1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
|
/*
* Normaliz
* Copyright (C) 2007-2025 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#ifndef LIBNORMALIZ_CONE_H_
#define LIBNORMALIZ_CONE_H_
#include <vector>
#include <map>
#include <set>
#include <string>
#include <utility> // for pair
#include <libnormaliz/general.h>
#include "libnormaliz/input_type.h"
#include <libnormaliz/automorph.h>
#include <libnormaliz/sublattice_representation.h>
#include <libnormaliz/matrix.h>
#include <libnormaliz/HilbertSeries.h>
#include "libnormaliz/dynamic_bitset.h"
#include "libnormaliz/nmz_polynomial.h"
#include "libnormaliz/fusion.h"
namespace libnormaliz {
using std::map;
using std::pair;
using std::vector;
template <typename Integer>
class Full_Cone;
template <typename Integer>
class ConeCollection;
template <typename Integer>
struct FACETDATA {
vector<Integer> Hyp; // linear form of the hyperplane
dynamic_bitset GenInHyp; // incidence hyperplane/generators
Integer ValNewGen; // value of linear form on the generator to be added
size_t BornAt; // number of generator (in order of insertion) at which this hyperplane was added,, counting from 0
size_t Ident; // unique number identifying the hyperplane (derived from HypCounter)
size_t Mother; // Ident of positive mother if known, 0 if unknown
// bool is_positive_on_all_original_gens;
// bool is_negative_on_some_original_gen;
bool simplicial; // indicates whether facet is simplicial
bool neutral;
bool positive;
bool negative;
};
template <typename Integer>
struct CONVEXHULLDATA {
Sublattice_Representation<Integer> SLR; // identifies the version of BasisChangePointed with which the data were stored
long nr_threads;
bool is_primal;
vector<size_t> HypCounter; // counters used to give unique number to hyperplane
// must be defined thread wise to avoid critical
vector<bool> in_triang; // intriang[i]==true means that Generators[i] has been actively inserted
vector<key_t> GensInCone; // lists the generators completely built in
size_t nrGensInCone; // their number
vector<size_t> Comparisons; // at index i we note the total number of comparisons
// of positive and negative hyperplanes needed for the first i generators
size_t nrTotalComparisons; // counts the comparisons in the current computation
list<FACETDATA<Integer> > Facets; // contains the data for Fourier-Motzkin and extension of triangulation
size_t old_nr_supp_hyps; // must be remembered since Facets gets extended before the current generators is finished
Matrix<Integer> Generators;
};
// type for simplex, short in contrast to class Simplex
template <typename Integer>
struct SHORTSIMPLEX {
vector<key_t> key; // full key of simplex
Integer height; // height of last vertex over opposite facet, used in Full_Cone
Integer vol; // volume if computed, 0 else
Integer mult; // used for renf_elem_class in Full_Cone
vector<bool> Excluded; // for disjoint decomposition of cone
// true in position i indictate sthat the facet
// opposite of generator i must be excluded
};
template <typename Integer>
bool compareKeys(const SHORTSIMPLEX<Integer>& A, const SHORTSIMPLEX<Integer>& B) {
return (A.key < B.key);
}
struct STANLEYDATA_int { // for internal use
vector<key_t> key;
Matrix<long> offsets;
vector<long> degrees; // degrees and classNr are used in nmz_integral.cpp
size_t classNr; // number of class of this simplicial cone
};
template <typename Integer>
struct STANLEYDATA {
vector<key_t> key;
Matrix<Integer> offsets;
};
template <typename Integer>
class Cone {
template <typename, typename>
friend class ProjectAndLift;
// friend class ConeCollection<Integer>;
//---------------------------------------------------------------------------
// public methods
//---------------------------------------------------------------------------
public:
//---------------------------------------------------------------------------
// Constructors, they preprocess the input
//---------------------------------------------------------------------------
// typedef Integer elem_type;
template<typename InputNumberType>
void process_multi_input(const InputMapVV<InputNumberType>& multi_input_data){
map<InputType, Matrix<InputNumberType> > mat_input;
for(auto T=multi_input_data.begin(); T!=multi_input_data.end();++T)
mat_input[T->first]=T->second;
process_multi_input(mat_input);
}
Cone() {
} // default constructor
/* give up to 3 matrices as input
* the types must be pairwise different
*/
template <typename T>
Cone(InputType type, const vector<vector<T> >& input_data) {
// convert to a map
InputMapVV<T> multi_input_data;
/*= {{type, input_data()}};*/
