1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
|
/*
* Normaliz
* Copyright (C) 2007-2025 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#include <cstdlib>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <deque>
#include "libnormaliz/signed_dec.h"
#include "libnormaliz/list_and_map_operations.h"
namespace libnormaliz {
using std::cout;
using std::endl;
using std::ifstream;
// first "hoolow" subfacet in their list coming from the same simplex in the triangulation
template <typename Integer>
void SignedDec<Integer>::first_subfacet(const dynamic_bitset& Subfacet,
const bool compute_multiplicity,
Matrix<Integer>& PrimalSimplex,
mpz_class& MultPrimal,
vector<Integer>& DegreesPrimal,
Matrix<Integer>& ValuesGeneric) {
int tn = 0;
if (omp_in_parallel())
tn = omp_get_ancestor_thread_num(omp_start_level + 1);
size_t g = 0; // select generators in subfacet
// Matrix<Integer> DualSimplex[tn](dim,dim);
for (size_t i = 0; i < nr_gen; ++i) {
if (Subfacet[i] == 1) {
DualSimplex[tn][g] = Generators[i];
g++;
}
}
DualSimplex[tn][dim - 1] = Generic;
Integer MultDual;
DualSimplex[tn].simplex_data(identity_key(dim), PrimalSimplex, MultDual, SimplexDataWork[tn], SimplexDataUnitMat, true);
// DualSimplex[tn].simplex_data(identity_key(dim), PrimalSimplex, MultDual, true);
if (compute_multiplicity) {
DegreesPrimal = PrimalSimplex.MxV(GradingOnPrimal);
mpz_class ProductOfHeights = 1;
for (size_t i = 0; i < dim; ++i) {
ProductOfHeights *= convertTo<mpz_class>(v_scalar_product(PrimalSimplex[i], DualSimplex[tn][i]));
}
MultPrimal = ProductOfHeights / convertTo<mpz_class>(MultDual);
}
else { // we want to find a generic vector
for (size_t i = 0; i < 2; i++)
ValuesGeneric[i] = PrimalSimplex.MxV(CandidatesGeneric[i]);
}
}
template <typename Integer>
void SignedDec<Integer>::next_subfacet(const dynamic_bitset& Subfacet_next,
const dynamic_bitset& Subfacet_start,
const Matrix<Integer>& PrimalSimplex,
const bool compute_multiplicity,
const mpz_class& MultPrimal,
mpz_class& NewMult,
const vector<Integer>& DegreesPrimal,
vector<Integer>& NewDegrees,
const Matrix<Integer>& ValuesGeneric,
Matrix<Integer>& NewValues) {
size_t new_vert = 0; // value to make g++ happy
size_t old_place = 0; // this is the place of i in the ascending sequence of generators in Subfacet_start
size_t g = 0;
for (size_t i = 0; i < nr_gen; ++i) {
if (Subfacet_next[i] && !Subfacet_start[i])
new_vert = i;
if (!Subfacet_next[i] && Subfacet_start[i]) {
old_place = g;
}
if (Subfacet_start[i])
g++;
}
// We want to replace the "old" Generators[old_vert] corresponding to row old_place
// in PrimalSimplex gy the "new" Generators[new_vert]
// evaluate old linear forms on new vertex
vector<Integer> lambda = PrimalSimplex.MxV(Generators[new_vert]);
// We only need the new degrees. This is a Fourier-Motzkin step.
if (compute_multiplicity) { // we really want to compute multiplicity
for (size_t i = 0; i < dim; ++i) {
if (i == old_place) // is already coprime
continue;
NewDegrees[i] = (lambda[i] * DegreesPrimal[old_place] - lambda[old_place] * DegreesPrimal[i]);
if (!check_range(NewDegrees[i]))
throw ArithmeticException("Overflow in degree computation. Starting with gigger integer class");
}
NewDegrees[old_place] = -DegreesPrimal[old_place];
NewMult = MultPrimal;
mpz_class MultFactor = convertTo<mpz_class>(lambda[old_place]);
mpz_t raw_power;
mpz_init(raw_power);
mpz_pow_ui(raw_power, MultFactor.get_mpz_t(), (unsigned long)dim - 1);
mpz_class MultPower(raw_power);
NewMult *= MultPower; // corresponds to the virtual multiplication
// of dim-1 rows by lambbda[old_place]
NewMult = Iabs(NewMult);
}
else {
for (size_t k = 0; k < 2; ++k) {
for (size_t i = 0; i < dim; ++i) {
if (i == old_place) // is already coprime
continue;
NewValues[k][i] = (lambda[i] * ValuesGeneric[k][old_place] - lambda[old_place] * ValuesGeneric[k][i]);
}
NewValues[k][old_place] = -ValuesGeneric[k][old_place];
}
}
}
// This function tries to
// Find a generic element. For this purpose we exchange the role of the generic element and the grading.
