1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
|
#ifdef NMZ_MIC_OFFLOAD
#pragma offload_attribute(push, target(mic))
#include "libnormaliz/offload_handler.h"
#include <offload.h> // offload system header
#include "libnormaliz/matrix.h"
#include "libnormaliz/full_cone.h"
#include "libnormaliz/list_and_map_operations.h"
#include "libnormaliz/vector_operations.h"
#include "libnormaliz/my_omp.h"
#include "libnormaliz/HilbertSeries.h"
#include <cstring> // for strcpy
#include <iostream>
#include <fstream>
namespace libnormaliz {
using namespace std;
// transferring vector
template <typename Integer>
void fill_vector(vector<Integer>& v, long size, Integer* data) {
for (long i = 0; i < size; i++)
v[i] = data[i];
}
template <typename Integer>
void fill_plain(Integer* data, long size, const vector<Integer>& v) {
for (long i = 0; i < size; i++)
data[i] = v[i];
}
// transferring Matrix
template <typename Integer>
void fill_matrix(Matrix<Integer>& M, long rows, long cols, Integer* data) {
for (long i = 0; i < rows; i++)
for (long j = 0; j < cols; j++)
M[i][j] = data[i * cols + j];
}
template <typename Integer>
void fill_plain(Integer* data, long rows, long cols, const Matrix<Integer>& M) {
for (long i = 0; i < rows; i++)
for (long j = 0; j < cols; j++)
data[i * cols + j] = M[i][j];
}
// transferring list<vector>
// the vectors may have different lengths
// fill_list_vector also creates the list entries and appendes them to the list!
template <typename Integer>
void fill_list_vector(list<vector<Integer> >& l, long plain_size, Integer* data) {
Integer* data_end = data + plain_size; // position after last entry
while (data < data_end) {
l.push_back(vector<Integer>(*data));
fill_vector(l.back(), *data, data + 1);
data += *data + 1;
}
}
template <typename Integer>
void fill_plain(Integer* data, long size, const list<vector<Integer> >& l) {
long v_size;
for (const auto& it : l) {
v_size = it.size();
*data = v_size;
fill_plain(++data, v_size, it);
data += v_size;
}
}
template <typename Integer>
long plain_size(const list<vector<Integer> >& l) {
long size = 0;
for (const auto& it : l)
size += it.size() + 1;
return size;
}
#pragma offload_attribute(pop)
//-------------------------- OffloadHandler ---------------------------------
template <typename Integer>
OffloadHandler<Integer>::OffloadHandler(Full_Cone<Integer>& fc, int mic_number)
: mic_nr(mic_number), running(false), local_fc_ref(fc) {
cout << "mic " << mic_nr << ": Offload and initialize Full_Cone..." << endl;
create_full_cone();
transfer_bools();
transfer_support_hyperplanes();
transfer_grading(); // including truncation and shift
transfer_triangulation_info(); // extreme rays, deg1_triangulation, Order_Vector
primal_algorithm_initialize();
cout << "mic " << mic_nr << ": Full_Cone initialized." << endl;
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::create_full_cone() {
const Matrix<Integer>& M = local_fc_ref.Generators;
long nr = M.nr_of_rows();
long nc = M.nr_of_columns();
long size = nr * nc;
Integer* data = new Integer[size];
fill_plain(data, nr, nc, M);
// cout << "mic " << mic_nr<< ": Offload Full_Cone..." << endl;
