1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
|
/*
* Normaliz
* Copyright (C) 2007-2025 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
//---------------------------------------------------------------------------
#include <algorithm>
#include <string>
#include <iostream>
#include <set>
#include <deque>
#include <csignal>
#include <ctime>
#include "libnormaliz/integer.h"
#include "libnormaliz/vector_operations.h"
#include "libnormaliz/matrix.h"
#include "libnormaliz/simplex.h"
#include "libnormaliz/list_and_map_operations.h"
#include "libnormaliz/HilbertSeries.h"
#include "libnormaliz/cone.h"
// #include "libnormaliz/bottom.h"
//---------------------------------------------------------------------------
#ifdef _MSC_VER
typedef long long ssize_t;
#endif
namespace libnormaliz {
using namespace std;
//---------------------------------------------------------------------------
// Subdivision of large simplices
//---------------------------------------------------------------------------
long SubDivBound = 1000000; //10000000000;
template <typename Integer>
bool bottom_points_inner(Matrix<Integer>& gens,
list<vector<Integer> >& local_new_points,
vector<Matrix<Integer> >& local_q_gens,
size_t& stellar_det_sum);
template <typename Integer>
void bottom_points(list<vector<Integer> >& new_points, const Matrix<Integer>& given_gens, Integer VolumeBound) {
/* gens.pretty_print(cout);
cout << "=======================" << endl;
gens.transpose().pretty_print(cout);
cout << "=======================" << endl;*/
Matrix<Integer> gens, Trans, Trans_inv;
// given_gens.LLL_transform_transpose(gens,Trans,Trans_inv); // now in optimal_subdivision_point()
gens = given_gens;
Integer volume;
// int dim = gens[0].size();
Matrix<Integer> Support_Hyperplanes = gens.invert(volume);
vector<Integer> grading; // = grading_;
if (grading.empty())
grading = gens.find_linear_form();
// cout << grading;
list<vector<Integer> > bottom_candidates;
bottom_candidates.splice(bottom_candidates.begin(), new_points);
// Matrix<Integer>(bottom_candidates).pretty_print(cout);
if (verbose) {
verboseOutput() << "Computing bbottom points using projection " << endl;
}
if (verbose) {
verboseOutput() << "simplex volume " << volume << endl;
}
//---------------------------- begin stellar subdivision -------------------
size_t stellar_det_sum = 0;
vector<Matrix<Integer> > q_gens; // for successive stellar subdivision
q_gens.push_back(gens);
int level = 0; // level of subdivision
std::exception_ptr tmp_exception;
bool skip_remaining = false;
#pragma omp parallel // reduction(+:stellar_det_sum)
{
try {
vector<Matrix<Integer> > local_q_gens;
list<vector<Integer> > local_new_points;
while (!q_gens.empty()) {
if (skip_remaining)
break;
if (verbose) {
#pragma omp single
verboseOutput() << q_gens.size() << " simplices on level " << level++ << endl;
}
#pragma omp for schedule(static)
for (size_t i = 0; i < q_gens.size(); ++i) {
if (skip_remaining)
continue;
try {
bottom_points_inner(q_gens[i], local_new_points, local_q_gens, stellar_det_sum);
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
}
#pragma omp single
{ q_gens.clear(); }
#pragma omp critical(LOCALQGENS)
{ q_gens.insert(q_gens.end(), local_q_gens.begin(), local_q_gens.end()); }
local_q_gens.clear();
#pragma omp barrier
}
#pragma omp critical(LOCALNEWPOINTS)
{ new_points.splice(new_points.end(), local_new_points, local_new_points.begin(), local_new_points.end()); }
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
} // end parallel
//---------------------------- end stellar subdivision -----------------------
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
// cout << new_points.size() << " new points accumulated" << endl;
new_points.sort();
new_points.unique();
if (verbose) {
verboseOutput() << new_points.size() << " bottom points accumulated in total." << endl;
verboseOutput() << "The sum of determinants of the stellar subdivision is " << stellar_det_sum << endl;
}
/* for(auto& it : new_points)
it=Trans_inv.VxM(it); */
}
//-----------------------------------------------------------------------------------------
template <typename Integer>
bool bottom_points_inner(Matrix<Integer>& gens,
list<vector<Integer> >& local_new_points,
vector<Matrix<Integer> >& local_q_gens,
size_t& stellar_det_sum) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
vector<Integer> grading = gens.find_linear_form();
Integer volume;
size_t dim = gens[0].size();
Matrix<Integer> Support_Hyperplanes = gens.invert(volume);
if (volume < SubDivBound) {
#pragma omp atomic
stellar_det_sum += convertToLongLong(volume);
return false; // not subdivided
}
// try st4ellar subdivision
Support_Hyperplanes = Support_Hyperplanes.transpose();
Support_Hyperplanes.make_prime();
vector<Integer> new_point;
if (new_point.empty()) {
// list<vector<Integer> > Dummy;
new_point = gens.optimal_subdivision_point(); // projection method
}
if (!new_point.empty()) {
// if (find(local_new_points.begin(), local_new_points.end(),new_point) == local_new_points.end())
local_new_points.emplace_back(new_point);
Matrix<Integer> stellar_gens(gens);
int nr_hyps = 0;
for (size_t i = 0; i < dim; ++i) {
if (v_scalar_product(Support_Hyperplanes[i], new_point) != 0) {
stellar_gens[i] = new_point;
local_q_gens.emplace_back(stellar_gens);
stellar_gens[i] = gens[i];
}
else
nr_hyps++;
}
//#pragma omp critical(VERBOSE)
// cout << new_point << " liegt in " << nr_hyps <<" hyperebenen" << endl;
return true; // subdivided
}
