File: Normaliz.tex

package info (click to toggle)
normaliz 3.11.1%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 41,376 kB
  • sloc: cpp: 48,779; makefile: 2,266; sh: 1
file content (370 lines) | stat: -rw-r--r-- 11,291 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
\documentclass[12pt,a4paper]{scrartcl}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
%\usepackage[utf8]{inputenc}
\usepackage{mathptmx}
\usepackage{array}
\usepackage{color}
\usepackage{hyperref}
\usepackage{url}
\usepackage{graphicx}
\usepackage{multicol}
\usepackage{dsfont}
\usepackage{makeidx}

\usepackage{booktabs}

%\usepackage[ignoreunlbld,nomsgs]{refcheck}

\usepackage{pgf, tikz}
\usepackage{color}

% !TeX spellcheck = en_US

%\textwidth=15cm \textheight=22cm \topmargin=0.5cm
%\oddsidemargin=0.5cm \evensidemargin=0.5cm

\usepackage[T1]{fontenc}

\usepackage[scaled=0.8]{beramono}

\usepackage{fancyvrb} \RecustomVerbatimEnvironment{Verbatim}{Verbatim}
{xleftmargin=15pt, frame=single, fontsize=\small}


\newcounter{listi}
\newcommand{\stdli}{ \topsep0ex \partopsep0ex % .5ex plus.25ex minus.125ex%
	\parsep.2ex plus.1ex minus.1ex \itemsep0ex% .5ex plus.25ex minus.125ex%
	\leftmargin2.5em \labelwidth2em \labelsep.5em \rightmargin0em}% \samepage }
\newenvironment{arab}{\begin{list}{\textup{(\arabic{listi})}}%
		{\usecounter{listi}\stdli}}{\end{list}}
\newenvironment{rome}{\begin{list}{\textup{(\roman{listi})}}%
		{\usecounter{listi}\stdli}}{\end{list}}
\newenvironment{latin}{\begin{list}{\textup{(\alph{listi})}}%
		{\usecounter{listi}\stdli}}{\end{list}}
\renewenvironment{itemize}{\begin{list}{{$\bullet$}}{\stdli}}{\end{list}}
\newenvironment{myverb}{\begin{small}}{\end{small}\pagebreak[2]}  %%%%%  \vspace{-0.8\baselineskip}


\newtheorem{theorem}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}


\theoremstyle{definition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{definition}[theorem]{Definition}

\let\phi=\varphi

\def\CC{{\mathbb C}}
\def\ZZ{{\mathbb Z}}
\def\QQ{{\mathbb Q}}
\def\RR{{\mathbb R}}
\def\EE{{\mathbb E}}
\def\AA{{\mathbb A}}
\def\PP{{\mathbb P}}
\def\NN{{\mathbb N}}

\def\cL{{\mathcal L}}
\def\cZ{{\mathcal Z}}

\def\Ker{\operatorname{Ker}}
\def\Im{\operatorname{Im}}
\DeclareMathOperator{\gp}{gp}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\conv}{conv}
\DeclareMathOperator{\aff}{aff}
\DeclareMathOperator{\cone}{cone}
\DeclareMathOperator{\rec}{rec}
\DeclareMathOperator{\mrank}{mrank}
\DeclareMathOperator{\Hilb}{Hilb}
\DeclareMathOperator{\vol}{vol}
\DeclareMathOperator{\Cl}{Cl}
\DeclareMathOperator{\para}{par}
\DeclareMathOperator{\FPdim}{FPdim}

\DeclareMathOperator{\totdeg}{totdeg}


\def\cG{{\mathcal G}}
\def\cR{{\mathcal R}}

\let\hat=\widehat
\let\tilde=\widetilde
\let\Bar=\overline

\let\iso=\cong

\let\epsilon=\varepsilon
\def\discuss#1{\marginparsep=1em\marginparwidth=60pt
	\marginpar{\tt \footnotesize \raggedright #1}}

\definecolor{darkgray}{gray}{0.00}

\addtokomafont{section}{\color{darkgray}}

\setkomafont{sectionentry}{\large}

\addtokomafont{subsection}{\color{darkgray}}

\addtokomafont{subsubsection}{\normalsize}

\parindent=0pt \parskip=4pt

\setcounter{tocdepth}{3}

%\def\Normaliz#1+{\textsf{Normaliz}}
%\def\jNormaliz#1+{\textsf{jNormaliz}}

\def\itemtt[#1]{\index{#1@\textbf{\ttt{#1}}}\item[\textbf{\ttt{#1}}]}
\def\itemtta[#1]#2{\index{#2@\textbf{\ttt{#1}}}\item[\textbf{\ttt{#1}}]}