// The point is to find an element that does not share a critical hyperplane with the grading. This is a
// syymetric relation. The function becomes 2 candidates in CandisatesGeneric and tries to form a suitable
// linear combination if this is possible at all. It is possible if there is no critical hyperplane (through
// the fraing that contains both candidates. Then it is a matter to find the linear combination
// that lies in none of the hyperplanes. If one is lucky, then one of the candidates is already generic in this sense.
template <typename Integer>
bool SignedDec<Integer>::FindGeneric() {
bool success = true;
vector<vector<bool> > IsGeneric(omp_get_max_threads(), vector<bool>(2, true));
Matrix<Integer> Quot_tn(omp_get_max_threads(), 2);
vector<Integer> Quot(2);
long RelBound = 10000;
#ifdef NMZ_EXTENDED_TESTS
if (test_small_pyramids)
RelBound = 1;
#endif
vector<deque<bool> > Relations(RelBound + 1, deque<bool>(RelBound + 1, true)); // deque because of parallelization
if (verbose) {
verboseOutput() << "Trying to find generic linear combination of " << endl;
CandidatesGeneric.pretty_print(verboseOutput());
}
mpz_class Dummy_mpz; // used in place of the multiplicities that are not computed here
Matrix<Integer> Dummy_mat;
vector<Integer> Dummy_vec;
bool skip_remaining = false;
std::exception_ptr tmp_exception;
#pragma omp parallel
{
Matrix<Integer> PrimalSimplex(dim, dim);
Matrix<Integer> ValuesGeneric(2, dim);
size_t ppos = 0;
auto S = SubfacetsBySimplex->begin();
size_t nr_subfacets_by_simplex = SubfacetsBySimplex->size();
int tn = 0;
if (omp_in_parallel())
tn = omp_get_ancestor_thread_num(omp_start_level + 1);
#pragma omp for schedule(dynamic)
for (size_t fac = 0; fac < nr_subfacets_by_simplex; ++fac) {
if (skip_remaining)
continue;
for (; fac > ppos; ++ppos, ++S)
;
for (; fac < ppos; --ppos, --S)
;
try {
if (verbose && fac % 10000 == 0 && fac > 0) {
#pragma omp critical(VERBOSE)
{ verboseOutput() << fac << " simplices done " << endl; }
}
Matrix<Integer> NewValues;
dynamic_bitset Subfacet_start;
bool first = true;
list<dynamic_bitset> SubfacetsOfSimplex; // now we reproduce the subfacets of the hollow triangulation
for (size_t i = 0; i < nr_gen; ++i) { // coming from simplex S
if (S->second[i]) {
SubfacetsOfSimplex.push_back(S->first);
SubfacetsOfSimplex.back()[i] = 0;
}
}
for (auto& Subfacet : SubfacetsOfSimplex) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
if (first) {
first = false;
first_subfacet(Subfacet, false, PrimalSimplex, Dummy_mpz, Dummy_vec, ValuesGeneric);
// computes the first simplex in this walk
Subfacet_start = Subfacet;
NewValues = ValuesGeneric;
}
else {
next_subfacet(Subfacet, Subfacet_start, PrimalSimplex, false, Dummy_mpz, Dummy_mpz, Dummy_vec, Dummy_vec,
ValuesGeneric, NewValues);
}
for (size_t i = 0; i < dim; ++i) {
bool good = false;
for (size_t k = 0; k < 2; ++k) {
if (NewValues[k][i] != 0) {
good = true;
// cout << i << " " << k << endl;
}
else {
IsGeneric[tn][k] = false;
}
}
if (!good) { // there is a linear form giving 0 on both candidates !