else { // could not subdivided
#pragma omp atomic
stellar_det_sum += convertToLongLong(volume);
return false;
}
}
// returns -1 if maximum is negative
template <typename Integer>
double max_in_col(const Matrix<Integer>& M, size_t j) {
Integer max = -1;
for (size_t i = 0; i < M.nr_of_rows(); ++i) {
if (M[i][j] > max)
max = M[i][j];
}
return convert_to_double(max);
}
// returns 1 if minimum is positive
template <typename Integer>
double min_in_col(const Matrix<Integer>& M, size_t j) {
Integer min = 1;
for (size_t i = 0; i < M.nr_of_rows(); ++i) {
if (M[i][j] < min)
min = M[i][j];
}
return convert_to_double(min);
}
#ifndef NMZ_MIC_OFFLOAD // offload with long is not supported
template void bottom_points(list<vector<long> >& new_points, const Matrix<long>& gens, long VolumeBound);
#endif // NMZ_MIC_OFFLOAD
template void bottom_points(list<vector<long long> >& new_points, const Matrix<long long>& gens, long long VolumeBound);
template void bottom_points(list<vector<mpz_class> >& new_points, const Matrix<mpz_class>& gens, mpz_class VolumeBound);
//---------------------------------------------------------------------------
// SimplexEvaluator
//---------------------------------------------------------------------------
template <typename Integer>
SimplexEvaluator<Integer>::SimplexEvaluator(Full_Cone<Integer>& fc)
: C_ptr(&fc),
dim(fc.dim),
key(dim),
Generators(dim, dim),
LinSys(dim, 2 * dim + 1),
InvGenSelRows(dim, dim),
InvGenSelCols(dim, dim),
Sol(dim, dim + 1),
GDiag(dim),
TDiag(dim),
Excluded(dim),
Indicator(dim),
gen_degrees(dim),
gen_degrees_long(dim),
gen_levels(dim),
gen_levels_long(dim),
RS(dim, 1),
InExSimplData(C_ptr->InExCollect.size()),
RS_pointers(dim + 1),
unit_matrix(dim),
id_key(identity_key(dim)
// mpz_Generators(0,0)
) {
if (fc.inhomogeneous)
ProjGen = Matrix<Integer>(dim - fc.level0_dim, dim - fc.level0_dim);
level0_gen_degrees.reserve(fc.dim);
for (size_t i = 0; i < fc.InExCollect.size(); ++i) {
InExSimplData[i].GenInFace.resize(fc.dim);
InExSimplData[i].gen_degrees.reserve(fc.dim);
}
sequential_evaluation = true; // to be changed later if necessrary
mpz_Generators = Matrix<mpz_class>(0, 0);
GMP_transition = false;
}
template <typename Integer>
void SimplexEvaluator<Integer>::set_evaluator_tn(int threadnum) {
tn = threadnum;
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::add_to_inex_faces(const vector<Integer> offset, size_t Deg, Collector<Integer>& Coll) {
for (size_t i = 0; i < nrInExSimplData; ++i) {
bool in_face = true;
for (size_t j = 0; j < dim; ++j)
if ((offset[j] != 0) && !InExSimplData[i].GenInFace.test(j)) { // || Excluded[j] superfluous
in_face = false;
break;
}
if (!in_face)
continue;
Coll.InEx_hvector[i][Deg] += InExSimplData[i].mult;
}
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::prepare_inclusion_exclusion_simpl(size_t Deg, Collector<Integer>& Coll) {
Full_Cone<Integer>& C = *C_ptr;
nrInExSimplData = 0;
for (const auto& F : C.InExCollect) {
bool still_active = true;
for (size_t i = 0; i < dim; ++i)
if (Excluded[i] && !F.first.test(key[i])) {
still_active = false;
break;
}
if (!still_active)
continue;
InExSimplData[nrInExSimplData].GenInFace.reset();
for (size_t i = 0; i < dim; ++i)
if (F.first.test(key[i]))
InExSimplData[nrInExSimplData].GenInFace.set(i);
InExSimplData[nrInExSimplData].gen_degrees.clear();
for (size_t i = 0; i < dim; ++i)
if (InExSimplData[nrInExSimplData].GenInFace.test(i))
InExSimplData[nrInExSimplData].gen_degrees.push_back(gen_degrees_long[i]);
InExSimplData[nrInExSimplData].mult = F.second;
nrInExSimplData++;
}
if (C_ptr->do_h_vector) {
vector<Integer> ZeroV(dim, 0); // allowed since we have only kept faces that contain 0+offset
add_to_inex_faces(ZeroV, Deg, Coll); // nothing would change if we took 0+offset here
}
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::update_inhom_hvector(long level_offset, size_t Deg, Collector<Integer>& Coll) {
if (level_offset == 1) {
Coll.inhom_hvector[Deg]++;
return;
}
size_t Deg_i;
assert(level_offset == 0);
for (size_t i = 0; i < dim; ++i) {
if (gen_levels[i] == 1) {
Deg_i = Deg + gen_degrees_long[i];
Coll.inhom_hvector[Deg_i]++;
}
}
}
//---------------------------------------------------------------------------
// size_t Unimod=0, Ht1NonUni=0, Gcd1NonUni=0, NonDecided=0, NonDecidedHyp=0;
//---------------------------------------------------------------------------
template <typename Integer>
Integer SimplexEvaluator<Integer>::start_evaluation(SHORTSIMPLEX<Integer>& s, Collector<Integer>& Coll) {
if (GMP_transition) {
mpz_Generators = Matrix<mpz_class>(0, 0); // this is not a local variable and must be deleted at the start
GMP_transition = false;
}
volume = s.vol;
key = s.key;
Full_Cone<Integer>& C = *C_ptr;
HB_bound_computed = false;
bool do_only_multiplicity = C.do_only_multiplicity;
// || (s.height==1 && C.do_partial_triangulation);
size_t i, j;
// degrees of the generators according to the Grading of C
if (C.isComputed(ConeProperty::Grading))
for (i = 0; i < dim; i++) {
if (!do_only_multiplicity || C.inhomogeneous || using_GMP<Integer>())
gen_degrees[i] = C.gen_degrees[key[i]];
if (C.do_h_vector || !using_GMP<Integer>())
gen_degrees_long[i] = C.gen_degrees_long[key[i]];
}
nr_level0_gens = 0;
level0_gen_degrees.clear();
if (C.inhomogeneous) {
for (i = 0; i < dim; i++) {
// gen_levels[i] = convertToLong(C.gen_levels[key[i]]);
gen_levels[i] = C.gen_levels[key[i]];
if (C.do_h_vector)
gen_levels_long[i] = convertToLong(C.gen_levels[key[i]]);
if (gen_levels[i] == 0) {
nr_level0_gens++;