// offload to mic, copy data and free it afterwards, but keep a pointer to the created Full_Cone
#pragma offload target(mic : mic_nr) in(nr, nc)in(data : length(size) ONCE)
{
omp_set_num_threads(118);
Matrix<Integer> gens(nr, nc);
fill_matrix(gens, nr, nc, data);
offload_fc_ptr = new Full_Cone<Integer>(gens);
}
// cout << "mic " << mic_nr<< ": Offload Full_Cone completed." << endl;
delete[] data;
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::transfer_bools() {
// cout << "mic " << mic_nr<< ": transfer_bools" << endl;
Full_Cone<Integer>& foo_loc = local_fc_ref; // prevents segfault
// TODO segfaults should be resolved in intel compiler version 2015
bool is_computed_pointed = local_fc_ref.isComputed(ConeProperty::IsPointed);
bool inhomogeneous = foo_loc.inhomogeneous;
bool do_Hilbert_basis = foo_loc.do_Hilbert_basis;
bool do_h_vector = foo_loc.do_h_vector;
bool keep_triangulation = foo_loc.keep_triangulation;
bool do_multiplicity = foo_loc.do_multiplicity;
bool do_determinants = foo_loc.do_determinants;
bool do_triangulation = foo_loc.do_triangulation;
bool do_deg1_elements = foo_loc.do_deg1_elements;
bool do_Stanley_dec = foo_loc.do_Stanley_dec;
bool do_approximation = foo_loc.do_approximation;
bool do_default_mode = foo_loc.do_default_mode;
bool deg1_generated = foo_loc.deg1_generated;
bool pointed = foo_loc.pointed;
#pragma offload target(mic : mic_nr) in(mic_nr)
{
// bool foo = offload_fc_ptr->inhomogeneous; // prevents segfault
offload_fc_ptr->inhomogeneous = inhomogeneous;
offload_fc_ptr->do_Hilbert_basis = do_Hilbert_basis;
offload_fc_ptr->do_h_vector = do_h_vector;
offload_fc_ptr->keep_triangulation = keep_triangulation;
offload_fc_ptr->do_multiplicity = do_multiplicity;
offload_fc_ptr->do_determinants = do_determinants;
offload_fc_ptr->do_triangulation = do_triangulation;
offload_fc_ptr->do_deg1_elements = do_deg1_elements;
offload_fc_ptr->do_Stanley_dec = do_Stanley_dec;
offload_fc_ptr->do_approximation = do_approximation;
offload_fc_ptr->do_default_mode = do_default_mode;
offload_fc_ptr->do_all_hyperplanes = false;
// deg1_generated could be set more precise
offload_fc_ptr->deg1_triangulation = deg1_generated;
if (is_computed_pointed) {
offload_fc_ptr->pointed = pointed;
offload_fc_ptr->is_Computed.set(ConeProperty::IsPointed);
}
offload_fc_ptr->verbose = true;
string fstr = "/tmp/mic";
fstr.push_back(static_cast<char>('0' + mic_nr));
fstr.append(".log");
cout << "writing to " << fstr << endl;
ofstream* fout = new ofstream(fstr.c_str());
setVerboseOutput(*fout);
setErrorOutput(*fout);
verboseOutput() << "Start logging" << endl;
}
// cout << "mic " << mic_nr<< ": transfer_bools done" << endl;
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::transfer_support_hyperplanes() {
if (!local_fc_ref.isComputed(ConeProperty::SupportHyperplanes))
return;
// cout << "mic " << mic_nr<< ": transfer_support_hyperplanes" << endl;
const Matrix<Integer>& M = local_fc_ref.Support_Hyperplanes;
long nr = M.nr_of_rows();
long nc = M.nr_of_columns();
long size = nr * nc;
assert(size > 0); // make sure there are support hyperplanes computed
Integer* data = new Integer[size];
fill_plain(data, nr, nc, M);
