1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
\documentclass[12pt,a4paper]{scrartcl}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
%\usepackage[utf8]{inputenc}
\usepackage{mathptmx}
\usepackage{array}
\usepackage{color}
\usepackage{hyperref}
\usepackage{url}
\usepackage{graphicx}
\usepackage{multicol}
\usepackage{dsfont}
\usepackage{makeidx}
\usepackage{booktabs}
%\usepackage[ignoreunlbld,nomsgs]{refcheck}
\usepackage{pgf, tikz}
\usepackage{color}
% !TeX spellcheck = en_US
%\textwidth=15cm \textheight=22cm \topmargin=0.5cm
%\oddsidemargin=0.5cm \evensidemargin=0.5cm
\usepackage[T1]{fontenc}
\usepackage[scaled=0.8]{beramono}
\usepackage{fancyvrb} \RecustomVerbatimEnvironment{Verbatim}{Verbatim}
{xleftmargin=15pt, frame=single, fontsize=\small}
\newcounter{listi}
\newcommand{\stdli}{ \topsep0ex \partopsep0ex % .5ex plus.25ex minus.125ex%
\parsep.2ex plus.1ex minus.1ex \itemsep0ex% .5ex plus.25ex minus.125ex%
\leftmargin2.5em \labelwidth2em \labelsep.5em \rightmargin0em}% \samepage }
\newenvironment{arab}{\begin{list}{\textup{(\arabic{listi})}}%
{\usecounter{listi}\stdli}}{\end{list}}
\newenvironment{rome}{\begin{list}{\textup{(\roman{listi})}}%
{\usecounter{listi}\stdli}}{\end{list}}
\newenvironment{latin}{\begin{list}{\textup{(\alph{listi})}}%
{\usecounter{listi}\stdli}}{\end{list}}
\renewenvironment{itemize}{\begin{list}{{$\bullet$}}{\stdli}}{\end{list}}
\newenvironment{myverb}{\begin{small}}{\end{small}\pagebreak[2]} %%%%% \vspace{-0.8\baselineskip}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}
\theoremstyle{definition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{definition}[theorem]{Definition}
\let\phi=\varphi
\def\CC{{\mathbb C}}
\def\ZZ{{\mathbb Z}}
\def\QQ{{\mathbb Q}}
\def\RR{{\mathbb R}}
\def\EE{{\mathbb E}}
\def\AA{{\mathbb A}}
\def\PP{{\mathbb P}}
\def\NN{{\mathbb N}}
\def\cL{{\mathcal L}}
\def\cZ{{\mathcal Z}}
\def\Ker{\operatorname{Ker}}
\def\Im{\operatorname{Im}}
\DeclareMathOperator{\gp}{gp}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\conv}{conv}
\DeclareMathOperator{\aff}{aff}
\DeclareMathOperator{\cone}{cone}
\DeclareMathOperator{\rec}{rec}
\DeclareMathOperator{\mrank}{mrank}
\DeclareMathOperator{\Hilb}{Hilb}
\DeclareMathOperator{\vol}{vol}
\DeclareMathOperator{\Cl}{Cl}
\DeclareMathOperator{\para}{par}
\DeclareMathOperator{\FPdim}{FPdim}
\DeclareMathOperator{\totdeg}{totdeg}
\def\cG{{\mathcal G}}
\def\cR{{\mathcal R}}
\let\hat=\widehat
\let\tilde=\widetilde
\let\Bar=\overline
\let\iso=\cong
\let\epsilon=\varepsilon
\def\discuss#1{\marginparsep=1em\marginparwidth=60pt
\marginpar{\tt \footnotesize \raggedright #1}}
\definecolor{darkgray}{gray}{0.00}
\addtokomafont{section}{\color{darkgray}}
\setkomafont{sectionentry}{\large}
\addtokomafont{subsection}{\color{darkgray}}
\addtokomafont{subsubsection}{\normalsize}
\parindent=0pt \parskip=4pt
\setcounter{tocdepth}{3}
%\def\Normaliz#1+{\textsf{Normaliz}}
%\def\jNormaliz#1+{\textsf{jNormaliz}}
\def\itemtt[#1]{\index{#1@\textbf{\ttt{#1}}}\item[\textbf{\ttt{#1}}]}
\def\itemtta[#1]#2{\index{#2@\textbf{\ttt{#1}}}\item[\textbf{\ttt{#1}}]}
\def\ttt{\texttt}
\makeindex
\def\version{3.11.1}
\def\NmzDir{normaliz-\version}
\hyphenation{semi-open}
%\includeonly{Appendix}
%\includeonly{Monoid}
\begin{document}
\vspace*{2cm}
\renewcommand{\indexname}{Index of keywords}
\centerline{\Large\textbf{Normaliz \version}}
\vspace*{1.5cm}
\begin{center}Winfried Bruns\qquad Max Horn\\[14pt]
Team member for fusion rings: Sébastien Palcoux\\[14pt]
Former Normaliz~3 team members: Tim R\"omer, Richard Sieg,\\ Christof S\"oger and Ulrich von der Ohe\\[14pt]
Normaliz~2 team member: Bogdan Ichim\\[14pt]
\url{https://normaliz.uos.de}\qquad\qquad\qquad
\url{https://github.com/Normaliz}\\[14pt]
\url{mailto:normaliz@uos.de}\\[14pt]
\url{https://hub.docker.com/r/normaliz/normaliz/}\\[14pt]
\url{https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master}\\[14pt]
Short reference: \verb|NmzShortRef.pdf|
\end{center}
\tableofcontents
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INTRODUCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\include{Intro}
\include{Discrete}
\include{Monoid}
\include{Input}
\include{Options}
\include{Advanced}
\include{Algebraic}
\include{OptFiles}
\include{Technical}
\include{Appendix}
\newpage
\addcontentsline{toc}{section}{References}
\begin{thebibliography}{15.}
\small
\bibitem{4ti2}
4ti2 team. 4ti2-A software package
for algebraic, geometric and combinatorial problems on linear
spaces. Available at \url{https://github.com/4ti2/4ti2}.