if (C.do_h_vector)
level0_gen_degrees.push_back(gen_degrees_long[i]);
}
}
}
if (do_only_multiplicity) {
if (volume == 0) { // this means: not known in advance
volume = Generators.vol_submatrix(C.Generators, key);
#pragma omp atomic
TotDet++;
}
addMult(volume, Coll);
return volume;
} // done if only mult is asked for
for (i = 0; i < dim; ++i)
Generators[i] = C.Generators[key[i]];
bool unimodular = false;
bool GDiag_computed = false;
bool potentially_unimodular = (s.height == 1);
if (potentially_unimodular && C.isComputed(ConeProperty::Grading)) {
Integer g = 0;
for (i = 0; i < dim; ++i) {
g = libnormaliz::gcd(g, gen_degrees[i]);
if (g == 1)
break;
}
potentially_unimodular = (g == 1);
}
if (potentially_unimodular) { // very likely unimodular, Indicator computed first, uses transpose of Gen
RS_pointers.clear();
RS_pointers.push_back(&(C.Order_Vector));
LinSys.solve_system_submatrix_trans(Generators, id_key, RS_pointers, volume, 0,
1); // 1: replace components of solution by sign
for (i = 0; i < dim; i++)
Indicator[i] = LinSys[i][dim]; // extract solution
if (volume == 1) {
unimodular = true;
/* #pragma omp atomic
Unimod++; */
for (i = 0; i < dim; i++)
GDiag[i] = 1;
GDiag_computed = true;
}
/* else
#pragma omp atomic
Ht1NonUni++;*/
}
// we need the GDiag if not unimodular (to be computed from Gen)
// if potentially unimodular, we combine its computation with that of the i-th support forms for Ind[i]==0
// if unimodular and all Ind[i] !=0, then nothing is done here
vector<key_t> Ind0_key; // contains the indices i as above
Ind0_key.reserve(dim - 1);
if (potentially_unimodular)
for (i = 0; i < dim; i++)
if (Indicator[i] == 0)
Ind0_key.push_back(static_cast<key_t>(i));
if (!unimodular || Ind0_key.size() > 0) {
if (Ind0_key.size() > 0) {
RS_pointers = unit_matrix.submatrix_pointers(Ind0_key);
LinSys.solve_system_submatrix(Generators, id_key, RS_pointers, GDiag, volume, 0, RS_pointers.size());
// RS_pointers.size(): all columns of solution replaced by sign vevctors
for (size_t i = 0; i < dim; ++i)
for (size_t j = dim; j < dim + Ind0_key.size(); ++j)
InvGenSelCols[i][Ind0_key[j - dim]] = LinSys[i][j];
v_abs(GDiag);
GDiag_computed = true;
}
if (!GDiag_computed) {
RS_pointers.clear();
LinSys.solve_system_submatrix(Generators, id_key, RS_pointers, GDiag, volume, 0, 0);
v_abs(GDiag);
GDiag_computed = true;
}
}
// cout << "Vol " << volume << endl;
// take care of multiplicity unless do_only_multiplicity
// Can't be done earlier since volume is not always known earlier
addMult(volume, Coll);
if (unimodular && !C.do_h_vector && !C.do_Stanley_dec) { // in this case done
return volume;
}
// now we must compute the matrix InvGenSelRows (selected rows of InvGen)
// for those i for which Gdiag[i]>1 combined with computation
// of Indicator in case of potentially_unimodular==false (uses transpose of Gen)
vector<key_t> Last_key;
Last_key.reserve(dim);
if (!unimodular) {
for (i = 0; i < dim; ++i) {
if (GDiag[i] > 1)
Last_key.push_back(static_cast<key_t>(i));
}
RS_pointers = unit_matrix.submatrix_pointers(Last_key);
if (!potentially_unimodular) { // insert order vector if necessary
RS_pointers.push_back(&(C.Order_Vector));
}
// LinSys.solve_destructive(volume);
LinSys.solve_system_submatrix_trans(Generators, id_key, RS_pointers, volume, Last_key.size(),
RS_pointers.size() - Last_key.size());
// Last_key.dize(): these columns of solution reduced by volume
for (i = 0; i < Last_key.size(); i++) { // extract solutions as selected rows of InvGen
for (j = 0; j < dim; j++) {
InvGenSelRows[Last_key[i]][j] = LinSys[j][dim + i]; // %volume; //makes reduction mod volume easier
/* if(InvGenSelRows[Last_key[i]][j] <0) // Now in matrix.cpp
InvGenSelRows[Last_key[i]][j]+=volume;*/
}
}
if (!potentially_unimodular) { // extract Indicator
for (i = 0; i < dim; i++)
Indicator[i] = LinSys[i][dim + Last_key.size()];
}
}
// if not potentially unimodular we must still take care of the 0 ntries of the indicator
if (!potentially_unimodular) {
for (i = 0; i < dim; i++)
if (Indicator[i] == 0)
Ind0_key.push_back(static_cast<key_t>(i));
if (Ind0_key.size() > 0) {
RS_pointers = unit_matrix.submatrix_pointers(Ind0_key);
LinSys.solve_system_submatrix(Generators, id_key, RS_pointers, volume, 0, RS_pointers.size());
for (size_t i = 0; i < dim; ++i)
for (size_t j = dim; j < dim + Ind0_key.size(); ++j)
InvGenSelCols[i][Ind0_key[j - dim]] = LinSys[i][j];
}
}
// if (C.do_Hilbert_basis && C.descent_level > 0 && C.isComputed(ConeProperty::Grading)) {
// HB_bound = volume * C.God_Father->HB_bound;
// HB_bound_computed = true;
/* cout << "GF " << C.God_Father->HB_bound << " " << " VOL " << volume << " HB_bound " << HB_bound << endl;
cout << gen_degrees;
exit(0);*/
// }
/* if(Ind0_key.size()>0){
#pragma omp atomic
NonDecided++;
#pragma omp atomic
NonDecidedHyp+=Ind0_key.size();
}*/
return (volume);
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::find_excluded_facets() {
size_t i, j;
Integer Test;
Deg0_offset = 0;
level_offset = 0; // level_offset is the level of the lement in par + its offset in the Stanley dec
for (i = 0; i < dim; i++)
Excluded[i] = false;
for (i = 0; i < dim; i++) { // excluded facets and degree shift for 0-vector
Test = Indicator[i];
if (Test < 0) {
Excluded[i] = true; // the facet opposite to vertex i is excluded
if (C_ptr->do_h_vector) {
Deg0_offset += gen_degrees_long[i];
if (C_ptr->inhomogeneous)
level_offset += gen_levels_long[i];
}
}
if (Test == 0) { // Order_Vector in facet, now lexicographic decision