\def\ttt{\texttt}

\makeindex

\def\version{3.11.1}
\def\NmzDir{normaliz-\version}

\hyphenation{semi-open}

%\includeonly{Appendix}
%\includeonly{Monoid}

\begin{document}
\vspace*{2cm}

\renewcommand{\indexname}{Index of keywords}

\centerline{\Large\textbf{Normaliz \version}}

\vspace*{1.5cm}

\begin{center}Winfried Bruns\qquad Max Horn\\[14pt]
	Team member for fusion rings: Sébastien Palcoux\\[14pt]
	Former Normaliz~3 team members: Tim R\"omer, Richard Sieg,\\ Christof S\"oger and Ulrich von der Ohe\\[14pt]
	Normaliz~2 team member: Bogdan Ichim\\[14pt]
	\url{https://normaliz.uos.de}\qquad\qquad\qquad
	\url{https://github.com/Normaliz}\\[14pt]
	\url{mailto:normaliz@uos.de}\\[14pt]
	\url{https://hub.docker.com/r/normaliz/normaliz/}\\[14pt]
	\url{https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master}\\[14pt]
	Short reference: \verb|NmzShortRef.pdf|
\end{center}



\tableofcontents
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  INTRODUCTION  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\include{Intro}
\include{Discrete}
\include{Monoid}
\include{Input}
\include{Options}
\include{Advanced}
\include{Algebraic}
\include{OptFiles}
\include{Technical}
\include{Appendix}
\newpage

\addcontentsline{toc}{section}{References}
\begin{thebibliography}{15.}
\small

\bibitem{4ti2} 
4ti2 team. 4ti2-A software package
for algebraic, geometric and combinatorial problems on linear
spaces. Available at \url{https://github.com/4ti2/4ti2}.

\bibitem{CoCoA}
J.~Abbott, A.~M.~Bigatti and G.~Lagorio,
\emph{CoCoA-5: a system for doing Computations in Commutative Algebra}.
Available at \url{http://cocoa.dima.unige.it}.

\bibitem{ABPP}
M.A. Alekseyev, W. Bruns, S. Palcoux and F. V. Petrov, \emph{Classification of integral modular data up to rank 13}. Preprint \url{arXiv:2302.01613}.

\bibitem{AI}
V.~Almendra and B.~Ichim,
\emph{jNormaliz~1.7}.
Available at \url{https://normaliz.uos.de}.

\bibitem{LatInt}
V.~Baldoni, N.~Berline, J.~A.~De~Loera, B.~Dutra,
M.~K\"oppe, S.~Moreinis, G.~Pinto, M.~Vergne and J.~Wu,
\emph{A User's Guide for LattE integrale~v1.7.2, 2013}.
Software package LattE is available at \url{https://www.math.ucdavis.edu/~latte/}.

\bibitem{Bremner}
D.~Bremner, M.~D.~Sikiri\'c, D.~V.~Pasechnik, Th.~Rehn and A.~Sch\"urmann,
\emph{Computing symmetry groups of polyhedra}.
LMS J.\ Comp.\ Math.\ 17 (2014), 565--581.

\bibitem{has}
St.~ Brumme,
\emph{Hash library}.
Package available at \url{https://create.stephan-brumme.com/}.

\bibitem{BruAuto}
W. Bruns, \emph{Automorphism groups and normal forms in Normaliz.} Res. Math. Sci. 9 (2022), no. 2, Paper No. 20, 15 pp.

\bibitem{BruVol}
W. Bruns, \emph{Polytope volume in Normaliz.}
São Paulo J. Math. Sci.
\url{https://doi.org/10.1007/s40863-022-00317-9}

\bibitem{BGOW}
W.~Bruns, P.~Garcia-Sanchez, C.~O'Neill and D.~Wilburne,
\emph{Wilf's conjecture in fixed multiplicity}.
% Preprint \url{arXiv:1903.04342}.
Int.\ J.\ Algebra Comp.\ 30 (2020), 861--882.

\bibitem{BG}
W.~Bruns and J.~Gubeladze,
\emph{Polytopes, rings, and K-theory}.
Springer, 2009.

\bibitem{BHIKS}
W.~Bruns, R.~Hemmecke, B.~Ichim, M.~K\"oppe and C.~S\"oger,
\emph{Challenging computations of Hilbert bases of cones associated with algebraic statistics}.
Exp.\ Math.\ 20 (2011), 25--33.

\bibitem{BI}
W.~Bruns and B.~Ichim,
\emph{Normaliz: algorithms for rational cones and affine monoids}.
J.\ Algebra 324 (2010) 1098--1113.

\bibitem{BI2}
W.~Bruns and B.~Ichim,
\emph{Polytope volume by descent in the face lattice and applications in social choice}.
% Preprint \url{arXiv:1807.02835}.
Math.\ Prog.\ Comp. 113 (2020), 415--442.

\bibitem{BIS}
W.~Bruns, B.~Ichim and C.~S\"oger,
\emph{The power of pyramid decomposition in Normaliz}.
J.\ Symb.\ Comp.\ 74 (2016), 513--536.

\bibitem{BIS2}
W.~Bruns, B.~Ichim and C.~S\"oger,
\emph{Computations of volumes and Ehrhart series in four candidates elections}.
Ann.\ Oper.\ Res.\ 280 (2019), 241--265.

\bibitem{BK02}
W.~Bruns and R.~Koch,
\emph{Computing the integral closure of an affine semigroup}.
Univ.\ Iagell.\ Acta Math.\ 39 (2001), 59--70.