\bibitem{CoCoA}
J.~Abbott, A.~M.~Bigatti and G.~Lagorio,
\emph{CoCoA-5: a system for doing Computations in Commutative Algebra}.
Available at \url{http://cocoa.dima.unige.it}.
\bibitem{ABPP}
M.A. Alekseyev, W. Bruns, S. Palcoux and F. V. Petrov, \emph{Classification of integral modular data up to rank 13}. Preprint \url{arXiv:2302.01613}.
\bibitem{AI}
V.~Almendra and B.~Ichim,
\emph{jNormaliz~1.7}.
Available at \url{https://normaliz.uos.de}.
\bibitem{LatInt}
V.~Baldoni, N.~Berline, J.~A.~De~Loera, B.~Dutra,
M.~K\"oppe, S.~Moreinis, G.~Pinto, M.~Vergne and J.~Wu,
\emph{A User's Guide for LattE integrale~v1.7.2, 2013}.
Software package LattE is available at \url{https://www.math.ucdavis.edu/~latte/}.
\bibitem{Bremner}
D.~Bremner, M.~D.~Sikiri\'c, D.~V.~Pasechnik, Th.~Rehn and A.~Sch\"urmann,
\emph{Computing symmetry groups of polyhedra}.
LMS J.\ Comp.\ Math.\ 17 (2014), 565--581.
\bibitem{has}
St.~ Brumme,
\emph{Hash library}.
Package available at \url{https://create.stephan-brumme.com/}.
\bibitem{BruAuto}
W. Bruns, \emph{Automorphism groups and normal forms in Normaliz.} Res. Math. Sci. 9 (2022), no. 2, Paper No. 20, 15 pp.
\bibitem{BruVol}
W. Bruns, \emph{Polytope volume in Normaliz.}
São Paulo J. Math. Sci.
\url{https://doi.org/10.1007/s40863-022-00317-9}
\bibitem{BGOW}
W.~Bruns, P.~Garcia-Sanchez, C.~O'Neill and D.~Wilburne,
\emph{Wilf's conjecture in fixed multiplicity}.
% Preprint \url{arXiv:1903.04342}.
Int.\ J.\ Algebra Comp.\ 30 (2020), 861--882.
\bibitem{BG}
W.~Bruns and J.~Gubeladze,
\emph{Polytopes, rings, and K-theory}.
Springer, 2009.
\bibitem{BHIKS}
W.~Bruns, R.~Hemmecke, B.~Ichim, M.~K\"oppe and C.~S\"oger,
\emph{Challenging computations of Hilbert bases of cones associated with algebraic statistics}.
Exp.\ Math.\ 20 (2011), 25--33.
\bibitem{BI}
W.~Bruns and B.~Ichim,
\emph{Normaliz: algorithms for rational cones and affine monoids}.
J.\ Algebra 324 (2010) 1098--1113.
\bibitem{BI2}
W.~Bruns and B.~Ichim,
\emph{Polytope volume by descent in the face lattice and applications in social choice}.
% Preprint \url{arXiv:1807.02835}.
Math.\ Prog.\ Comp. 113 (2020), 415--442.
\bibitem{BIS}
W.~Bruns, B.~Ichim and C.~S\"oger,
\emph{The power of pyramid decomposition in Normaliz}.
J.\ Symb.\ Comp.\ 74 (2016), 513--536.
\bibitem{BIS2}
W.~Bruns, B.~Ichim and C.~S\"oger,
\emph{Computations of volumes and Ehrhart series in four candidates elections}.
Ann.\ Oper.\ Res.\ 280 (2019), 241--265.
\bibitem{BK02}
W.~Bruns and R.~Koch,
\emph{Computing the integral closure of an affine semigroup}.
Univ.\ Iagell.\ Acta Math.\ 39 (2001), 59--70.
\bibitem{BSS}
W.~Bruns, R.~Sieg and C.~S\"oger,
\emph{Normaliz~2013--2016}.