multi_input_data[type] = input_data;
process_multi_input(multi_input_data);
}
template <typename T>
Cone(InputType type1, const vector<vector<T> >& input_data1, InputType type2, const vector<vector<T> >& input_data2) {
if (type1 == type2) {
throw BadInputException("Input types must be pairwise different!");
}
// convert to a map
InputMapVV<T> multi_input_data;
/*= {
{type1, input_data1},
{type2, input_data2},
};*/
multi_input_data[type1] = input_data1;
multi_input_data[type2] = input_data2;
process_multi_input(multi_input_data);
}
template <typename T>
Cone(InputType type1,
const vector<vector<T> >& input_data1,
InputType type2,
const vector<vector<T> >& input_data2,
InputType type3,
const vector<vector<T> >& input_data3) {
if (type1 == type2 || type1 == type3 || type2 == type3) {
throw BadInputException("Input types must be pairwise different!");
}
// convert to a map
InputMapVV<T> multi_input_data;
/*= {
{type1, input_data1},
{type2, input_data2},
{type3, input_data3},
};*/
multi_input_data[type1] = input_data1;
multi_input_data[type2] = input_data2;
multi_input_data[type3] = input_data3;
process_multi_input(multi_input_data);
}
/* give multiple input */
template <typename T>
Cone(const InputMapVV<T>& multi_input_data) {
process_multi_input(multi_input_data);
}
//-----------------------------------------------------------------------------
// Now with Matrix
template <typename T>
Cone(InputType type, const Matrix<T>& input_data) {
// convert to a map
InputMap<T> multi_input_data;
multi_input_data[type] = input_data;
process_multi_input(multi_input_data);
}
template <typename T>
Cone(InputType type1, const Matrix<T>& input_data1, InputType type2, const Matrix<T>& input_data2) {
if (type1 == type2) {
throw BadInputException("Input types must be pairwise different!");
}
// convert to a map
InputMap<T> multi_input_data;
multi_input_data[type1] = input_data1;
multi_input_data[type2] = input_data2;
process_multi_input(multi_input_data);
}
template <typename T>
Cone(InputType type1,
const Matrix<T>& input_data1,
InputType type2,
const Matrix<T>& input_data2,
InputType type3,
const Matrix<T>& input_data3) {
if (type1 == type2 || type1 == type3 || type2 == type3) {
throw BadInputException("Input types must be pairwise different!");
}
// convert to a map
InputMap<T> multi_input_data;
multi_input_data[type1] = input_data1;
multi_input_data[type2] = input_data2;
multi_input_data[type3] = input_data3;
process_multi_input(multi_input_data);
}
/* give multiple input */
template <typename T>
Cone(const InputMap<T>& multi_input_data) {
process_multi_input(multi_input_data);
}
//-----------------------------------------------------------------------------
// From Normaliz input file
Cone(const string project);
//---------------------------------------------------------------------------
// Destructor
//---------------------------------------------------------------------------
~Cone();
void delete_aux_cones();
//---------------------------------------------------------------------------
// give additional data
//---------------------------------------------------------------------------
/* Sets if the Cone prints verbose output.
* The default value for the Cone is the global verbose.
* returns the old value
*/
bool getVerbose() const;
void deactivateChangeOfPrecision();
/* We allow the change of the cone by additional inequalities or generators
* after the first computation for "dynamical" applications, in which
* the cone is changed depending on previous computation results.
*
* If you want to add more than one type, use the map version.
*/
void modifyCone(const InputMap<Integer>& add_multi_input);
void modifyCone(const InputMap<mpq_class>& add_multi_input);
void modifyCone(const InputMap<nmz_float>& add_multi_input);
template <typename T>
void modifyCone(InputType type, const vector<vector<T> >& input_data);
template <typename T>
void modifyCone(const InputMapVV<T>& input_data);
template <typename T>
void modifyCone(InputType type, const Matrix<T>& input_data);
/* We must also transport data that cannot be conveyed by the constructors
* or compute functions (in the present setting)
*/
void setPolyParams(const map<PolyParam::Param, vector<string> >& poly_params);
void setPolynomial(const string& poly);
void setPolynomialEquations(const vector<string>& poly_equs);
void setPolynomialInequalities(const vector<string>& poly_inequs);
void setBoolParams(const map<BoolParam::Param, bool>& bool_params);
bool setVerbose(bool onoff = true);
void setNonnegative(bool onoff = true);
void setListPolynomials(bool onoff = true);
