1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
/*
* Normaliz
* Copyright (C) 2007-2025 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#ifndef LIBNORMALIZ_AUTOMORPHISM_H
#define LIBNORMALIZ_AUTOMORPHISM_H
#include <set>
#include "libnormaliz/general.h"
#include "libnormaliz/dynamic_bitset.h"
#include "libnormaliz/matrix.h"
#include "libnormaliz/nmz_nauty.h"
#include "libnormaliz/descent.h"
// #include "libnormaliz/HilbertSeries.h"
namespace libnormaliz {
using namespace std;
string quality_to_string(AutomParam::Quality quality);
template <typename Integer>
class Cone;
template <typename Integer>
class Full_Cone;
template <typename Integer>
class Isomorphism_Classes;
template <typename Integer>
class AutomorphismGroup {
template <typename>
friend class Cone;
template <typename>
friend class Full_Cone;
template <typename>
friend class Isomorphism_Classes;
template <typename>
friend class DescentSystem;
Matrix<Integer> GensRef, SpecialGensRef, LinFormsRef, SpecialLinFormsRef;
// "ref" stands for "reference"
// the data defining the cone. Usially Gens = extreme rays, LinForms = support hyperplanes
// SpecialGens: vectors to be left fixed, forv example the grading if we compute a dual cone
// SpecialLinforms: grading, dehomogenization and possibly others
Matrix<Integer> GensComp, LinFormsComp; // used for computation
// gives us the flexibility to use extra generators or linear forms in the computation
// for example: GensComp = HilbertBasis if the extreme rays are not enough for
// the computation of integral automorphisms
bool addedComputationGens, addedComputationLinForms;
bool makeCanType;
map<dynamic_bitset, key_t> IncidenceMap;
vector<vector<key_t> > GenPerms;
vector<vector<key_t> > LinFormPerms;
vector<vector<key_t> > ExtRaysPerms; // used in Cone and computed there !!!!!!!
vector<vector<key_t> > VerticesPerms; // ditto
vector<vector<key_t> > SuppHypsPerms; // ditto
vector<vector<key_t> > GenOrbits;
vector<vector<key_t> > LinFormOrbits;
vector<vector<key_t> > ExtRaysOrbits; // used in Cone and computed there !!!!!!!
vector<vector<key_t> > VerticesOrbits; // ditto
vector<vector<key_t> > SuppHypsOrbits; // ditto
vector<key_t> CanLabellingGens;
vector<Matrix<Integer> > LinMaps;
void compute_incidence_map();
mpz_class order;
bool cone_dependent_data_computed;
size_t nr_special_gens, nr_special_linforms;
set<AutomParam::Goals> is_Computed;
set<AutomParam::Quality> Qualities;
AutomParam::Method method;
bool is_integral;
bool integrality_checked;
bool make_linear_maps_primal(const Matrix<Integer>& GivenGens, const vector<vector<key_t> >& ComputedGenPerms);
void gen_data_via_lin_maps();
void linform_data_via_lin_maps();
void linform_data_via_incidence();
void reset();
void set_basic_gens_and_lin_forms(const Matrix<Integer>& ExtRays,
const Matrix<Integer>& SpecialGens,
const Matrix<Integer>& SuppHyps,
const Matrix<Integer>& SpecialLinForms);
bool compute_inner(const AutomParam::Quality& desired_quality, const bool force_gens_x_linforms = false);
bool compute_integral();
bool compute_polytopal(const AutomParam::Quality& desired_quality);
void dualize();
void swap_data_from_dual(AutomorphismGroup<Integer> Dual);
void swap_data_from(AutomorphismGroup<Integer> Copy);
nauty_result<Integer> prepare_Gns_only_and_apply_nauty(const AutomParam::Quality& desired_quality);
nauty_result<Integer> prepare_Gns_x_LF_only_and_apply_nauty(const AutomParam::Quality& desired_quality);
public:
BinaryMatrix<Integer> CanType; // see nauty
const Matrix<Integer>& getGens() const;
const Matrix<Integer>& getLinForms() const;
const Matrix<Integer>& getSpecialLinForms() const;
mpz_class getOrder() const;
const vector<vector<key_t> >& getGensPerms() const;
const vector<vector<key_t> >& getGensOrbits() const;
const vector<vector<key_t> >& getLinFormsPerms() const;
const vector<vector<key_t> >& getLinFormsOrbits() const;
const vector<vector<key_t> >& getExtremeRaysPerms() const; // as mentioned above, these data
const vector<vector<key_t> >& getVerticesPerms() const; // are defined w.r.t. to a calling cone
const vector<vector<key_t> >& getSupportHyperplanesPerms() const; // ...
const vector<vector<key_t> >& getExtremeRaysOrbits() const; // ...
const vector<vector<key_t> >& getVerticesOrbits() const; // ...
const vector<vector<key_t> >& getSupportHyperplanesOrbits() const; // ...