// offload to mic, copy data and create the C++ matrix in the offloaded Full_Cone
#pragma offload target(mic : mic_nr) in(nr, nc)in(data : length(size) ONCE)
{
offload_fc_ptr->Support_Hyperplanes = Matrix<Integer>(nr, nc);
fill_matrix(offload_fc_ptr->Support_Hyperplanes, nr, nc, data);
offload_fc_ptr->nrSupport_Hyperplanes = nr;
offload_fc_ptr->is_Computed.set(ConeProperty::SupportHyperplanes);
}
delete[] data;
// cout << "mic " << mic_nr<< ": transfer_support_hyperplanes done" << endl;
if (local_fc_ref.ExcludedFaces.nr_of_rows() > 0) {
const Matrix<Integer>& ExFaces = local_fc_ref.ExcludedFaces;
nr = ExFaces.nr_of_rows();
nc = ExFaces.nr_of_columns();
size = nr * nc;
assert(size > 0); // make sure there are support hyperplanes computed
Integer* data = new Integer[size];
fill_plain(data, nr, nc, ExFaces);
// offload to mic, copy data and create the C++ matrix in the offloaded Full_Cone
#pragma offload target(mic : mic_nr) in(nr, nc)in(data : length(size) ONCE)
{
offload_fc_ptr->ExcludedFaces = Matrix<Integer>(nr, nc);
fill_matrix(offload_fc_ptr->ExcludedFaces, nr, nc, data);
}
delete[] data;
}
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::transfer_grading() {
// cout << "mic " << mic_nr<< ": transfer_grading" << endl;
long dim = local_fc_ref.dim;
if (local_fc_ref.inhomogeneous) {
assert(local_fc_ref.isComputed(ConeProperty::RecessionRank));
Integer* data = new Integer[dim];
fill_plain(data, dim, local_fc_ref.Truncation);
long level0_dim = local_fc_ref.level0_dim;
#pragma offload target(mic : mic_nr) in(dim)in(level0_dim)in(data : length(dim) ONCE)
{
offload_fc_ptr->Truncation = vector<Integer>(dim);
fill_vector(offload_fc_ptr->Truncation, dim, data);
offload_fc_ptr->level0_dim = level0_dim;
}
delete[] data;
}
if (local_fc_ref.isComputed(ConeProperty::Grading)) {
Integer* data = new Integer[dim];
fill_plain(data, dim, local_fc_ref.Grading);
#pragma offload target(mic : mic_nr) in(dim)in(data : length(dim) ONCE)
{
offload_fc_ptr->Grading = vector<Integer>(dim);
fill_vector(offload_fc_ptr->Grading, dim, data);
offload_fc_ptr->is_Computed.set(ConeProperty::Grading);
}
delete[] data;
}
if (local_fc_ref.shift != 0) {
auto shift = local_fc_ref.shift;
#pragma offload target(mic : mic_nr) in(shift)
{ offload_fc_ptr->shift = shift; }
}
// cout << "mic " << mic_nr<< ": transfer_grading done" << endl;
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::transfer_triangulation_info() {
// cout << "mic " << mic_nr<< ": transfer_triangulation_info" << endl;
long dim = local_fc_ref.dim;
long nr_gen = local_fc_ref.nr_gen;
if (local_fc_ref.isComputed(ConeProperty::ExtremeRays)) {
bool* data = new bool[nr_gen];
fill_plain(data, nr_gen, local_fc_ref.Extreme_Rays_Ind);
#pragma offload target(mic : mic_nr) in(nr_gen)in(data : length(nr_gen) ONCE)
{
offload_fc_ptr->Extreme_Rays_Ind = vector<bool>(nr_gen);
fill_vector(offload_fc_ptr->Extreme_Rays_Ind, nr_gen, data);
offload_fc_ptr->is_Computed.set(ConeProperty::ExtremeRays);
}
delete[] data;
}
// always transfer the order vector
{
Integer* data = new Integer[dim];
fill_plain(data, dim, local_fc_ref.Order_Vector);
#pragma offload target(mic : mic_nr) in(dim)in(data : length(dim) ONCE)