void setTotalDegree(bool onoff = true);
void setNoPosOrthDef(bool onoff = true);
void setConvertEquations(bool onoff = true);
void setNoCoordTransf(bool onoff = true);
void setNumericalParams(const map<NumParam::Param, long>& num_params);
void setNrCoeffQuasiPol(long nr_coeff);
void setExpansionDegree(long degree);
void setFaceCodimBound(long bound);
void setAutomCodimBoundMult(long bound);
void setAutomCodimBoundVectors(long bound);
void setDecimalDigits(long digiots);
void setBlocksizeHollowTri(long block_size);
void setGBDegreeBound(const long degree_bound);
void setGBMinDegree(const long min_degree);
void setModularGraing(long mod_gr);
void setChosenFusionRing(long fus_r);
void setProjectName(const string& my_project);
string getProjectName() const;
void setRenf(const renf_class_ptr renf);
template <typename InputNumber>
void check_add_input(const InputMap<InputNumber>& multi_add_data);
template <typename InputNumber>
void check_consistency_of_dimension(const InputMap<InputNumber>& multi_add_data);
InputMap<Integer> mpqclass_input_to_integer(
const InputMap<mpq_class>& multi_input_data_const);
//---------------------------------------------------------------------------
// make computations
//---------------------------------------------------------------------------
// return what was NOT computed
// special cases for up to 3 CPs
ConeProperties compute(ConeProperties ToCompute);
ConeProperties compute(ConeProperty::Enum);
ConeProperties compute(ConeProperty::Enum, ConeProperty::Enum);
ConeProperties compute(ConeProperty::Enum, ConeProperty::Enum, ConeProperty::Enum);
//---------------------------------------------------------------------------
// check what is computed
//---------------------------------------------------------------------------
bool isComputed(ConeProperty::Enum prop) const;
// returns true, when ALL properties in CheckComputed are computed
bool isComputed(ConeProperties CheckComputed) const;
const ConeProperties& getIsComputed() const;
void setComputed(ConeProperty::Enum prop);
void setComputed(ConeProperty::Enum prop, bool value);
//---------------------------------------------------------------------------
// get the results, these methods will start a computation if necessary
// throws an NotComputableException if not successful
//---------------------------------------------------------------------------
// dimension and rank invariants
size_t getEmbeddingDim() const {
return dim;
}; // is always known
size_t getRank(); // depends on ExtremeRays
size_t getRankRaw(); // returns what is computed at the time of call
Integer getInternalIndex(); // depends on OriginalMonoidGenerators
Integer getUnitGroupIndex(); // ditto
// only for inhomogeneous case:
size_t getRecessionRank();
long getAffineDim();
size_t getModuleRank();
Cone<Integer>& getIntegerHullCone() const;
Cone<Integer>& getSymmetrizedCone() const;
Cone<Integer>& getProjectCone() const;
const Matrix<Integer>& getExtremeRaysMatrix();
const vector<vector<Integer> >& getExtremeRays();
size_t getNrExtremeRays();
const Matrix<Integer>& getGroebnerBasisMatrix();
const vector<vector<Integer> >& getGroebnerBasis();
size_t getNrGroebnerBasis();
const Matrix<Integer>& getRepresentationsMatrix();
const vector<vector<Integer> >& getRepresentations();
size_t getNrRepresentations();
const Matrix<Integer>& getMarkovBasisMatrix();
const vector<vector<Integer> >& getMarkovBasis();
size_t getNrMarkovBasis();
const Matrix<nmz_float>& getVerticesFloatMatrix();
const vector<vector<nmz_float> >& getVerticesFloat();
size_t getNrVerticesFloat();
const Matrix<nmz_float>& getExtremeRaysFloatMatrix();
const vector<vector<nmz_float> >& getExtremeRaysFloat();
size_t getNrExtremeRaysFloat();
const Matrix<nmz_float>& getSuppHypsFloatMatrix();
const vector<vector<nmz_float> >& getSuppHypsFloat();
size_t getNrSuppHypsFloat();
const Matrix<Integer>& getVerticesOfPolyhedronMatrix();
const vector<vector<Integer> >& getVerticesOfPolyhedron();
size_t getNrVerticesOfPolyhedron();
const Matrix<Integer>& getSupportHyperplanesMatrix();
const vector<vector<Integer> >& getSupportHyperplanes();
size_t getNrSupportHyperplanes();
const Matrix<Integer>& getFusionRingsMatrix();
const vector<vector<Integer> >& getFusionRings();
size_t getNrFusionRings();
const Matrix<Integer>& getSimpleFusionRingsMatrix();
const vector<vector<Integer> >& getSimpleFusionRings();
size_t getNrSimpleFusionRings();
const Matrix<Integer>& getNonsimpleFusionRingsMatrix();
const vector<vector<Integer> >& getNonsimpleFusionRings();
size_t getNrNonsimpleFusionRings();