const vector<Matrix<Integer> >& getLinMaps() const;
const vector<key_t>& getCanLabellingGens() const;
void setGensRef(const Matrix<Integer>& GivenGensRef); // if GensRef are set later
void setIncidenceMap(const map<dynamic_bitset, key_t>& Incidence);
void activateCanType(bool onoff = true);
set<AutomParam::Quality> getQualities() const;
AutomParam::Method getMethod() const;
bool Is_Computed(AutomParam::Goals goal) const;
string getQualitiesString() const;
bool HasQuality(AutomParam::Quality quality) const;
bool IsIntegral() const;
bool IsIntegralityChecked() const;
bool IsAmbient() const;
bool IsInput() const;
void fromInputToMonoid();
list<vector<Integer> > orbit_primal(const vector<Integer>& v) const;
void add_images_to_orbit(const vector<Integer>& v, set<vector<Integer> >& orbit) const;
const BinaryMatrix<Integer>& getCanType() const;
// bool compute(const AutomParam::Quality& desired_quality, const set<AutomParam::Goals>& ToCompute); // not yet implemented
bool compute(const AutomParam::Quality& desired_quality, const bool force_gens_x_linforms = false);
AutomorphismGroup();
AutomorphismGroup(const Matrix<Integer>& ExtRays, const Matrix<Integer>& SupHyps, const Matrix<Integer>& SpecialLinForms);
AutomorphismGroup(const Matrix<Integer>& ExtRays,
const Matrix<Integer>& SpecialGens,
const Matrix<Integer>& SuppHyps,
const Matrix<Integer>& SpecialLinForms);
void addComputationGens(const Matrix<Integer>& GivenGens);
void addComputationLinForms(const Matrix<Integer>& GivenLinearForms);
}; // end class
template <typename Integer>
class Isomorphism_Classes;
/*
template <typename Integer>
class IsoType {
template <typename>
friend class Isomorphism_Classes;
AutomParam::Quality quality;
size_t rank;
Matrix<Integer> ExtremeRays;
size_t nrExtremeRays;
// Matrix<Integer> SupportHyperplanes;
size_t nrSupportHyperplanes;
Matrix<Integer> HilbertBasis; // without extreme rays
// size_t nrHilbertBasis; // with extreme rays, but not used
vector<Integer> Grading;
vector<Integer> Truncation;
// HilbertSeries HilbertSer;
mpq_class Multiplicity;
bool needs_Hilbert_basis;
// For the coordinate transformation to the canonical basis
vector<key_t> CanLabellingGens;
Matrix<Integer> CanTransform;
Integer CanDenom;
vector<key_t> CanBasisKey;
BinaryMatrix<Integer> CanType;
const BinaryMatrix<Integer>& getCanType() const;
IsoType(); // constructs a dummy object
public:
bool isOfType(const Full_Cone<Integer>& C) const;
// bool isOfType(Cone<Integer>& C) const;
IsoType(const Full_Cone<Integer>& C, bool& success); // success indicates whether a class could be created
IsoType(Cone<Integer>& C);
// size_t getRank();
// Matrix<Integer> getExtremeRays() const;
// Matrix<Integer> getSupportHyperplanes() const;
const Matrix<Integer>& getHilbertBasis() const;
// vector<Integer> getGrading() const;
// vector<Integer> getTruncation() const;
// HilbertSeries getHilbertSeries() const;
mpq_class getMultiplicity() const;
const Matrix<Integer>& getCanTransform() const;
Integer getCanDenom() const;
const BinaryMatrix<Integer>& getCanType() const;
};
*/
template <typename Integer>
class IsoType {
template <typename>
friend class Isomorphism_Classes;
AutomParam::Type type;
public:
BinaryMatrix<Integer> CanType;
vector<unsigned char> HashValue;
Integer index;
// vector<dynamic_bitset> FacetOrbits;
IsoType(); // constructs a dummy object
IsoType(Cone<Integer>& C);
IsoType(const Matrix<Integer>& M);
IsoType(const Matrix<Integer>& Inequalities,
const Matrix<Integer> Equations,
const vector<Integer> Grading,
const bool strict_type_check);
IsoType(const Matrix<Integer>& ExtremeRays, const vector<Integer> Grading, const bool strict_type_check);
const BinaryMatrix<Integer>& getCanType() const;
};
template <typename Integer>
class IsoType_compare {
public:
bool operator()(const IsoType<Integer>& A, const IsoType<Integer>& B) const {
#ifdef NMZ_HASHLIBRARY
if (A.HashValue.size() > 0) {
if (A.HashValue < B.HashValue)
return true;
return false;
}
#endif
return BM_compare(A.getCanType(), B.getCanType());
}
};
template <typename Integer>
class Isomorphism_Classes {
template <typename>
friend class Cone;
template <typename>
friend class Full_Cone;
set<IsoType<Integer>, IsoType_compare<Integer> > Classes;
AutomParam::Type type;
public:
Isomorphism_Classes();
Isomorphism_Classes(AutomParam::Type given_type);
const IsoType<Integer>& find_type(const IsoType<Integer>& IT, bool& found) const;
const IsoType<Integer>& add_type(const IsoType<Integer>& IT, bool& found);
size_t erase_type(const IsoType<Integer>& IT);
const IsoType<Integer>& find_type(Cone<Integer>& C, bool& found) const;
const IsoType<Integer>& add_type(Cone<Integer>& C, bool& found);
size_t erase_type(Cone<Integer>& C);
const set<IsoType<Integer>, IsoType_compare<Integer> >& getClasses() const;
size_t size() const;
};
vector<vector<key_t> > convert_to_orbits(const vector<key_t>& raw_orbits);
vector<vector<key_t> > cycle_decomposition(vector<key_t> perm, bool with_fixed_points = false);
void pretty_print_cycle_dec(const vector<vector<key_t> >& dec, ostream& out);
vector<vector<key_t> > keys(const list<dynamic_bitset>& Partition);
list<dynamic_bitset> partition(size_t n, const vector<vector<key_t> >& Orbits);
list<dynamic_bitset> join_partitions(const list<dynamic_bitset>& P1, const list<dynamic_bitset>& P2);
vector<vector<key_t> > orbits(const vector<vector<key_t> >& Perms, size_t N);
vector<vector<key_t> > PermGroup(const vector<vector<key_t> >& Perms, size_t N);
} // namespace libnormaliz
//---------------------------------------------------------------------------
#endif
//---------------------------------------------------------------------------
|