{
offload_fc_ptr->Order_Vector = vector<Integer>(dim);
fill_vector(offload_fc_ptr->Order_Vector, dim, data);
}
delete[] data;
}
if (!local_fc_ref.Comparisons.empty()) {
long size = local_fc_ref.Comparisons.size();
size_t* data = new size_t[size];
fill_plain(data, size, local_fc_ref.Comparisons);
#pragma offload target(mic : mic_nr) in(size)in(data : length(size) ONCE)
{
offload_fc_ptr->Comparisons.resize(size);
fill_vector(offload_fc_ptr->Comparisons, size, data);
offload_fc_ptr->nrTotalComparisons = offload_fc_ptr->Comparisons[size - 1];
}
delete[] data;
}
// cout << "mic " << mic_nr<< ": transfer_triangulation_info done" << endl;
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::primal_algorithm_initialize() {
#pragma offload target(mic : mic_nr) signal(&running)
{
offload_fc_ptr->do_vars_check(false);
if (offload_fc_ptr->inhomogeneous)
offload_fc_ptr->set_levels();
offload_fc_ptr->set_degrees();
offload_fc_ptr->primal_algorithm_initialize();
cout << "mic " << mic_nr << ": create 3 mio empty simplices ..." << endl;
SHORTSIMPLEX<Integer> simp;
simp.key = vector<key_t>(offload_fc_ptr->dim);
simp.height = 0;
simp.vol = 0;
offload_fc_ptr->FreeSimpl.insert(offload_fc_ptr->FreeSimpl.end(), 3000000, simp);
cout << "mic " << mic_nr << ": creating simplices done." << endl;
}
running = true;
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::transfer_pyramids(const list<vector<key_t> >& pyramids) {
long size = plain_size(pyramids);
key_t* data = new key_t[size];
fill_plain(data, size, pyramids);
transfer_pyramids_inner(data, size);
delete[] data;
cout << "mic " << mic_nr << ": transferred " << pyramids.size()
<< " pyramids. avg. key size:" << static_cast<double>(size) / pyramids.size() - 1 << endl;
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::transfer_pyramids_inner(key_t* data, long size) {
wait();
#pragma offload target(mic : mic_nr) in(size)in(data : length(size) ONCE)
{
fill_list_vector(offload_fc_ptr->Pyramids[0], size, data);
offload_fc_ptr->nrPyramids[0] = offload_fc_ptr->Pyramids[0].size();
}
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::evaluate_pyramids() {
wait();
cout << "mic " << mic_nr << ": evaluate_pyramids" << endl;
#pragma offload target(mic : mic_nr) signal(&running)
{
offload_fc_ptr->evaluate_stored_pyramids(0);
offload_fc_ptr->evaluate_triangulation();
}
// cout << "Nach Start evaluate mic" << mic_nr << endl;
running = true;
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::evaluate_triangulation() {
wait();
cout << "mic " << mic_nr << ": evaluate_triangulation" << endl;
#pragma offload target(mic : mic_nr) signal(&running)
{ offload_fc_ptr->evaluate_triangulation(); }
running = true;
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::complete_evaluation() {
wait();
cout << "mic " << mic_nr << ": complete_evaluation" << endl;
#pragma offload target(mic : mic_nr) signal(&running)
{ offload_fc_ptr->primal_algorithm_finalize(); }
running = true;
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::collect_data() {
wait();
cout << "mic " << mic_nr << ": collect_data" << endl;
collect_integers(); // TriangulationSize, DetSum, Multiplicity, ...