const vector<vector<Matrix<Integer> > >& getFusionDataMatrix();
const vector<vector<Matrix<Integer> > >& getInductionMatrices();
const FusionBasic& getFusionBasicCone();
const Matrix<Integer>& getMaximalSubspaceMatrix();
const vector<vector<Integer> >& getMaximalSubspace();
size_t getDimMaximalSubspace();
const Matrix<Integer>& getEquationsMatrix();
const vector<vector<Integer> >& getEquations();
size_t getNrEquations();
const Matrix<Integer>& getCongruencesMatrix();
const vector<vector<Integer> >& getCongruences();
size_t getNrCongruences();
// depends on the ConeProperty::s SupportHyperplanes and Sublattice
InputMapVV<Integer> getConstraints();
const Matrix<Integer>& getExcludedFacesMatrix();
const vector<vector<Integer> >& getExcludedFaces();
size_t getNrExcludedFaces();
size_t getTriangulationSize();
Integer getTriangulationDetSum();
vector<Integer> getWitnessNotIntegrallyClosed();
vector<Integer> getGeneratorOfInterior();
vector<Integer> getCoveringFace();
vector<Integer> getAxesScaling();
const Matrix<Integer>& getHilbertBasisMatrix();
const vector<vector<Integer> >& getHilbertBasis();
size_t getNrHilbertBasis();
vector<key_t> getHilbertBasisKey();
const Matrix<Integer>& getModuleGeneratorsOverOriginalMonoidMatrix();
const vector<vector<Integer> >& getModuleGeneratorsOverOriginalMonoid();
size_t getNrModuleGeneratorsOverOriginalMonoid();
const Matrix<Integer>& getModuleGeneratorsMatrix();
const vector<vector<Integer> >& getModuleGenerators();
size_t getNrModuleGenerators();
const Matrix<Integer>& getDeg1ElementsMatrix();
const vector<vector<Integer> >& getDeg1Elements();
size_t getNrDeg1Elements();
size_t getNumberLatticePoints();
void setNumberLatticePoints(const size_t nr_lp);
const Matrix<Integer>& getLatticePointsMatrix();
const vector<vector<Integer> >& getLatticePoints();
// size_t getNrLatticePoints();
const vector<Integer>& getSingleLatticePoint();
const vector<Integer>& getSingleFusionRing();
const map<dynamic_bitset, int>& getSingularLocus();
size_t getCodimSingularLocus();
const map<dynamic_bitset, int>& getFaceLattice();
vector<size_t> getFVector();
const vector<dynamic_bitset>& getIncidence();
const map<dynamic_bitset, int>& getFaceLatticeOrbits();
vector<size_t> getFVectorOrbits();
const map<dynamic_bitset, int>& getDualFaceLattice();
vector<size_t> getDualFVector();
const vector<dynamic_bitset>& getDualIncidence();
const map<dynamic_bitset, int>& getDualFaceLatticeOrbits();
vector<size_t> getDualFVectorOrbits();
const vector<vector<dynamic_bitset> >& getModularGradings();
size_t getNrModularGradings();
// the actual grading is Grading/GradingDenom
vector<Integer> getGrading();
Integer getGradingDenom();
Integer getGradingDenomRaw() const;
vector<long long> ValuesGradingOnMonoid;
vector<Integer> getDehomogenization();
vector<Integer> getClassGroup();
const AutomorphismGroup<Integer>& getAutomorphismGroup(ConeProperty::Enum quality);
const AutomorphismGroup<Integer>& getAutomorphismGroup();
mpq_class getMultiplicity();
mpq_class getVolume();
renf_elem_class getRenfVolume();
nmz_float getEuclideanVolume();
mpq_class getVirtualMultiplicity();
mpq_class getIntegral();
nmz_float getEuclideanIntegral();
const pair<HilbertSeries, mpz_class>& getWeightedEhrhartSeries();
string getPolynomial() const;
vector<string> getPolynomialEquations() const;
bool get_lattice_ideal_input() const;
bool get_pure_lattice_ideal() const;
bool get_monoid_input() const;
bool inequalities_present;
bool addition_generators_allowed;
bool addition_constraints_allowed;
bool isPointed();
bool isInhomogeneous();
bool isDeg1ExtremeRays();
bool isDeg1HilbertBasis();
bool isIntegrallyClosed();
bool isSerreR1();
bool isLatticeIdealToric();
bool isGorenstein();
bool isEmptySemiOpen();
bool isReesPrimary();
bool isIntHullCone();
bool isPolynomiallyConstrained();
Integer getReesPrimaryMultiplicity();
const Matrix<Integer>& getOriginalMonoidGeneratorsMatrix();
const vector<vector<Integer> >& getOriginalMonoidGenerators();
size_t getNrOriginalMonoidGenerators();
const Sublattice_Representation<Integer>& getSublattice();
Matrix<Integer> getEmbMatrix();
const HilbertSeries& getHilbertSeries(); // general purpose object
const HilbertSeries& getEhrhartSeries(); // general purpose object
// the following 2 methods give information about the last used triangulation
// if no triangulation was computed so far they return false
bool isTriangulationNested();
bool isTriangulationPartial();
const pair<vector<SHORTSIMPLEX<Integer> >, Matrix<Integer> >& getTriangulation();
const pair<vector<SHORTSIMPLEX<Integer> >, Matrix<Integer> >& getBasicTriangulation();