for (j = 0; j < dim; j++) {
if (InvGenSelCols[j][i] < 0) { // COLUMNS of InvGen give supp hyps
Excluded[i] = true;
if (C_ptr->do_h_vector) {
Deg0_offset += gen_degrees_long[i];
if (C_ptr->inhomogeneous)
level_offset += gen_levels_long[i];
}
break;
}
if (InvGenSelCols[j][i] > 0) // facet included
break;
}
}
}
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::take_care_of_0vector(Collector<Integer>& Coll) {
size_t i;
if (C_ptr->do_h_vector) {
if (C_ptr->inhomogeneous) {
if (level_offset <= 1)
update_inhom_hvector(level_offset, Deg0_offset, Coll); // here we count 0+offset
}
else {
Coll.hvector[Deg0_offset]++; // here we count 0+offset
}
}
// cout << "--- " << Coll.inhom_hvector;
if (C_ptr->do_excluded_faces)
prepare_inclusion_exclusion_simpl(Deg0_offset, Coll);
if (C_ptr->do_Stanley_dec) { // prepare space for Stanley dec
STANLEYDATA_int SimplStanley; // key + matrix of offsets
SimplStanley.key = key;
Matrix<Integer> offsets(convertToLong(volume), dim); // volume rows, dim columns
convert(SimplStanley.offsets, offsets);
#pragma omp critical(STANLEY)
{
C_ptr->StanleyDec.emplace_back(SimplStanley); // extend the Stanley dec by a new matrix
StanleyMat = &C_ptr->StanleyDec.back().offsets; // and use this matrix for storage
}
for (i = 0; i < dim; ++i) // the first vector is 0+offset
if (Excluded[i])
(*StanleyMat)[0][i] = convertToLong(volume);
}
StanIndex = 1; // counts the number of components in the Stanley dec. Vector at 0 already filled if necessary
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::transform_to_global(const vector<Integer>& element, vector<Integer>& help) {
bool success;
if (!GMP_transition) {
help = Generators.VxM_div(element, volume, success);
if (success)
return;
#pragma omp critical(MPZGEN)
{
if (!GMP_transition) {
mpz_Generators = Matrix<mpz_class>(dim, dim);
mat_to_mpz(Generators, mpz_Generators);
convert(mpz_volume, volume);
GMP_transition = true;
}
}
}
vector<mpz_class> mpz_element(dim);
convert(mpz_element, element);
vector<mpz_class> mpz_help = mpz_Generators.VxM_div(mpz_element, mpz_volume, success);
convert(help, mpz_help);
}
//---------------------------------------------------------------------------
// size_t NrSurvivors=0, NrCand=0;
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::evaluate_element(const vector<Integer>& element, Collector<Integer>& Coll) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
// now the vector in par has been produced and is in element
// DON'T FORGET: THE VECTOR PRODUCED IS THE "REAL" VECTOR*VOLUME !!
Integer norm;
Integer normG;
size_t i;
Full_Cone<Integer>& C = *C_ptr;
norm = 0; // norm is just the sum of coefficients, = volume*degree if homogeneous
// it is used to sort the Hilbert basis candidates
normG = 0; // the degree according to the grading
for (i = 0; i < dim; i++) { // since generators have degree 1
norm += element[i];
if (C.do_h_vector || C.do_deg1_elements || HB_bound_computed) {
normG += element[i] * gen_degrees[i];
}
}
long level, level_offset = 0;
Integer level_Int = 0;
if (C.inhomogeneous) {
for (i = 0; i < dim; i++)
level_Int += element[i] * gen_levels[i];
level = convertToLong(level_Int / volume); // have to divide by volume; see above
// cout << level << " ++ " << volume << " -- " << element;
if (level > 1)
return; // ***************** nothing to do for this vector
// if we sahould decide to allow Stanley dec in the inhomogeneous case, this must be changed
// cout << "Habe ihn" << endl;
if (C.do_h_vector) {
level_offset = level;
for (i = 0; i < dim; i++)
if (element[i] == 0 && Excluded[i])
level_offset += gen_levels_long[i];
}
}
size_t Deg = 0;
if (C.do_h_vector) {
Deg = convertToLong(normG / volume);
for (i = 0; i < dim; i++) { // take care of excluded facets and increase degree when necessary
if (element[i] == 0 && Excluded[i]) {
Deg += gen_degrees_long[i];
}
}
// count point in the h-vector
if (C.inhomogeneous && level_offset <= 1)
update_inhom_hvector(level_offset, Deg, Coll);
else
Coll.hvector[Deg]++;
if (C.do_excluded_faces)
add_to_inex_faces(element, Deg, Coll);
}
if (C.do_Stanley_dec) {
convert((*StanleyMat)[StanIndex], element);
for (i = 0; i < dim; i++)
if (Excluded[i] && element[i] == 0)
(*StanleyMat)[StanIndex][i] += convertToLong(volume);
StanIndex++;
}
if (C.do_Hilbert_basis) {
if (HB_bound_computed) {
if (normG > HB_bound) {
return;
}
}
vector<Integer> candi = v_merge(element, norm);
if (C_ptr->do_module_gens_intcl || !is_reducible(candi, Hilbert_Basis)) {
Coll.Candidates.emplace_back(std::move(candi));
Coll.candidates_size++;
if (Coll.candidates_size >= 1000 && sequential_evaluation) {
local_reduction(Coll);
}
}
return;
}
if (C.do_deg1_elements && normG == volume && !isDuplicate(element)) {
vector<Integer> help(dim);
transform_to_global(element, help);
if (C.is_global_approximation && !C.subcone_contains(help)) {
return;
}
Coll.Deg1_Elements.emplace_back(std::move(help));
Coll.collected_elements_size++;
}
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::reduce_against_global(Collector<Integer>& Coll) {
// inverse transformation and reduction against global reducers
Full_Cone<Integer>& C = *C_ptr;
bool inserted;
auto jj = Hilbert_Basis.begin();
for (; jj != Hilbert_Basis.end(); ++jj) {
jj->pop_back(); // remove the norm entry at the end
if (C.inhomogeneous && C.hilbert_basis_rec_cone_known) { // skip elements of the precomputed Hilbert basis
Integer level_Int = 0;
for (size_t i = 0; i < dim; i++)
level_Int += (*jj)[i] * gen_levels[i];
if (level_Int == 0)
continue;
}