collect_hilbert_series();
collect_candidates(); // Hilbert basis, degree 1 elements
cout << "mic " << mic_nr << ": collect_data done" << endl;
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::collect_integers() {
{
size_t col_totalNrSimplices, col_nrSimplicialPyr, col_totalNrPyr;
Integer col_detSum;
#pragma offload target(mic : mic_nr) out(col_totalNrSimplices) out(col_nrSimplicialPyr) out(col_totalNrPyr) out(col_detSum)
{
col_totalNrSimplices = offload_fc_ptr->totalNrSimplices;
col_nrSimplicialPyr = offload_fc_ptr->nrSimplicialPyr;
col_totalNrPyr = offload_fc_ptr->totalNrPyr;
col_detSum = offload_fc_ptr->detSum;
}
local_fc_ref.totalNrSimplices += col_totalNrSimplices;
local_fc_ref.nrSimplicialPyr += col_nrSimplicialPyr;
local_fc_ref.totalNrPyr += col_totalNrPyr;
local_fc_ref.detSum += col_detSum;
}
if (local_fc_ref.do_triangulation && local_fc_ref.do_evaluation && local_fc_ref.isComputed(ConeProperty::Grading)) {
// cout << "mic " << mic_nr<< ": collecting multiplicity ..." << endl;
long size;
std::string* str_ptr;
#pragma offload target(mic : mic_nr) out(size) nocopy(str_ptr : length(0))
{
str_ptr = new std::string(offload_fc_ptr->multiplicity.get_str());
size = str_ptr->length() + 1;
}
char* c_str = new char[size];
#pragma offload target(mic : mic_nr) in(size)out(c_str : length(size)) nocopy(str_ptr : length(0))
{
std::strcpy(c_str, str_ptr->c_str());
delete str_ptr;
}
mpq_class coll_mult(c_str);
delete c_str;
local_fc_ref.multiplicity += coll_mult;
// cout << "mic " << mic_nr<< ": collecting multiplicity done" << endl;
}
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::collect_hilbert_series() {
if (local_fc_ref.do_h_vector) {
// cout << "mic " << mic_nr<< ": collecting Hilbert series ..." << endl;
long size;
std::string* str_ptr;
#pragma offload target(mic : mic_nr) out(size) nocopy(str_ptr : length(0))
{
str_ptr = new std::string(offload_fc_ptr->Hilbert_Series.to_string_rep());
size = str_ptr->length() + 1;
}
char* c_str = new char[size];
#pragma offload target(mic : mic_nr) in(size)out(c_str : length(size)) nocopy(str_ptr : length(0))
{
std::strcpy(c_str, str_ptr->c_str());
delete str_ptr;
}
HilbertSeries col_HS = HilbertSeries(string(c_str));
delete c_str;
local_fc_ref.Hilbert_Series += col_HS;
// cout << "mic " << mic_nr<< ": collecting Hilbert series done" << endl;
}
}
//---------------------------------------------------------------------------
#pragma offload_attribute(push, target(mic))
template <typename Integer>
bool is_ori_gen(const Candidate<Integer>& c) {
return c.original_generator;
}
#pragma offload_attribute(push, target(mic))
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::collect_candidates() {
if (local_fc_ref.do_Hilbert_basis) {
// cout << "mic " << mic_nr<< ": collect Hilbert basis" << endl;
long size;
#pragma offload target(mic : mic_nr) out(size)
{
// remove all original generators, they are also inserted on the host
offload_fc_ptr->OldCandidates.Candidates.remove_if(is_ori_gen<Integer>);
// or in c++11 with lambda function
// offload_fc_ptr->OldCandidates.Candidates.remove_if([](const Candidate<Integer>& c){ return c.original_generator;
// });
offload_fc_ptr->OldCandidates.extract(offload_fc_ptr->Hilbert_Basis);
offload_fc_ptr->OldCandidates.Candidates.clear();
// using the same methods as for pyramids
// handling list of vectors of possible different lengths
size = offload_fc_ptr->Hilbert_Basis.size() * (offload_fc_ptr->dim + 1);
}
if (size > 0) {
Integer* data = new Integer[size];