const pair<vector<SHORTSIMPLEX<Integer> >, Matrix<Integer> >& getTriangulation(ConeProperty::Enum quality);
const pair<vector<SHORTSIMPLEX<Integer> >, Matrix<Integer> >& getConeDecomposition();
const vector<pair<vector<key_t>, long> >& getInclusionExclusionData();
const pair<list<STANLEYDATA<Integer> >, Matrix<Integer> >& getStanleyDec();
pair<list<STANLEYDATA_int>, Matrix<Integer> >& getStanleyDec_mutable(); // allows us to erase the StanleyDec
// in order to save memory for weighted Ehrhart
string project_name;
bool get_verbose();
void write_cone_output(const string& output_file);
void write_precomp_for_input(const string& output_file);
IntegrationData& getIntData();
void resetGrading(vector<Integer> lf);
void resetProjectionCoords(const vector<Integer>& lf);
const Matrix<Integer>& getMatrixConePropertyMatrix(ConeProperty::Enum property);
const vector<vector<Integer> >& getMatrixConeProperty(ConeProperty::Enum property);
const Matrix<nmz_float>& getFloatMatrixConePropertyMatrix(ConeProperty::Enum property);
const vector<vector<nmz_float> >& getFloatMatrixConeProperty(ConeProperty::Enum property);
vector<Integer> getVectorConeProperty(ConeProperty::Enum property);
Integer getIntegerConeProperty(ConeProperty::Enum property);
mpz_class getGMPIntegerConeProperty(ConeProperty::Enum property);
mpq_class getRationalConeProperty(ConeProperty::Enum property);
nmz_float getFloatConeProperty(ConeProperty::Enum property);
renf_elem_class getFieldElemConeProperty(ConeProperty::Enum property);
long getMachineIntegerConeProperty(ConeProperty::Enum property);
bool getBooleanConeProperty(ConeProperty::Enum property);
nmz_float euclidean_corr_factor();
vector<string> getRenfData();
string getRenfGenerator();
const renf_class* getRenf();
// for access to n number frield in general: static = not bound to a cone
static vector<string> getRenfData(const renf_class_ptr);
static string getRenfGenerator(const renf_class_ptr);
bool isParallelotope() const;
vector<dynamic_bitset> getPair() const; // for indicator vectors in project-and_lift
vector<dynamic_bitset> getParaInPair() const;
bool getChangeIntegerType() const;
void setChangeIntegerType(const bool onoff);
void make_Hilbert_series_from_pos_and_neg(const vector<num_t>& h_vec_pos, const vector<num_t>& h_vec_neg);
//---------------------------------------------------------------------------
// private part
//---------------------------------------------------------------------------
private:
InputMap<Integer> Standard_Input;
bool standard_input_done; // true after finish_standard_input and locks it
// syntax checking etc.
void process_standard_input();
// unifyingt the various types into generators and/or constraints
void finish_standard_input(const ConeProperties& ToCompute);
// bools that appear as BoolParam and influence finish_standard_input
bool make_nonnegative;
bool set_total_degree;
bool no_pos_orth_def; // sweitchwes off the defaut addition of the pos orth without inequ in input
bool convert_equations; // converts equations to pairs of inequalities with the aim to suppress
// coordinate transformations
bool no_coord_transf;// blocks coordinate transformation in onput phase
bool polynomial_verbose; // list input polynomials when processed
size_t dim;
size_t codim_singular_locus;
bool inhom_input;
bool allow_lll;
bool keep_convex_hull_data; // indicates that data computed in Full_Cone and other data are preserved and can be used again
CONVEXHULLDATA<Integer> ConvHullData;
bool conversion_done; // indicates that generators have been converted to inequalities
// the following matrices store the constraints of the input
Matrix<Integer> Inequalities;
Matrix<Integer> BoundingInequalitiesLattP; // upper bounds for lattice points in positive orthant
Matrix<Integer> AddInequalities; // for inequalities added later on
Matrix<Integer> AddGenerators; // for generators added later on
Matrix<Integer> Equations;
Matrix<Integer> Congruences;
Matrix<Integer> Binomials;
// we must register some information about thew input
bool lattice_ideal_input; // input is abinomial ideal
bool pure_lattice_ideal; // input type is lattice_ideal
bool lattice_ideal_toric; // input lattice_ideal is already toric
bool monoid_input; // setbtrue for input types monoid and toric_ideal
bool normal_monoid_input; // set true for normal_toric_ideal input
bool explicit_monoid_input; // type monoid explicit in construction, and not only derived from toric ideal
size_t nr_latt_gen, nr_cone_gen; // they count matrices in the input
Sublattice_Representation<Integer> BasisChange; // always use compose_basis_change() !