% To appear in the final report of the DFG~SPP~1489.
% Preprint \url{arXiv:1611.07965}.
In
G.~B\"ockle, W.~Decker and G.~Malle, editors,
\emph{Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory},
pages~123--146.
Springer, 2018.
\bibitem{BS}
W.~Bruns and C.~S\"oger,
\emph{The computation of weighted Ehrhart series in Normaliz}.
J.\ Symb.\ Comp.\ 68 (2015), 75--86.
\bibitem{vinci} B. B\"{u}eler and A. Enge, \emph{Vinci.} Package available from \url{https://www.math.u-bordeaux.fr/~aenge/}
\bibitem{practical}
B. Büeler, A. Enge, K. Fukuda, \emph{Exact volume computation for polytopes: a practical study.} In: Polytopes - combinatorics and computation (Oberwolfach, 1997), pp. 131 -- 154,
DMV Sem. 29, Birkhäuser, Basel, 2000.
\bibitem{DLHK}
J. A. De Loera, R. Hemmecke and M. Köppe.
Algebraic and geometric ideas in the theory of discrete optimization.
MOS-SIAM Series on Optimization, 14. Society for Industrial and Applied Mathematics (SIAM), Philadelphia 2013.
\bibitem{e-antic}
V.~Delecroix,
\emph{embedded algebraic number fields (on top of antic)},
package available at \url{https://github.com/flatsurf/e-antic}.
\bibitem{DS}
J.Dong and A. Schopieray, \emph{Near-integral fusion}. Preprint \url{arXiv:2407.15955}.
\bibitem{EGNO}
P.~Etingof, S.~Gelaki, D.~Nikshych, and V.~Ostrik, {\em Tensor Categories}, American Mathematical Society, (2015).
\bibitem{Filli}
P. Filliman, \emph{The volume of duals and sections of polytopes. } Mathematika 37 (1992), 67--80.
\bibitem{GAP-NmzInterface}
S.~Gutsche, M.~Horn and C.~S\"oger,
\emph{NormalizInterface for GAP}.
Available at \url{https://github.com/gap-packages/NormalizInterface}.
\bibitem{PyNormaliz}
S.~Gutsche and R.~Sieg,
\emph{PyNormaliz - an interface to Normaliz from python}.
Available at \url{https://github.com/Normaliz/PyNormaliz}.
\bibitem{Flint}
W.~B.~Hart, F.~Johansson and S.~Pancratz,
\emph{FLINT: Fast Library for Number Theory}.
Available at \url{https://flintlib.org}.
\bibitem{HM}
Hemmecke and P. N. Malkin. Computing generating sets of lattice ideals and Markov bases of
lattices. J. Symb. Comp. 44, 1463--1476 (2009).
\bibitem{Lawrence} J. Lawrence, \emph{Polytope volume computation.} Math. Comp. 57 (1991), 259--271.
\bibitem{KV}
M.~K\"oppe and S.~Verdoolaege,
\emph{Computing parametric rational generating functions with a primal Barvinok algorithm}.
Electron.\ J.\ Comb.\ 15, No.\ 1, Research Paper~R16, 19~p.\ (2008).
\bibitem{nauty}
B.~D.~McKay and A.~Piperno,
\emph{Practical graph isomorphism,~II}.
J.\ Symbolic Comput.\ 60 (2014), 94--112.
\bibitem{Ost}
V. Ostrik, \emph{Pivotal fusion categories of rank 3.} Mosc. Math. J. 15 (2015), no. 2, 373--396, 405.
\bibitem{Po}
L.~Pottier,
\emph{The Euclide algorithm in dimension~$n$}.
Research report, ISSAC~96, ACM Press 1996.
\bibitem{Sch}
A.~Sch\"urmann,
\emph{Exploiting polyhedral symmetries in social choice}.
Social Choice and Welfare 40 (2013), 1097--1110.
\bibitem{Stu}
B. Sturmfels,
\emph{Gröbner baes and convex polytopes}.
American Mathematical Society 1996.
\end{thebibliography}
\newpage
\addcontentsline{toc}{section}{\indexname}
\printindex
\end{document}
Relations do not select a
sublattice of $\ZZ^d$ or a subcone of $\RR^d$, but define a
monoid as a quotient of $\ZZ_+^d$ modulo a system of
congruences (in the semigroup sense!).
The rows of the input matrix of this type are interpreted as
generators of a subgroup $U\subset\ZZ^d$, and Normaliz computes an affine monoid and its normalization as explained in Section~\ref{binomials}.
Set $G=\ZZ^d/U$ and $L=G/\textup{torsion}(G)$. Then the ambient lattice
is $\AA=\ZZ^r$, $r=\rank L$, and the efficient lattice is $L$, realized
as a sublattice of $\AA$. Normaliz computes the image $M$ of $\ZZ^d_+$ in $L$ and its normalization. To this end, $M$ is embedded into a lattice $\ZZ$, $r=\rank M$. There is no canonical choice for such an mebdding, but if possible, Normaliz finds an embedding into $\ZZ_+^r$.
|