#pragma offload target(mic : mic_nr) in(size)out(data : length(size) ONCE)
{ fill_plain(data, size, offload_fc_ptr->Hilbert_Basis); }
// fill_list_vector(local_fc_ref.Hilbert_Basis, size, data);
list<vector<Integer> > coll_HB;
fill_list_vector(coll_HB, size, data);
delete[] data;
CandidateList<Integer> cand_l;
while (!coll_HB.empty()) {
cand_l.push_back(Candidate<Integer>(coll_HB.front(), local_fc_ref));
coll_HB.pop_front();
}
// cout << "mic " << mic_nr<< ": CandidateList complete" << endl;
// #pragma omp critical(CANDIDATES)
local_fc_ref.NewCandidates.splice(cand_l);
local_fc_ref.NewCandidates.reduce_by(local_fc_ref.OldCandidates);
local_fc_ref.update_reducers();
} // if (size > 0)
// cout << "mic " << mic_nr<< ": collect Hilbert basis done" << endl;
}
if (local_fc_ref.do_deg1_elements) {
// cout << "mic " << mic_nr<< ": collect degree 1 elements" << endl;
long size;
#pragma offload target(mic : mic_nr) out(size)
{
// using the same methods as for pyramids
// handling list of vectors of possible different lengths
size = offload_fc_ptr->Deg1_Elements.size() * (offload_fc_ptr->dim + 1);
}
if (size > 0) {
Integer* data = new Integer[size];
#pragma offload target(mic : mic_nr) in(size)out(data : length(size) ONCE)
{ fill_plain(data, size, offload_fc_ptr->Deg1_Elements); }
list<vector<Integer> > coll_Deg1;
fill_list_vector(coll_Deg1, size, data);
delete[] data;
local_fc_ref.Deg1_Elements.splice(local_fc_ref.Deg1_Elements.end(), coll_Deg1);
}
// cout << "mic " << mic_nr<< ": collect degree 1 elements done" << endl;
}
}
//---------------------------------------------------------------------------
template <typename Integer>
bool OffloadHandler<Integer>::is_running() {
#ifndef __MIC__
if (running) {
running = !_Offload_signaled(mic_nr, &running);
}
#endif
return running;
}
//---------------------------------------------------------------------------
template <typename Integer>
void OffloadHandler<Integer>::wait() {
if (is_running()) {
cout << "mic " << mic_nr << ": waiting ..." << endl;
#pragma offload_wait target(mic : mic_nr) wait(&running)
running = false;
cout << "mic " << mic_nr << ": waiting completed." << endl;
}
}
//---------------------------------------------------------------------------
template <typename Integer>
OffloadHandler<Integer>::~OffloadHandler() {
cout << "mic " << mic_nr << ": OffloadHandler destructor" << endl;
#pragma offload target(mic : mic_nr)
{ delete offload_fc_ptr; }
}
//-------------------------- MicOffloader -----------------------------------
template <typename Integer>
MicOffloader<Integer>::MicOffloader() : is_init(false), nr_mics(_Offload_number_of_devices()), nr_handlers(nr_mics) {
handlers.resize(nr_handlers);
// cout << "Constructor " << nr_handlers << endl;
}
//---------------------------------------------------------------------------
template <typename Integer>
MicOffloader<Integer>::~MicOffloader() {
if (is_init)
for (int i = 0; i < nr_handlers; ++i)
delete handlers[i];
}
//---------------------------------------------------------------------------
template <typename Integer>
void MicOffloader<Integer>::init(Full_Cone<Integer>& fc) {
if (!is_init) {
// TODO check preconditions
assert(fc.Order_Vector.size() == fc.dim);
if (fc.do_Hilbert_basis) {
fc.get_supphyps_from_copy(false); // (bool from_scratch)
fc.check_pointed();
}
// create handler
for (int i = 0; i < nr_handlers; ++i)
handlers[i] = new OffloadHandler<Integer>(fc, i % nr_mics);
is_init = true;
// wait for completed creation // TODO keep it?