Sublattice_Representation<Integer> BasisChangePointed; // to the pointed cone
bool BC_set;
bool verbose;
ConeProperties is_Computed;
// Matrix<Integer> GeneratorsOfToricRing;
Matrix<Integer> InputGenerators;
Matrix<Integer> Generators;
// Matrix<Integer> ReferenceGenerators;
Matrix<Integer> ExtremeRays; // of the homogenized cone
Matrix<Integer> RationalExtremeRays; // rational or algebraic: used in the computation of integer hulls
Matrix<Integer> ExtremeRaysRecCone; // of the recession cone, = ExtremeRays in the homogeneous case
Matrix<nmz_float> VerticesFloat;
Matrix<nmz_float> ExtremeRaysFloat;
vector<bool> ExtremeRaysIndicator;
Matrix<Integer> VerticesOfPolyhedron;
Matrix<Integer> SupportHyperplanes;
Matrix<nmz_float> SuppHypsFloat;
Matrix<Integer> ExcludedFaces;
size_t TriangulationSize;
Integer TriangulationDetSum;
bool triangulation_is_nested;
bool triangulation_is_partial;
pair<vector<SHORTSIMPLEX<Integer> >, Matrix<Integer> > Triangulation; // the last computed triangulation
pair<vector<SHORTSIMPLEX<Integer> >, Matrix<Integer> > BasicTriangulation; // the basic triangulation
vector<vector<bool> > OpenFacets;
vector<bool> projection_coord_indicator;
vector<pair<vector<key_t>, long> > InExData;
pair<list<STANLEYDATA_int>, Matrix<Integer> > BasicStanleyDec;
pair<list<STANLEYDATA<Integer> >, Matrix<Integer> > StanleyDec;
mpq_class multiplicity;
mpq_class volume;
nmz_float euclidean_volume;
nmz_float euclidean_height; // for volume computations with renf_elem_class
renf_elem_class renf_volume;
mpq_class Integral;
mpq_class VirtualMultiplicity;
vector<Integer> WitnessNotIntegrallyClosed;
vector<Integer> GeneratorOfInterior;
vector<Integer> CoveringFace;
vector<Integer> AxesScaling;
Matrix<Integer> HilbertBasis;
vector<key_t> HilbertBasisKey;
Matrix<Integer> MarkovBasis;
Matrix<Integer> GroebnerBasis;
Matrix<Integer> Representations;
Matrix<Integer> HilbertBasisRecCone;
Matrix<Integer> BasisMaxSubspace;
Matrix<Integer> RationalBasisMaxSubspace; // used for integer hull computation
Matrix<Integer> ModuleGeneratorsOverOriginalMonoid;
Matrix<Integer> Deg1Elements;
vector<Integer> SingleLatticePoint;
vector<Integer> SingleFusionRing;
Matrix<Integer> FusionRings;
Matrix<Integer> SimpleFusionRings;
Matrix<Integer> NonsimpleFusionRings;
vector<vector<Matrix<Integer> > > FusionTables; // to avoid the name FusionData
vector<vector<Matrix<Integer> > > InductionMatrices;
vector<Integer> fusion_type_input;
Matrix<Integer> CHECK; // for debiugging
HilbertSeries HSeries;
HilbertSeries EhrSeries;
IntegrationData IntData;
vector<Integer> Grading;
vector<Integer> GB_Weight;
vector<Integer> Dehomogenization;
vector<Integer> IntHullNorm; // used in computation of integer hulls for guessing extreme rays
vector<Integer> Norm; // used by v_standardize in the number field case
Integer GradingDenom;
Integer internal_index;
Integer unit_group_index;
size_t number_lattice_points;
vector<size_t> f_vector;
vector<size_t> dual_f_vector;
vector<size_t> f_vector_orbits;
vector<size_t> dual_f_vector_orbits;
vector<dynamic_bitset> Pair; // for indicator vectors in project-and_lift
vector<dynamic_bitset> ParaInPair; // if polytope is a parallelotope
bool check_parallelotope();
bool is_parallelotope;
map<dynamic_bitset, int> FaceLat;
map<dynamic_bitset, int> DualFaceLat;
map<dynamic_bitset, int> FaceLatOrbits;
map<dynamic_bitset, int> DualFaceLatOrbits;
vector<dynamic_bitset> SuppHypInd; // incidence vectors of the support hyperplanes
vector<dynamic_bitset> DualSuppHypInd;
map<dynamic_bitset, int> SingularLocus;
FusionBasic FusionBasicCone;
bool pointed;
bool inhomogeneous;
bool precomputed_extreme_rays;
bool precomputed_support_hyperplanes;
bool empty_semiopen;
bool is_fusion; // explicit fusion data input
bool is_fusion_candidate_subring; // explicit fusion data input
bool is_fusion_partition;
bool input_automorphisms;
bool polytope_in_input;
bool rational_lattice_in_input;
bool inequalities_in_input;
bool positive_orthant;
bool zero_one;
bool positive_and_bounded;
vector<Integer> UpperBoundsLattP;
dynamic_bitset upper_bound_set;
bool polynomially_constrained;
bool deg1_extreme_rays;
bool deg1_hilbert_basis;
bool integrally_closed;
bool SerreR1;
bool Gorenstein;
bool rees_primary;
bool dual_original_generators; // true means: dual cone has original generators
Integer ReesPrimaryMultiplicity;
int affine_dim; // dimension of polyhedron
size_t recession_rank; // rank of recession monoid
size_t module_rank; // for the inhomogeneous case
Matrix<Integer> ModuleGenerators;
vector<Integer> ClassGroup;
bool is_approximation;
Cone* ApproximatedCone;
bool is_inthull_cone;
Matrix<Integer> WeightsGrad;
vector<bool> GradAbs;
bool normalization; // true if input type normalization is used