skip_remaining = true;
#pragma omp flush(skip_remaining)
if (verbose)
verboseOutput() << "Must increase coefficients" << endl;
success = false;
break;
}
if (NewValues[0][i] == 0 || NewValues[1][i] == 0)
continue;
if (NewValues[0][i] < 0)
continue;
if (NewValues[1][i] > 0)
continue;
// remaining case: pos at 0, neg at 1
Integer quot = 1 + (-NewValues[1][i]) / NewValues[0][i];
if (quot > Quot_tn[tn][0])
Quot_tn[tn][0] = quot;
quot = 1 + NewValues[0][i] / (-NewValues[1][i]);
if (quot > Quot_tn[tn][1])
Quot_tn[tn][1] = quot;
Integer g = libnormaliz::gcd(NewValues[0][i], NewValues[1][i]);
Integer r0 = (-NewValues[1][i]) / g;
if (r0 <= RelBound) {
Integer r1 = NewValues[0][i] / g;
if (r1 <= RelBound) {
long i0 = convertTo<long>(r0);
long i1 = convertTo<long>(r1);
Relations[i0][i1] = false;
}
}
} // for i (coordinates)
if (!success)
break;
} // loop for given simplex
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
} // for fac
} // parallel
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
if (!success)
return false;
// cout << IsGeneric;
// Quot_tn.pretty_print(cout);
for (int i = 0; i < omp_get_max_threads(); ++i) {
for (size_t j = 0; j < 2; ++j) {
if (Quot_tn[i][j] > Quot[j])
Quot[j] = Quot_tn[i][j];
if (!IsGeneric[i][j])
IsGeneric[0][j] = false;
}
}
if (IsGeneric[0][0])
GenericComputed = CandidatesGeneric[0];
else {
if (IsGeneric[0][1])
GenericComputed = CandidatesGeneric[1];
}
if (GenericComputed.size() > 0) {
if (verbose)
verboseOutput() << "Generic on the nose" << endl;
return true;
}
// Now we try to find a linear combination by checking the "syzygies" for one that is
// not hit. Success is indicted by "found". The pair (i,j) gives the suitable
// coefficients.
bool found = false;
vector<Integer> Coeff(2);
for (long k = 2; k <= 2 * RelBound; ++k) {
long i_start = 1;
if (k > RelBound)
i_start = k - RelBound + 1;
long i_end = k - 1;
if (i_end > RelBound)
i_end = RelBound;
for (long i = i_start; i <= i_end; ++i) {
long j = k - i;
if (libnormaliz::gcd(i, j) > 1)
continue;
if (Relations[i][j]) {
Coeff[0] = convertTo<Integer>(i);
Coeff[1] = convertTo<Integer>(j);
found = true;
break;
}
} // j
if (found)
break;
}
if (found) {
v_scalar_multiplication(CandidatesGeneric[0], Coeff[0]);
v_scalar_multiplication(CandidatesGeneric[1], Coeff[1]);
GenericComputed = CandidatesGeneric[0];
GenericComputed = v_add(GenericComputed, CandidatesGeneric[1]);
if (verbose)
verboseOutput() << "Generic with coeff " << Coeff[0] << " " << Coeff[1] << endl;
return true;
}
// the last resort: multiply one of the two vector by a large factor
// so that the other vector can be added without creating a zero for one
// of the critical linear forms
int k;
if (Quot[0] <= Quot[1])
k = 0;
else
k = 1;
GenericComputed = CandidatesGeneric[1 - k];
v_scalar_multiplication(CandidatesGeneric[k], Quot[k]);
GenericComputed = v_add(GenericComputed, CandidatesGeneric[k]);
if (verbose)
verboseOutput() << "Generic Computed with factor " << Quot[k] << endl;
return true;
}
//-------------------------------------------------------------------------
template <typename Integer>
bool SignedDec<Integer>::ComputeMultiplicity() {
// vector<mpq_class> Collect(omp_get_max_threads());
// vector<mpq_class> HelpCollect(omp_get_max_threads());
// vector<int> CountCollect(omp_get_max_threads());
if (decimal_digits > 0)
approximate = true;
approx_denominator = 1;
if (approximate) {
for (long i = 0; i < decimal_digits; ++i)
approx_denominator *= 10;
}
vector<AdditionPyramid<mpq_class> > Collect(omp_get_max_threads());
vector<mpz_class> Collect_mpz(omp_get_max_threads(), 0);
