparsePolyRing R = CoCoA::NewPolyRing_DMPI(CoCoA::RingQQ(), EmbDim , CoCoA::lex);

    /* for(auto& p: HomPol)
        cout << p << endl;*/

    OurPolynomialSystem<Number> LinPolys;
    for(size_t i = 0; i < LinEqus.nr_of_rows(); ++i){ // automatically homogeneous
        LinPolys.push_back(OurPolynomial<Number>(LinEqus[i]));    }
    vector<RingElem> CLin = LinPolys.ToCoCoA(R);

    vector<RingElem> CPol = ToCoCoA(R);
    vector<RingElem> HomPol;
    for(auto& p: CPol){
        if(deg(p) > 2)
            throw BadInputException("Minimization of polynomial is_equations only possible for degree <= 2");
        if(deg(p) == 1)
            HomPol.insert(HomPol.begin(), homogenize(p)); // make sure fegree 1 is inserted into GB before degree 2
        else
            HomPol.push_back(homogenize(p));
    }

    vector<RingElem> GB;
    OurPolynomialSystem<Number> Minis;

    for(auto& lf: CLin){
        GB_reduce(lf,GB);
    }
    // size_t LGGGG = GB.size();
    // cout << "GGGGGGGGGGGGGGGGGGGGGG " << GB.size() << endl;

    for(size_t j = 0; j < this->size(); ++j){
        if(!GB_reduce(HomPol[j],GB))
            Minis.push_back((*this)[j]);
    }

    /* for(auto& p: Minis){
        cout << endl;
        cout << p.ToCoCoA(R) << endl;
    }

    cout << "MMMMMMMM  " << Minis.size()<< " GGGGGGGGGGGG " << GB.size() - LGGGG << endl;*/

    return Minis;
}

#endif // NMZ_COCOA

template class OurTerm<long>;
template class OurTerm<long long>;
template class OurTerm<mpz_class>;
#ifdef ENFNORMALIZ
template class OurTerm<renf_elem_class>;
#endif

template class OurPolynomial<long>;
template class OurPolynomial<long long>;
template class OurPolynomial<mpz_class>;
#ifdef ENFNORMALIZ
template class OurPolynomial<renf_elem_class>;
#endif

template class OurPolynomialCong<long>;
template class OurPolynomialCong<long long>;
template class OurPolynomialCong<mpz_class>;
#ifdef ENFNORMALIZ
template class OurPolynomialCong<renf_elem_class>;
#endif

template class OurPolynomialSystem<long>;
template class OurPolynomialSystem<long long>;
template class OurPolynomialSystem<mpz_class>;
#ifdef ENFNORMALIZ
template class OurPolynomialSystem<renf_elem_class>;
#endif

} // namespace