bool general_no_grading_denom;
const renf_class* Renf;
// renf_class_ptr RenfSharedPtr;
long renf_degree;
long face_codim_bound;
long decimal_digits;
long block_size_hollow_tri;
long gb_degree_bound;
long gb_min_degree;
long modular_grading;
long chosen_fusion_ring;
// if this is true we allow to change to a smaller integer type in the computation
bool change_integer_type;
long autom_codim_vectors;
// long autom_codim_mult; Out of use
Cone<Integer>* IntHullCone; // cone containing data of integer hull
Cone<Integer>* SymmCone; // cone containing symmetrized data
Cone<Integer>* ProjCone; // cone containing projection to selected coordinates
// In cone based algorithms we use the following information
bool Grading_Is_Coordinate; // indicates that the grading or dehomogenization is a coordinate
key_t GradingCoordinate; // namely this one
OurPolynomialSystem<Integer> PolynomialEquations;
OurPolynomialSystem<Integer> PolynomialInequalities;
void compose_basis_change(const Sublattice_Representation<Integer>& SR); // composes SR
// main input processing
void process_multi_input(const InputMap<Integer>& multi_input_data);
void process_multi_input_inner(InputMap<Integer>& multi_input_data);
void process_multi_input(const InputMap<mpq_class>& multi_input_data);
void process_multi_input(const InputMap<nmz_float>& multi_input_data);
void prepare_input_lattice_ideal(InputMap<Integer>& multi_input_data);
void prepare_input_constraints(const InputMap<Integer>& multi_input_data);
void find_lower_and_upper_bounds();
void prepare_input_generators(InputMap<Integer>& multi_input_data,
Matrix<Integer>& LatticeGenerators);
template <typename InputNumber>
void homogenize_input(InputMap<InputNumber>& multi_input_data);
void check_precomputed_support_hyperplanes();
bool check_lattice_restrictions_on_generators(bool& cone_sat_cong);
void remove_superfluous_inequalities();
void remove_superfluous_equations();
void remove_superfluous_congruences();
void convert_lattice_generators_to_constraints(Matrix<Integer>& LatticeGenerators);
// void convert_equations_to_inequalties();
// void check_gens_vs_reference(); // to make sure that newly computed generators agree with the previously computed
void setGrading(const vector<Integer>& lf, bool compute_grading_denom = false);
void setWeights();
void setDehomogenization(const vector<Integer>& lf);
void checkGrading(bool compute_grading_denom);
void checkDehomogenization();
void check_vanishing_of_grading_and_dehom();
void process_lattice_data(const Matrix<Integer>& LatticeGenerators, Matrix<Integer>& Congruences, Matrix<Integer>& Equations, const ConeProperties& ToCompute);
ConeProperties monoid_compute(ConeProperties ToCompute);
void compute_monoid_basic_data(const Matrix<long long>& InputGensLL, ConeProperties& ToCompute);
ConeProperties lattice_ideal_compute(ConeProperties ToCompute);
ConeProperties lattice_ideal_compute_inner(ConeProperties ToCompute,
const Matrix<long long>& LatticeId,
const vector<long long>& ValuesGradingOnMonoid,
bool verbose);
void make_modular_gradings(ConeProperties& ToCompute);
void add_fusion_ass_and_grading_constraints(ConeProperties& ToCompute);
void try_symmetrization(ConeProperties& ToCompute);
void try_approximation_or_projection(ConeProperties& ToCompute);
void make_fusion_data(ConeProperties& ToCompute);
void make_induction_matrices(ConeProperties& ToCompute);
void try_Hilbert_Series_from_lattice_points(const ConeProperties& ToCompute);
void make_face_lattice(const ConeProperties& ToCompute);
void make_face_lattice_primal(const ConeProperties& ToCompute);
void make_face_lattice_dual(const ConeProperties& ToCompute);
void compute_singular_locus(const ConeProperties& ToCompute);
void compute_combinatorial_automorphisms(const ConeProperties& ToCompute);
void compute_euclidean_automorphisms(const ConeProperties& ToCompute);
void compute_ambient_automorphisms(const ConeProperties& ToCompute);
void compute_ambient_automorphisms_gen(const ConeProperties& ToCompute);
void compute_ambient_automorphisms_ineq(const ConeProperties& ToCompute);
void compute_input_automorphisms(const ConeProperties& ToCompute);
void compute_input_automorphisms_gen(const ConeProperties& ToCompute);
void compute_input_automorphisms_ineq(const ConeProperties& ToCompute);
AutomorphismGroup<Integer> Automs;
Matrix<Integer> prepare_input_type_2(const Matrix<Integer>& Input);
Matrix<Integer> prepare_input_type_3(const Matrix<Integer>& Input);
void insert_default_inequalities(Matrix<Integer>& Inequalities);
void compute_refined_triangulation(ConeProperties& ToCompute);
void compute_pulling_triangulation(ConeProperties& ToCompute);
template <typename IntegerFC>
void extract_automorphisms(AutomorphismGroup<IntegerFC>& AutomsComputed, const bool must_transform = false);