bool success = true;
if (verbose)
verboseOutput() << "Generic " << Generic;
bool skip_remaining = false;
std::exception_ptr tmp_exception;
for (size_t i = 0; i < Collect.size(); ++i) {
Collect[i].set_capacity(8);
}
#pragma omp parallel
{
Matrix<Integer> PrimalSimplex(dim, dim);
Matrix<Integer> Dummy_mat;
size_t ppos = 0;
auto S = SubfacetsBySimplex->begin();
size_t nr_subfacets_by_simplex = SubfacetsBySimplex->size();
int tn = 0;
if (omp_in_parallel())
tn = omp_get_ancestor_thread_num(omp_start_level + 1);
#pragma omp for schedule(dynamic)
for (size_t fac = 0; fac < nr_subfacets_by_simplex; ++fac) {
if (skip_remaining)
continue;
for (; fac > ppos; ++ppos, ++S)
;
for (; fac < ppos; --ppos, --S)
;
try {
if (verbose && fac % 10000 == 0 && fac > 0) {
#pragma omp critical(VERBOSE)
{ verboseOutput() << fac << " simplices done " << endl; }
}
mpz_class NewMult;
mpz_class MultPrimal;
// dynamic_bitset Subfacet = S->first;
vector<Integer> DegreesPrimal(dim);
vector<Integer> NewDegrees(dim);
dynamic_bitset Subfacet_start;
bool first = true;
list<dynamic_bitset> SubfacetsOfSimplex; // now we reproduce the subfacets of the hollow triangulation
for (size_t i = 0; i < nr_gen; ++i) { // coming from simplex S
if (S->second[i]) {
SubfacetsOfSimplex.push_back(S->first);
SubfacetsOfSimplex.back()[i] = 0;
}
}
for (auto& Subfacet : SubfacetsOfSimplex) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
if (first) {
first = false;
first_subfacet(Subfacet, true, PrimalSimplex, MultPrimal, DegreesPrimal, Dummy_mat);
// computes the first simplex in this walk
Subfacet_start = Subfacet;
NewMult = MultPrimal;
NewDegrees = DegreesPrimal;
}
else {
next_subfacet(Subfacet, Subfacet_start, PrimalSimplex, true, MultPrimal, NewMult, DegreesPrimal,
NewDegrees, Dummy_mat, Dummy_mat);
}
for (size_t i = 0; i < dim; ++i) {
if (NewDegrees[i] == 0) { // should never happen !!!!!!
success = false;
skip_remaining = true;
#pragma omp flush(skip_remaining)
if (verbose)
verboseOutput() << "Vector not generic" << endl;
break;
}
}
if (!success)
break;
mpz_class GradProdPrimal = 1;
for (size_t i = 0; i < dim; ++i)
GradProdPrimal *= convertTo<mpz_class>(NewDegrees[i]);
mpz_class NewMult_mpz = convertTo<mpz_class>(NewMult);
if (approximate) {
NewMult_mpz *= approx_denominator;
NewMult_mpz /= GradProdPrimal;
Collect_mpz[tn] += NewMult_mpz;
}
else {
mpq_class NewMult_mpq(NewMult_mpz);
NewMult_mpq /= GradProdPrimal;
Collect[tn].add(NewMult_mpq);
}
} // loop for given simplex
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
} // for fac
} // parallel
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
vector<mpq_class> ThreadMult(Collect.size());
mpq_class TotalVol;
if (verbose)
verboseOutput() << "Adding multiplicities of threads" << endl;
if (approximate) {
mpz_class TotalVol_mpz = 0;
for (size_t tn = 0; tn < Collect_mpz.size(); ++tn)
TotalVol_mpz += Collect_mpz[tn];
TotalVol = TotalVol_mpz;
TotalVol /= approx_denominator;
}
else {
for (size_t tn = 0; tn < Collect.size(); ++tn) {
ThreadMult[tn] = Collect[tn].sum();
}
TotalVol = vector_sum_cascade(ThreadMult);
}
/* for(size_t tn = 0; tn < Collect.size();++tn){
TotalVol += Collect[tn].sum();
// TotalVol += HelpCollect[tn];
}*/
/*
mpz_class test_den = 1;
for(long i=0; i<=100;++i)
test_den *= 10;
mpz_class mult_num = TotalVol.get_num();
mpz_class mult_den = TotalVol.get_den();
mult_num *= test_den;
mult_num /= mult_den;
cout << "Fixed test num " << endl;
cout << mult_num << endl << endl;
*/
multiplicity = TotalVol;
if (verbose) {
verboseOutput() << endl << "Mult (before NoGradingDenom correction) " << multiplicity << endl;