if (!isDuplicate(*jj)) { // skip the element
// cout << "Vor " << *jj;
// transform to global coordinates
vector<Integer> help = *jj; // we need a copy
transform_to_global(help, *jj);
// v_scalar_division(*jj,volume);
// cout << "Nach " << *jj;
// reduce against global reducers in C.OldCandidates and insert into HB_Elements
if (C.is_simplicial) { // no global reduction necessary at this point
Coll.HB_Elements.Candidates.emplace_back(Candidate<Integer>(*jj, C));
inserted = true;
}
else
inserted = Coll.HB_Elements.reduce_by_and_insert(*jj, C, C.OldCandidates);
// cout << "iiiii " << inserted << " -- " << *jj << endl;
if (inserted && C.do_integrally_closed) { // we must safeduard against original generators
auto gen = C.Generator_Set.find(*jj); // that appear in the Hilbert basis of
if (gen != C.Generator_Set.end()) // this simplicial cone
inserted = false;
}
if (inserted) {
Coll.collected_elements_size++;
if (C.do_integrally_closed) {
#pragma omp critical(INTEGRALLY_CLOSED)
{
C.do_Hilbert_basis = false;
C.Witness = *jj;
C.is_Computed.set(ConeProperty::WitnessNotIntegrallyClosed);
} // critical
if (!C.do_triangulation) {
throw NotIntegrallyClosedException();
}
}
/*
if (C.God_Father->do_integrally_closed && C.is_simplicial) {
bool GF_inserted = Coll.HB_Elements.reduce_by_and_insert(*jj, *(C.God_Father), C.God_Father->OldCandidates);
if (GF_inserted) {
#pragma omp critical
{
C.do_Hilbert_basis = false;
C.God_Father->do_Hilbert_basis = false;
C.Witness = *jj;
C.is_Computed.set(ConeProperty::WitnessNotIntegrallyClosed);
}
if (!C.do_triangulation) {
throw NotIntegrallyClosedException();
}
}
}
*/
}
}
}
// Coll.HB_Elements.search();
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::add_hvect_to_HS(Collector<Integer>& Coll) {
Full_Cone<Integer>& C = *C_ptr;
if (C.do_h_vector) {
if (C.inhomogeneous) {
Coll.Hilbert_Series.add(Coll.inhom_hvector, level0_gen_degrees);
for (size_t i = 0; i < Coll.inhom_hvector.size(); i++)
Coll.inhom_hvector[i] = 0;
// cout << "WAU " << endl;
}
else {
Coll.Hilbert_Series.add(Coll.hvector, gen_degrees_long);
for (size_t i = 0; i < Coll.hvector.size(); i++)
Coll.hvector[i] = 0;
if (C.do_excluded_faces)
for (size_t i = 0; i < nrInExSimplData; ++i) {
Coll.Hilbert_Series.add(Coll.InEx_hvector[i], InExSimplData[i].gen_degrees);
for (size_t j = 0; j < Coll.InEx_hvector[i].size(); ++j)
Coll.InEx_hvector[i][j] = 0;
}
}
}
// cout << Coll.Hilbert_Series << endl;
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::conclude_evaluation(Collector<Integer>& Coll) {
Full_Cone<Integer>& C = *C_ptr;
add_hvect_to_HS(Coll);
if (volume == 1 || !C.do_Hilbert_basis || !sequential_evaluation)
return; // no further action in this case
// cout << "Starting local reduction" << endl;
local_reduction(Coll);
// cout << "local HB " << Hilbert_Basis.size() << endl;
reduce_against_global(Coll);
// cout << "local reduction finished " << Coll.collected_elements_size << endl;
Hilbert_Basis.clear(); // this is not a local variable !!
}
//---------------------------------------------------------------------------
long SimplexParallelEvaluationBound = 100000000; // simplices larger than this bound/10
// are evaluated by parallel threads
// simplices larger than this bound || (this bound/10 && Hilbert basis)
// are tried for subdivision
//---------------------------------------------------------------------------
/* evaluates a simplex in regard to all data in a single thread*/
template <typename Integer>
bool SimplexEvaluator<Integer>::evaluate(SHORTSIMPLEX<Integer>& s) {
start_evaluation(s, C_ptr->Results[tn]);
s.vol = volume;
if (C_ptr->do_only_multiplicity)
return true;
find_excluded_facets();
if (C_ptr->do_cone_dec)
s.Excluded = Excluded;
// large simplicies to be postponed for parallel evaluation
if (volume > SimplexParallelEvaluationBound / 10
// || (volume > SimplexParallelEvaluationBound/10 && C_ptr->do_Hilbert_basis) )
&& !C_ptr->do_Stanley_dec && C_ptr->allow_simplex_dec
) { //&& omp_get_max_threads()>1)
return false;
}
if (C_ptr->stop_after_cone_dec)
return true;
take_care_of_0vector(C_ptr->Results[tn]);
if (volume != 1)
evaluate_block(1, convertToLong(volume) - 1, C_ptr->Results[tn]);
conclude_evaluation(C_ptr->Results[tn]);
// Simplex_parallel_evaluation(); TODO instead of not parallelized evaluation
return true;
}
//---------------------------------------------------------------------------
const size_t ParallelBlockLength = 10000; // the length of the block of elements to be processed by a thread
// const size_t MaxNrBlocks=20000; // maximum number of blocks
const size_t LocalReductionBound = 10000; // number of candidates in a thread starting local reduction
const size_t SuperBlockLength = 1000000; // number of blocks in a super block
//---------------------------------------------------------------------------
// The following routine organizes the evaluation of a single large simplex in parallel trhreads.
// This evaluation can be split into "superblocks" whose blocks are then run in parallel.
// The reason or the existence of superblocks is the joint local reduction of the common results of
// the individual blocks. Each block gets its parallel thread, and is done sequentially by this thread.
// When the blockas in a superblock have been finished, the resulrs are transferred to the collector
// of thread 0, and a local reduction is applied to it.
// The joint local reduction is also done when a single trgrad has collected LocalReductionBound many
// Hilbert basis elements.