for (int i = 0; i < nr_handlers; ++i)
handlers[i]->wait();
}
}
//---------------------------------------------------------------------------
// template<typename T>
bool compare_sizes(const vector<key_t>& v, const vector<key_t>& w) {
return v.size() < w.size();
}
template <typename Integer>
void MicOffloader<Integer>::offload_pyramids(Full_Cone<Integer>& fc, const size_t level) {
if (!is_init)
init(fc);
// cout << "nr_handlers " << nr_handlers << endl;
size_t fraction = 6;
if (fc.start_from == fc.nr_gen) { // all gens are done
fraction = 20;
if (level > 0)
fraction = 30;
}
if (fraction < nr_handlers)
fraction = nr_handlers; // ensure every card can get some
size_t nr_transfer = min(fc.nrPyramids[level] / fraction, 25000ul);
// cout << "transfer " << nr_transfer << endl;
if (nr_transfer == 0)
return;
bool at_least_one_idle = false;
for (int i = 0; i < nr_handlers; ++i) {
if (!handlers[i]->is_running()) {
at_least_one_idle = true;
/* cout << "Mixing ======================" << endl;
random_order(fc.Pyramids[level]);
auto py=fc.Pyramids[level].begin();
for(;py!=fc.Pyramids[level].end();++py)
cout << py->size() << " ";
cout << "======================" << endl;*/
break;
}
}
if (!at_least_one_idle)
return;
if (fc.Pyramids_scrambled[level]) {
fc.Pyramids[level].reverse(); // bring the big pyramids to the rear
}
else {
fc.Pyramids_scrambled[level] = true; // will not be scrambeld again
fc.Pyramids[level].sort(compare_sizes);
size_t size_sum = 0;
for (const auto& p : fc.Pyramids[level])
size_sum += p.size();
size_t size_bound = 2 * size_sum / fc.nrPyramids[level]; // 2*average size
for (const auto& p : fc.Pyramids[level]) {
if (p.size() > size_bound)
break;
}
random_order(fc.Pyramids[level], fc.Pyramids[level].begin(), p);
}
// offload some pyramids
list<vector<key_t> > pyrs;
vector<bool> started(nr_handlers, false);
for (int i = 0; i < nr_handlers; ++i) {
if (!handlers[i]->is_running()) {
// cout << "Testing mic" << i << endl;
started[i] = true;
auto transfer_end(fc.Pyramids[level].begin());
for (size_t j = 0; j < nr_transfer; ++j, ++transfer_end)
;
pyrs.splice(pyrs.end(), fc.Pyramids[level], fc.Pyramids[level].begin(), transfer_end);
fc.nrPyramids[level] -= nr_transfer;
handlers[i]->transfer_pyramids(pyrs);
pyrs.clear();
}
}
fc.Pyramids[level].reverse(); // bring the big pyramids to the front
// compute on mics
for (int i = 0; i < nr_handlers; ++i)
if (started[i])
handlers[i]->evaluate_pyramids();
}
//---------------------------------------------------------------------------
template <typename Integer>
void MicOffloader<Integer>::evaluate_triangulation() {
if (is_init) {
for (int i = 0; i < nr_handlers; ++i)
if (!handlers[i]->is_running())
handlers[i]->evaluate_triangulation();
}
}
//---------------------------------------------------------------------------
template <typename Integer>
void MicOffloader<Integer>::finalize() {
if (is_init) {
list<int> to_complete, to_collect;
for (int i = 0; i < nr_handlers; ++i)
to_complete.push_back(i);
// first start it on all idle mics
while (!to_complete.empty() || !to_collect.empty()) {
for (auto it = to_complete.begin(); it != to_complete.end();) {
if (!handlers[*it]->is_running()) {
handlers[*it]->complete_evaluation();
to_collect.push_back(*it);
it = to_complete.erase(it);
}
else {
++it;
}
}
for (auto it = to_collect.begin(); it != to_collect.end();) {
if (!handlers[*it]->is_running()) {
handlers[*it]->collect_data();
delete handlers[*it];
handlers[*it] = NULL;
it = to_collect.erase(it);
}
else {
++it;
}
}
}
is_init = false;
}
}
/***************** Instantiation for template parameter long long *****************/
template class MicOffloader<long long int>;
template class OffloadHandler<long long int>;
} // end namespace libnormaliz
#endif // NMZ_MIC_OFFLOAD
|