verboseOutput() << "Mult (float) " << std::setprecision(12) << mpq_to_nmz_float(multiplicity) << endl;
}
return true;
}
template <typename Integer>
SignedDec<Integer>::SignedDec(vector<pair<dynamic_bitset, dynamic_bitset> >& SFS,
const Matrix<Integer>& Gens,
const vector<Integer> Grad,
const int osl) {
SubfacetsBySimplex = &(SFS);
Generators = Gens;
GradingOnPrimal = Grad;
nr_gen = Generators.nr_of_rows();
dim = Generators[0].size();
omp_start_level = osl;
multiplicity = 0;
int_multiplicity = 0;
approximate = false;
SimplexDataUnitMat = Matrix<Integer>(dim);
SimplexDataWork.resize(omp_get_max_threads(), Matrix<Integer>(dim, 2 * dim));
DualSimplex.resize(omp_get_max_threads(), Matrix<Integer>(dim, dim));
}
template <typename Integer>
SignedDec<Integer>::SignedDec() {
}
#ifndef NMZ_MIC_OFFLOAD // offload with long is not supported
template class SignedDec<long>;
#endif
template class SignedDec<long long>;
template class SignedDec<mpz_class>;
//--------------------------------------------------------------------------
const size_t HollowTriBound = 10000000; // bound for the number of simplices computed in a pattern
// evaluated for hollow triangulation
// const size_t SubFacetsJobsBound = 20; // bound for number of stored "subfacet jobs" = remove_twin jobs
const size_t MiniblockBound = 10000;
size_t HollowTriangulation::make_hollow_triangulation_inner(const vector<size_t>& Selection,
const vector<key_t>& PatternKey,
const dynamic_bitset& Pattern) {
if (verbose) {
verboseOutput() << "Evaluating " << Selection.size() << " simplices ";
if (PatternKey.size() == 0)
verboseOutput() << endl;
else {
vector<key_t> block_start, block_end;
block_start.push_back(PatternKey[0]);
for (size_t k = 1; k < PatternKey.size(); ++k) {
if (PatternKey[k] > PatternKey[k - 1] + 1) {
block_end.push_back(PatternKey[k - 1]);
block_start.push_back(PatternKey[k]);
}
}
block_end.push_back(PatternKey.back());
verboseOutput() << "for ";
for (size_t k = 0; k < block_start.size(); ++k) {
if (block_end[k] == block_start[k])
verboseOutput() << block_end[k] << " ";
else
verboseOutput() << block_start[k] << "-" << block_end[k] << " ";
}
verboseOutput() << endl;
}
}
list<pair<dynamic_bitset, size_t> > Subfacets;
bool restricted = false;
if (PatternKey.size() > 0)
restricted = true;
vector<key_t> NonPattern; // NonPattern is the complement of Pattern before the highest selected gen
if (restricted) {
for (size_t i = 0; i < PatternKey.back(); ++i) {
if (!Pattern[i])
NonPattern.push_back(static_cast<key_t>(i));
}
}
size_t nr_tri = Selection.size();
long nr_threads = omp_get_max_threads();
size_t block_size = nr_tri / nr_threads;
block_size++;
vector<list<pair<dynamic_bitset, size_t> > > SubBlock(nr_threads);
vector<int> CountMiniblocks(nr_threads, 1);
int threads_needed = static_cast<int>(nr_tri / block_size);
if (threads_needed * block_size < nr_tri)
threads_needed++;
size_t clean_up_point = 2 + (HollowTriBound / MiniblockBound) / (2 * threads_needed);
bool skip_remaining = false;
std::exception_ptr tmp_exception;
#pragma omp parallel for
for (int q = 0; q < threads_needed; ++q) {
if (skip_remaining)
continue;
try {
size_t block_start = q * block_size;
if (block_start > nr_tri)
block_start = 0;
size_t block_end = block_start + block_size;
if (block_end > nr_tri)
block_end = nr_tri;
size_t nr_subblocks = (block_end - block_start) / MiniblockBound;
nr_subblocks++;
list<pair<dynamic_bitset, size_t> > MiniBlock;
for (size_t k = 0; k < nr_subblocks; ++k) {
size_t subblock_start = block_start + k * MiniblockBound;
size_t subblock_end = subblock_start + MiniblockBound;