// Superblocks were introduced to give a better progress report of the current computation.
template <typename Integer>
void SimplexEvaluator<Integer>::evaluation_loop_parallel() {
size_t block_length = ParallelBlockLength;
size_t nr_elements = convertToLong(volume) - 1; // 0-vector already taken care of
size_t nr_blocks = nr_elements / ParallelBlockLength;
if (nr_elements % ParallelBlockLength != 0)
++nr_blocks;
size_t nr_superblocks = nr_blocks / SuperBlockLength;
if (nr_blocks % SuperBlockLength != 0)
nr_superblocks++;
for (size_t sbi = 0; sbi < nr_superblocks; sbi++) {
if (C_ptr->verbose && nr_superblocks > 1) {
if (sbi > 0)
verboseOutput() << endl;
verboseOutput() << "Superblock " << sbi + 1 << " ";
}
size_t actual_nr_blocks;
if (sbi == nr_superblocks - 1 && nr_blocks % SuperBlockLength != 0) // the last round of smaller length
actual_nr_blocks = nr_blocks % SuperBlockLength;
else
actual_nr_blocks = SuperBlockLength;
size_t progess_report = actual_nr_blocks / 50;
if (progess_report == 0)
progess_report = 1;
bool skip_remaining;
std::exception_ptr tmp_exception;
deque<bool> done(actual_nr_blocks, false);
do {
skip_remaining = false;
sequential_evaluation = false;
#pragma omp parallel
{
int tn = omp_get_thread_num(); // chooses the associated collector Results[tn]
#pragma omp for schedule(dynamic)
for (size_t i = 0; i < actual_nr_blocks; ++i) {
if (skip_remaining || done[i])
continue;
try {
if (C_ptr->verbose) {
if (i > 0 && i % progess_report == 0)
verboseOutput() << "." << flush;
}
done[i] = true;
long block_start = (sbi * SuperBlockLength + i) * block_length + 1; // we start at 1
long block_end = block_start + block_length - 1;
if (block_end > (long)nr_elements)
block_end = nr_elements;
evaluate_block(block_start, block_end, C_ptr->Results[tn]);
if (C_ptr->Results[tn].candidates_size >= LocalReductionBound) // >= (not > !! ) if
skip_remaining = true; // LocalReductionBound==ParallelBlockLength
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
} // for
} // parallel
sequential_evaluation = true;
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
if (skip_remaining) {
if (C_ptr->verbose) {
verboseOutput() << "r" << flush;
}
collect_vectors();
local_reduction(C_ptr->Results[0]);
}
} while (skip_remaining);
} // superblock loop
}
//---------------------------------------------------------------------------
// runs the evaluation over all vectors in the basic parallelotope that are
// produced from block_start to block_end.
template <typename Integer>
void SimplexEvaluator<Integer>::evaluate_block(long block_start, long block_end, Collector<Integer>& Coll) {
size_t last;
vector<Integer> point(dim, 0); // represents the lattice element whose residue class is to be processed
Matrix<Integer>& elements = Coll.elements;
elements.set_zero();
size_t one_back = block_start - 1;
long counter = one_back;
if (one_back > 0) { // define the last point processed before if it isn't 0
for (size_t i = 1; i <= dim; ++i) {
point[dim - i] = static_cast<unsigned long>(one_back) % GDiag[dim - i];
one_back /= convertToLong(GDiag[dim - i]);
}
for (size_t i = 0; i < dim; ++i) { // put elements into the state at the end of the previous block
if (point[i] != 0) {
elements[i] = v_add(elements[i], v_scalar_mult_mod(InvGenSelRows[i], point[i], volume));
v_reduction_modulo(elements[i], volume);
for (size_t j = i + 1; j < dim; ++j)
elements[j] = elements[i];
}
}
}
// cout << "VOl " << volume << " " << counter << " " << block_end << endl;
// cout << point;
// cout << GDiag;
// now we create the elements in par
while (true) {
last = dim;
for (ssize_t k = dim - 1; k >= 0; k--) {
if (point[k] < GDiag[k] - 1) {
last = k;
break;
}
}
if (counter >= block_end) {
break;
}
counter++;
// cout << "COUNTER " << counter << " LAST " << last << endl;
point[last]++;
v_add_to_mod(elements[last], InvGenSelRows[last], volume);
for (size_t i = last + 1; i < dim; i++) {
point[i] = 0;
elements[i] = elements[last];
}
// cout << "COUNTER " << counter << " LAST " << elements[last];
evaluate_element(elements[last], Coll);
}
}
template <>
void SimplexEvaluator<renf_elem_class>::evaluate_block(long block_start, long block_end, Collector<renf_elem_class>& Coll) {
assert(false);
}
//---------------------------------------------------------------------------
/* transfer the vector lists in the collectors to C_ptr->Results[0] */
template <typename Integer>
void SimplexEvaluator<Integer>::collect_vectors() {
if (C_ptr->do_Hilbert_basis) {
for (size_t i = 1; i < C_ptr->Results.size(); ++i) {
C_ptr->Results[0].Candidates.splice(C_ptr->Results[0].Candidates.end(), C_ptr->Results[i].Candidates);
C_ptr->Results[0].candidates_size += C_ptr->Results[i].candidates_size;
C_ptr->Results[i].candidates_size = 0;
}
}
}
//---------------------------------------------------------------------------
/* evaluates a simplex in parallel threads */
template <typename Integer>
void SimplexEvaluator<Integer>::Simplex_parallel_evaluation() {
/* Generators.pretty_print(cout);
cout << "==========================" << endl; */
if (C_ptr->verbose) {
verboseOutput() << "simplex volume " << volume << endl;
}
if (C_ptr->allow_simplex_dec &&
(volume >= SimplexParallelEvaluationBound ||
(volume > SimplexParallelEvaluationBound / 10 && C_ptr->do_Hilbert_basis)) &&
(!C_ptr->deg1_triangulation || !C_ptr->isComputed(ConeProperty::Grading))) { // try subdivision
Full_Cone<Integer>& C = *C_ptr;
assert(C.omp_start_level == omp_get_level()); // make sure that we are on the lowest parallelization level
if (C_ptr->verbose) {
verboseOutput() << "**************************************************" << endl;
verboseOutput() << "Try to decompose the simplex into smaller simplices." << endl;