\bibitem{BSS}
W.~Bruns, R.~Sieg and C.~S\"oger,
\emph{Normaliz~2013--2016}.
% To appear in the final report of the DFG~SPP~1489.
% Preprint \url{arXiv:1611.07965}.
In
G.~B\"ockle, W.~Decker and G.~Malle, editors,
\emph{Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory},
pages~123--146.
Springer, 2018.

\bibitem{BS}
W.~Bruns and C.~S\"oger,
\emph{The computation of weighted Ehrhart series in Normaliz}.
J.\ Symb.\ Comp.\ 68 (2015), 75--86.

\bibitem{vinci} B. B\"{u}eler and A. Enge, \emph{Vinci.} Package available from \url{https://www.math.u-bordeaux.fr/~aenge/}

\bibitem{practical}	
B. Büeler, A. Enge, K. Fukuda, \emph{Exact volume computation for polytopes: a practical study.} In: Polytopes - combinatorics and computation (Oberwolfach, 1997), pp. 131 -- 154,
DMV Sem. 29, Birkhäuser, Basel, 2000.

\bibitem{DLHK}	
J. A. De Loera, R. Hemmecke and M. Köppe.
Algebraic and geometric ideas in the theory of discrete optimization.
MOS-SIAM Series on Optimization, 14. Society for Industrial and Applied Mathematics (SIAM), Philadelphia 2013.

\bibitem{e-antic}
V.~Delecroix,
\emph{embedded algebraic number fields (on top of antic)},
package available at \url{https://github.com/flatsurf/e-antic}.

\bibitem{DS}
J.Dong and A. Schopieray, \emph{Near-integral fusion}. Preprint \url{arXiv:2407.15955}.

\bibitem{EGNO}
P.~Etingof, S.~Gelaki, D.~Nikshych, and V.~Ostrik, {\em Tensor Categories}, American Mathematical Society, (2015).

\bibitem{Filli} 
P. Filliman, \emph{The volume of duals and sections of polytopes. } Mathematika 37 (1992), 67--80.

\bibitem{GAP-NmzInterface}
S.~Gutsche, M.~Horn and C.~S\"oger,
\emph{NormalizInterface for GAP}.
Available at \url{https://github.com/gap-packages/NormalizInterface}.

\bibitem{PyNormaliz}
S.~Gutsche and R.~Sieg,
\emph{PyNormaliz - an interface to Normaliz from python}.
Available at \url{https://github.com/Normaliz/PyNormaliz}.

\bibitem{Flint}
W.~B.~Hart, F.~Johansson and S.~Pancratz,
\emph{FLINT: Fast Library for Number Theory}.
Available at \url{https://flintlib.org}.

\bibitem{HM}
Hemmecke and P. N. Malkin. Computing generating sets of lattice ideals and Markov bases of
lattices. J. Symb. Comp. 44, 1463--1476 (2009).

\bibitem{Lawrence} J. Lawrence, \emph{Polytope volume computation.} Math. Comp. 57 (1991), 259--271.

\bibitem{KV}
M.~K\"oppe and S.~Verdoolaege,
\emph{Computing parametric rational generating functions with a primal Barvinok algorithm}.
Electron.\ J.\ Comb.\ 15, No.\ 1, Research Paper~R16, 19~p.\ (2008).

\bibitem{nauty}
B.~D.~McKay and A.~Piperno,
\emph{Practical graph isomorphism,~II}.
J.\ Symbolic Comput.\ 60 (2014), 94--112.

\bibitem{Ost}
V. Ostrik, \emph{Pivotal fusion categories of rank 3.} Mosc. Math. J. 15 (2015), no. 2, 373--396, 405.

\bibitem{Po}
L.~Pottier,
\emph{The Euclide algorithm in dimension~$n$}.
Research report, ISSAC~96, ACM Press 1996.

\bibitem{Sch}
A.~Sch\"urmann,
\emph{Exploiting polyhedral symmetries in social choice}.
Social Choice and Welfare 40 (2013), 1097--1110.

\bibitem{Stu}
B. Sturmfels,
\emph{Gröbner baes and convex polytopes}.
American Mathematical Society 1996.
\end{thebibliography}
\newpage

\addcontentsline{toc}{section}{\indexname}
\printindex
\end{document}

Relations do not select a
sublattice of $\ZZ^d$ or a subcone of $\RR^d$, but define a
monoid as a quotient of $\ZZ_+^d$ modulo a system of
congruences (in the semigroup sense!).

The rows of the input matrix of this type are interpreted as
generators of a subgroup $U\subset\ZZ^d$, and Normaliz computes an affine monoid and its normalization as explained in Section~\ref{binomials}.

Set $G=\ZZ^d/U$ and $L=G/\textup{torsion}(G)$. Then the ambient lattice
is $\AA=\ZZ^r$, $r=\rank L$, and the efficient lattice is $L$, realized
as a sublattice of $\AA$. Normaliz computes the image $M$ of $\ZZ^d_+$ in $L$ and its normalization. To this end, $M$ is embedded into a lattice $\ZZ$, $r=\rank M$. There is no canonical choice for such an mebdding, but if possible, Normaliz finds an embedding into $\ZZ_+^r$.