if (subblock_end > block_end)
subblock_end = block_end;
// #pragma omp critical(HOLLOW_PROGRESS)
// if(verbose && nr_subblocks*nr_threads > 100)
// verboseOutput() << "Block " << q+1 << " Subblock " << k+1 << " of " << nr_subblocks << endl;
INTERRUPT_COMPUTATION_BY_EXCEPTION
for (size_t p = subblock_start; p < subblock_end; ++p) {
size_t pp = Selection[p];
if (!restricted) {
for (size_t j = 0; j < nr_gen; ++j) { // we make copies in which we delete
if (Triangulation_ind[pp].first[j] == 1) { // one entry each
MiniBlock.push_back(make_pair(Triangulation_ind[pp].first, pp)); // nr_done serves as a signature
MiniBlock.back().first[j] = 0; // that allows us to recognize subfacets
} // that arise from the same simplex in T
}
}
else {
bool done = false;
for (size_t j = 0; j < NonPattern.size(); ++j) {
if (Triangulation_ind[pp].first[NonPattern[j]]) {
MiniBlock.push_back(make_pair(Triangulation_ind[pp].first, pp));
MiniBlock.back().first[NonPattern[j]] = 0;
done = true;
break;
}
}
if (done)
continue;
for (size_t j = PatternKey.back() + 1; j < nr_gen; ++j) {
if (Triangulation_ind[pp].first[j] == 1) {
MiniBlock.push_back(make_pair(Triangulation_ind[pp].first, pp));
MiniBlock.back().first[j] = 0;
// cout << "+++Pattern " << j << endl;
}
}
}
}
remove_twins_in_first(MiniBlock);
SubBlock[q].splice(SubBlock[q].end(), MiniBlock);
if (CountMiniblocks[q] % clean_up_point == 0) {
remove_twins_in_first(SubBlock[q]);
CountMiniblocks[q] = 0;
}
CountMiniblocks[q]++;
}
remove_twins_in_first(SubBlock[q]); // true
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
}
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
int step = 2;
bool merged = true;
skip_remaining = false;
while (merged) {
merged = false;
// if(verbose && Selection.size() > 200000)
// verboseOutput() << "Merging hollow triangulation, step size " << step << endl;
#pragma omp parallel for
for (int k = 0; k < nr_threads; k += step) {
if (skip_remaining)
continue;
try {
INTERRUPT_COMPUTATION_BY_EXCEPTION
if (nr_threads > k + step / 2) {
SubBlock[k].merge(SubBlock[k + step / 2]);
merged = true;
}
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
}
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
step *= 2;
}
Subfacets.swap(SubBlock[0]);
remove_twins_in_first(Subfacets, true);
size_t nr_subfacets = Subfacets.size();
for (auto F = Subfacets.begin(); F != Subfacets.end();) { // encode subfacets as a single bitset associated to
size_t s = F->second; // simplex
dynamic_bitset diff = Triangulation_ind[s].first;
diff -= F->first;
Triangulation_ind[s].second |= diff;
F = Subfacets.erase(F);
}
return nr_subfacets;
}
//--------------------------------------------------------------------------
size_t HollowTriangulation::refine_and_process_selection(vector<size_t>& Selection,
const vector<key_t>& PatternKey,
const dynamic_bitset& Pattern,
size_t& nr_subfacets) {
vector<size_t> Refinement;
key_t select_gen = PatternKey.back();
vector<key_t> NonPattern;
for (size_t i = 0; i < PatternKey.back(); ++i) {
if (!Pattern[i])
NonPattern.push_back(static_cast<key_t>(i));
}
dynamic_bitset TwoInNonPattern(Selection.size());
for (size_t i = 0; i < Selection.size(); ++i) { // At all places in PatternKey we want a 1
if (!Triangulation_ind[Selection[i]].first[select_gen]) // and at most one more before
continue; // the largest entry in PatternKey
size_t nr_ones = 0;
bool good = true;
for (size_t j = 0; j < NonPattern.size(); ++j) {
if (Triangulation_ind[Selection[i]].first[NonPattern[j]])
nr_ones++;
if (nr_ones > 1) {
TwoInNonPattern[i] = 1;
good = false;
break;
}
}
if (good)
Refinement.push_back(Selection[i]);