}
for (size_t i = 0; i < dim; ++i)
Generators[i] = C.Generators[key[i]];
// Generators.debug_print('G');
list<vector<Integer> > new_points;
time_t start, end;
time(&start);
void (*prev_handler)(int);
prev_handler = signal(SIGINT, SIG_IGN); // we don't want to set a new handler here
signal(SIGINT, prev_handler);
bottom_points(new_points, Generators, volume);
signal(SIGINT, prev_handler);
time(&end);
double dif = difftime(end, start);
if (C_ptr->verbose) {
verboseOutput() << "Bottom points took " << dif << " sec " << endl;
}
// cout << new_points.size() << " new points " << endl << new_points << endl;
if (!new_points.empty()) {
C.triangulation_is_nested = true;
// add new_points to the Top_Cone generators
size_t nr_new_points = new_points.size();
size_t nr_old_gen = C.nr_gen;
Matrix<Integer> new_points_mat(new_points);
C.add_generators(new_points_mat);
// remove this simplex from det_sum and multiplicity
addMult(-volume, C.Results[0]);
// delete this large simplex
C.totalNrSimplices--;
if (C.keep_triangulation) {
for (auto it = C.Triangulation.begin(); it != C.Triangulation.end(); ++it) {
if (it->key == key) {
C.Triangulation.erase(it);
break;
}
}
}
// create generators for bottom decomposition
// we start with the extreme rays of the recession cone
Matrix<Integer> BotGens = Generators;
BotGens.append_column(vector<Integer>(dim, 0));
// now the polyhedron
vector<key_t> subcone_key(C.dim + nr_new_points);
for (size_t i = 0; i < C.dim; ++i) {
subcone_key[i] = key[i];
}
for (size_t i = 0; i < nr_new_points; ++i) {
subcone_key[C.dim + i] = static_cast<key_t>(nr_old_gen + i);
}
Matrix<Integer> polytope_gens(C.Generators.submatrix(subcone_key));
polytope_gens.append_column(vector<Integer>(polytope_gens.nr_of_rows(), 1));
BotGens.append(polytope_gens);
// compute bottom decomposition
Full_Cone<Integer> bottom_polytope(BotGens);
bottom_polytope.keep_order = true;
// bottom_polytope.verbose=true;
if (C_ptr->verbose) {
verboseOutput() << "Computing bottom decomposition ... " << flush;
}
time(&start);
bottom_polytope.dualize_cone(false);
time(&end);
dif = difftime(end, start);
if (C_ptr->verbose) {
verboseOutput() << "done." << endl;
verboseOutput() << "Bottom decomposition took " << dif << " sec" << endl;
}
assert(bottom_polytope.isComputed(ConeProperty::SupportHyperplanes));
// extract bottom decomposition
for (size_t i = 0; i < bottom_polytope.Support_Hyperplanes.nr_of_rows(); ++i) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
if (bottom_polytope.Support_Hyperplanes[i][dim] >= 0) // not a bottom facet
continue;
vector<key_t> bottom_key;
for (size_t j = 0; j < polytope_gens.nr_of_rows(); ++j) {
if (v_scalar_product(polytope_gens[j], bottom_polytope.Support_Hyperplanes[i]) == 0)
bottom_key.push_back(subcone_key[j]);
}
C.Pyramids[0].emplace_back(std::move(bottom_key));
C.nrPyramids[0]++;
}
if (C_ptr->verbose) {
verboseOutput() << "**************************************************" << endl;
}
return;
}
} // end subdivision
take_care_of_0vector(C_ptr->Results[0]);
evaluation_loop_parallel();
collect_vectors(); // --> Results[0]
for (size_t i = 1; i < C_ptr->Results.size(); ++i) // takes care of h-vectors
add_hvect_to_HS(C_ptr->Results[i]);
conclude_evaluation(C_ptr->Results[0]); // h-vector in Results[0] and collected elements
if (C_ptr->verbose) {
verboseOutput() << endl;
}
}
//---------------------------------------------------------------------------
template <typename Integer>
bool SimplexEvaluator<Integer>::isDuplicate(const vector<Integer>& cand) const {
for (size_t i = 0; i < dim; i++)
if (cand[i] == 0 && Excluded[i])
return true;
return false;
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::update_mult_inhom(Integer& multiplicity) {
if (!C_ptr->isComputed(ConeProperty::Grading) || !C_ptr->do_triangulation)
return;
if (C_ptr->level0_dim == dim - 1) { // the case of codimension 1
size_t i;
for (i = 0; i < dim; ++i)
if (gen_levels[i] > 0) {
break;
}
assert(i < dim);
multiplicity *= gen_degrees[i]; // to correct division in addMult_inner
multiplicity /= gen_levels[i];
}
else {
size_t i, j = 0;
Integer corr_fact = 1;
for (i = 0; i < dim; ++i)
if (gen_levels[i] > 0) {
ProjGen[j] = C_ptr->ProjToLevel0Quot.MxV(C_ptr->Generators[key[i]]); // Generators of evaluator may be destroyed
corr_fact *= gen_degrees[i];
j++;
}
multiplicity *= corr_fact;
multiplicity /= ProjGen.vol(); // .vol_destructive();
// cout << "After corr " << multiplicity << endl;
}
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::addMult(Integer multiplicity, Collector<Integer>& Coll) {
assert(multiplicity != 0);
Coll.det_sum += multiplicity;
if (!C_ptr->isComputed(ConeProperty::Grading) || !C_ptr->do_triangulation ||
(C_ptr->inhomogeneous && nr_level0_gens != C_ptr->level0_dim))
return;
if (C_ptr->inhomogeneous) {
update_mult_inhom(multiplicity);
}
if (C_ptr->deg1_triangulation) {
Coll.mult_sum += convertTo<mpz_class>(multiplicity);
}
else {
if (using_GMP<Integer>()) {
mpz_class deg_prod = convertTo<mpz_class>(gen_degrees[0]);
for (size_t i = 1; i < dim; i++) {
deg_prod *= convertTo<mpz_class>(gen_degrees[i]);
}
mpq_class mult = convertTo<mpz_class>(multiplicity);
mult /= deg_prod;
Coll.mult_sum += mult;
}
else {
mpz_class deg_prod = gen_degrees_long[0];
for (size_t i = 1; i < dim; i++) {
deg_prod *= gen_degrees_long[i];
}
mpq_class mult = convertTo<mpz_class>(multiplicity);
mult /= deg_prod;
Coll.mult_sum += mult;
}
}
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::local_reduction(Collector<Integer>& Coll) {
// reduce new against old elements
assert(sequential_evaluation);
Coll.Candidates.sort(compare_last<Integer>);