}
if (Refinement.size() >= HollowTriBound
#ifdef NMZ_EXTENDED_TESTS
|| (test_small_pyramids && Refinement.size() >= 10)
#endif
)
extend_selection_pattern(Refinement, PatternKey, Pattern, nr_subfacets);
else {
if (Refinement.size() > 0) {
// struct timeval begin, end;
// gettimeofday(&begin, 0);
nr_subfacets += make_hollow_triangulation_inner(Refinement, PatternKey, Pattern);
/* gettimeofday(&end, 0);
long seconds = end.tv_sec - begin.tv_sec;
long microseconds = end.tv_usec - begin.tv_usec;
double elapsed = seconds + microseconds*1e-6;
printf("Time measured: %.3f seconds.\n", elapsed); */
}
}
vector<size_t> NewSelection;
for (size_t i = 0; i < Selection.size(); ++i) {
if (!TwoInNonPattern[i])
NewSelection.push_back(Selection[i]);
}
// cout << "Sieving " << Selection.size() << " -- " << NewSelection.size() << endl;
swap(Selection, NewSelection);
return nr_subfacets;
}
//--------------------------------------------------------------------------
size_t HollowTriangulation::extend_selection_pattern(vector<size_t>& Selection,
const vector<key_t>& PatternKey,
const dynamic_bitset& Pattern,
size_t& nr_subfacets) {
if (Selection.size() == 0)
return nr_subfacets;
size_t start_gen;
if (PatternKey.size() == 0)
start_gen = 0;
else
start_gen = PatternKey.back() + 1;
size_t total_nr_gaps = nr_gen + 1 - dim; // in a subfacet
size_t gaps_already = (start_gen + 1) - PatternKey.size();
gaps_already--; // one of the non-pattern places can be set. We stay on the safe size
size_t nr_further_gaps = total_nr_gaps - gaps_already;
size_t last_gen = start_gen + nr_further_gaps + 1;
if (last_gen >= nr_gen)
last_gen = nr_gen - 1;
for (size_t i = start_gen; i <= last_gen; ++i) {
vector<key_t> PatternKeyRefinement = PatternKey;
PatternKeyRefinement.push_back(static_cast<key_t>(i));
dynamic_bitset PatternRefinement = Pattern;
PatternRefinement[i] = 1;
if (verbose) {
vector<key_t> block_start, block_end;
block_start.push_back(PatternKeyRefinement[0]);
for (size_t k = 1; k < PatternKeyRefinement.size(); ++k) {
if (PatternKeyRefinement[k] > PatternKeyRefinement[k - 1] + 1) {
block_end.push_back(PatternKeyRefinement[k - 1]);
block_start.push_back(PatternKeyRefinement[k]);
}
}
block_end.push_back(PatternKeyRefinement.back());
verboseOutput() << "Select ";
for (size_t k = 0; k < block_start.size(); ++k) {
if (block_end[k] == block_start[k])
verboseOutput() << block_end[k] << " ";
else
verboseOutput() << block_start[k] << "-" << block_end[k] << " ";
}
verboseOutput() << endl;
}
refine_and_process_selection(Selection, PatternKeyRefinement, PatternRefinement, nr_subfacets);
if (Selection.size() == 0)
return nr_subfacets;
}
return nr_subfacets;
}
//--------------------------------------------------------------------------
size_t HollowTriangulation::make_hollow_triangulation() {
Triangulation_ind.shrink_to_fit();
sort(Triangulation_ind.begin(), Triangulation_ind.end());
vector<key_t> PatternKey;
dynamic_bitset Pattern(nr_gen);
size_t nr_subfacets = 0;
for (auto& T : Triangulation_ind)
T.second.resize(nr_gen);
vector<size_t> All(Triangulation_ind.size());
for (size_t i = 0; i < All.size(); ++i)
All[i] = i;
if (Triangulation_ind.size() < HollowTriBound)
nr_subfacets = make_hollow_triangulation_inner(All, PatternKey, Pattern);
else
extend_selection_pattern(All, PatternKey, Pattern, nr_subfacets);
return nr_subfacets;
}
HollowTriangulation::HollowTriangulation(vector<pair<dynamic_bitset, dynamic_bitset> >& TriInd,
const size_t d,
const size_t ng,
bool verb) {
swap(Triangulation_ind, TriInd);
nr_gen = ng;
dim = d;
verbose = verb;
}
} // namespace libnormaliz
|