if (C_ptr->do_module_gens_intcl) { // in this case there is no local reduction
Hilbert_Basis.splice(Hilbert_Basis.begin(), Coll.Candidates); // but direct reduction against global old candidates
reduce_against_global(Coll);
Hilbert_Basis.clear();
Coll.candidates_size = 0;
return;
}
// interreduce
reduce(Coll.Candidates, Coll.Candidates, Coll.candidates_size);
// reduce old elements by new ones
count_and_reduce(Hilbert_Basis, Coll.Candidates);
Hilbert_Basis.merge(Coll.Candidates, compare_last<Integer>);
Coll.candidates_size = 0;
}
template <typename Integer>
void SimplexEvaluator<Integer>::count_and_reduce(list<vector<Integer> >& Candi, list<vector<Integer> >& Reducers) {
size_t dummy = Candi.size();
reduce(Candi, Reducers, dummy);
}
template <typename Integer>
void SimplexEvaluator<Integer>::reduce(list<vector<Integer> >& Candi, list<vector<Integer> >& Reducers, size_t& Candi_size) {
// This parallel region cannot throw a NormalizException
#pragma omp parallel
{
auto cand = Candi.begin();
size_t jjpos = 0;
#pragma omp for schedule(dynamic)
for (size_t j = 0; j < Candi_size; ++j) { // remove negative subfacets shared
for (; j > jjpos; ++jjpos, ++cand)
; // by non-simpl neg or neutral facets
for (; j < jjpos; --jjpos, --cand)
;
if (is_reducible(*cand, Reducers))
(*cand)[dim] = 0; // mark the candidate
}
} // parallel
auto cand = Candi.begin(); // remove reducibles
while (cand != Candi.end()) {
if ((*cand)[dim] == 0) {
cand = Candi.erase(cand);
--Candi_size;
}
else
++cand;
}
}
template <typename Integer>
bool SimplexEvaluator<Integer>::is_reducible(const vector<Integer>& new_element, list<vector<Integer> >& Reducers) {
// the norm is at position dim
size_t i, c = 0;
for (const auto& red : Reducers) {
if (new_element[dim] < 2 * red[dim]) {
break; // new_element is not reducible;
}
else {
if (red[c] <= new_element[c]) {
for (i = 0; i < dim; i++) {
if (red[i] > new_element[i]) {
c = i;
break;
}
}
if (i == dim) {
return true;
}
// new_element is not in the Hilbert Basis
}
}
}
return false;
}
//---------------------------------------------------------------------------
template <typename Integer>
void SimplexEvaluator<Integer>::print_all() {
// C_ptr(&fc),
// dim(fc.dim),
// key(dim)
cout << "print all matricies" << endl;
cout << "Generators" << endl;
Generators.pretty_print(cout);
cout << "GenCopy" << endl;
GenCopy.pretty_print(cout);
cout << "InvGenSelRows" << endl;
InvGenSelRows.pretty_print(cout);
cout << "InvGenSelCols" << endl;
InvGenSelCols.pretty_print(cout);
cout << "Sol" << endl;
Sol.pretty_print(cout);
// ProjGen(dim-fc.level0_dim,dim-fc.level0_dim),
cout << "RS" << endl;
RS.pretty_print(cout);
cout << "StanleyMat" << endl;
// St.pretty_print(cout);
// GDiag(dim),
// TDiag(dim),
// Excluded(dim),
// Indicator(dim),
// gen_degrees(dim),
// gen_levels(dim),
// RS(dim,1),
// InExSimplData(C_ptr->InExCollect.size())
}
//---------------------------------------------------------------------------
template <typename Integer>
vector<key_t> SimplexEvaluator<Integer>::get_key() {
return key;
}
template <typename Integer>
Integer SimplexEvaluator<Integer>::get_volume() {
return volume;
}
// Collector
template <typename Integer>
Collector<Integer>::Collector(Full_Cone<Integer>& fc)
: C_ptr(&fc),
dim(fc.dim),
det_sum(0),
mult_sum(0),
candidates_size(0),
collected_elements_size(0),
InEx_hvector(C_ptr->InExCollect.size()),
elements(dim, dim) {
size_t hv_max = 0;
if (C_ptr->do_h_vector) {
// we need the generators to be sorted by degree
long max_degree = convertToLong(C_ptr->gen_degrees[C_ptr->nr_gen - 1]);
hv_max = max_degree * C_ptr->dim;
if (hv_max > 1000000) {
throw BadInputException("Generator degrees are too huge, h-vector would contain more than 10^6 entries.");
}
hvector.resize(hv_max, 0);
inhom_hvector.resize(hv_max, 0);
}
for (size_t i = 0; i < InEx_hvector.size(); ++i)
InEx_hvector[i].resize(hv_max, 0);
Hilbert_Series.setVerbose(fc.verbose);
}
template <>
Collector<renf_elem_class>::Collector(Full_Cone<renf_elem_class>& fc)
: C_ptr(&fc),
dim(fc.dim),
det_sum(0),
mult_sum(0),
candidates_size(0),
collected_elements_size(0),
InEx_hvector(C_ptr->InExCollect.size()),
elements(dim, dim) {
}
template <typename Integer>
Integer Collector<Integer>::getDetSum() const {
return det_sum;
}
template <typename Integer>
mpq_class Collector<Integer>::getMultiplicitySum() const {
return mult_sum;
}
template <typename Integer>
const HilbertSeries& Collector<Integer>::getHilbertSeriesSum() const {
return Hilbert_Series;
}
template <typename Integer>
void Collector<Integer>::transfer_candidates() {
if (collected_elements_size == 0)
return;
if (C_ptr->do_Hilbert_basis) {
#pragma omp critical(CANDIDATES)
C_ptr->NewCandidates.splice(HB_Elements);
#pragma omp atomic
C_ptr->CandidatesSize += collected_elements_size;
}
if (C_ptr->do_deg1_elements) {
#pragma omp critical(CANDIDATES)
C_ptr->Deg1_Elements.splice(C_ptr->Deg1_Elements.begin(), Deg1_Elements);
#pragma omp atomic
C_ptr->CandidatesSize += collected_elements_size;
}
collected_elements_size = 0;
}
template <typename Integer>
size_t Collector<Integer>::get_collected_elements_size() {
return collected_elements_size;
}
#ifndef NMZ_MIC_OFFLOAD // offload with long is not supported
template class SimplexEvaluator<long>;
#endif
template class SimplexEvaluator<long long>;
template class SimplexEvaluator<mpz_class>;
#ifdef ENFNORMALIZ
template class SimplexEvaluator<renf_elem_class>;
#endif
#ifndef NMZ_MIC_OFFLOAD // offload with long is not supported
template class Collector<long>;
#endif
template class Collector<long long>;
template class Collector<mpz_class>;
#ifdef ENFNORMALIZ
template class Collector<renf_elem_class>;
#endif
} // namespace libnormaliz
|