void prepare_automorphisms(const ConeProperties& ToCompute);
void prepare_refined_triangulation(const ConeProperties& ToCompute);
template <typename IntegerColl>
void compute_unimodular_triangulation(ConeProperties& ToCompute);
template <typename IntegerColl>
void compute_lattice_point_triangulation(ConeProperties& ToCompute);
template <typename IntegerColl>
void compute_all_generators_triangulation(ConeProperties& ToCompute);
template <typename IntegerColl>
void prepare_collection(ConeCollection<IntegerColl>& Coll);
template <typename IntegerColl>
void extract_data(ConeCollection<IntegerColl>& Coll);
// void extract_data(ConeCollection<Integer>& Coll);
/* only used by the constructors */
void initialize();
#ifdef NMZ_EXTENDED_TESTS
void set_extended_tests(ConeProperties& ToCompute);
#endif
void compute_full_cone(ConeProperties& ToCompute);
template <typename IntegerFC>
void compute_full_cone_inner(ConeProperties& ToCompute);
void pass_to_pointed_quotient();
/* compute the generators using the support hyperplanes */
void compute_generators(ConeProperties& ToCompute);
template <typename IntegerFC>
void compute_generators_inner(ConeProperties& ToCompute);
/* compute method for the dual_mode, used in compute(mode) */
void compute_dual(ConeProperties& ToCompute);
template <typename IntegerFC>
void compute_dual_inner(ConeProperties& ToCompute);
void set_implicit_dual_mode(ConeProperties& ToCompute);
/* extract the data from Full_Cone, this may remove data from Full_Cone!*/
template <typename IntegerFC>
void extract_data(Full_Cone<IntegerFC>& FC, ConeProperties& ToCompute);
template <typename IntegerFC>
void extract_data_dual(Full_Cone<IntegerFC>& FC, ConeProperties& ToCompute);
template <typename IntegerFC>
void extract_convex_hull_data(Full_Cone<IntegerFC>& FC, bool primal);
template <typename IntegerFC>
void push_convex_hull_data(Full_Cone<IntegerFC>& FC, bool primal);
void create_convex_hull_data();
template <typename IntegerFC>
void extract_supphyps(Full_Cone<IntegerFC>& FC, Matrix<Integer>& ret, bool dual = true);
void extract_supphyps(Full_Cone<Integer>& FC, Matrix<Integer>& ret, bool dual = true);
void norm_dehomogenization(size_t FC_dim);
void take_inequailities_if_posible(size_t FC_dim);
/* set OriginalMonoidGenerators */
void set_original_monoid_generators(const Matrix<Integer>&);
/* set ExtremeRays, in inhomogeneous case also VerticesOfPolyhedron and ExtremeRaysRecCone*/
void set_extreme_rays(const vector<bool>&);
/* If the Hilbert basis and the original monoid generators are computed,
* use them to check whether the original monoid is integrally closed. */
void check_integrally_closed(const ConeProperties& ToCompute);
void check_SerreR1(const ConeProperties& ToCompute);
void compute_unit_group_index();
/* try to find a witness for not integrally closed in the Hilbert basis */
void find_witness(const ConeProperties& ToCompute);
void check_Gorenstein(ConeProperties& ToCompute);
Integer compute_primary_multiplicity();
template <typename IntegerFC>
Integer compute_primary_multiplicity_inner();
void compute_integer_hull();
void compute_integer_hull_renf(const ConeProperties& IntHullCompute);
void complete_sublattice_comp(ConeProperties& ToCompute); // completes the sublattice computations
void complete_HilbertSeries_comp(ConeProperties& ToCompute);
void treat_polytope_as_being_hom_defined(ConeProperties ToCompute);
void compute_integral(ConeProperties& ToCompute);
void compute_virt_mult(ConeProperties& ToCompute);
void compute_weighted_Ehrhart(ConeProperties& ToCompute);
void compute_vertices_float(ConeProperties& ToCompute);
void compute_supp_hyps_float(ConeProperties& ToCompute);
void compute_extreme_rays_float(ConeProperties& ToCompute);
void make_StanleyDec_export(const ConeProperties& ToCompute);
void NotComputable(string message); // throws NotComputableException if default_mode = false
void set_parallelization();
void handle_dynamic(const ConeProperties& ToCompute);
template <typename IntegerFC>
void give_data_of_approximated_cone_to(Full_Cone<IntegerFC>& FC);
/* void project_and_lift(const ConeProperties& ToCompute,
Matrix<Integer>& Deg1,
const Matrix<Integer>& Gens,
const Matrix<Integer>& Supps,
const Matrix<Integer>& Congs,
const vector<Integer>& GradingOnPolytope,
const bool primitive,
const OurPolynomialSystem<Integer>& PolyEqs,
const OurPolynomialSystem<Integer>& PolyIneqs);*/
void compute_volume(ConeProperties& ToCompute);
void compute_rational_data(ConeProperties& ToCompute);
void try_multiplicity_by_descent(ConeProperties& ToCompute);
void try_multiplicity_of_para(ConeProperties& ToCompute);
void try_signed_dec(ConeProperties& ToCompute);
template <typename IntegerFC>
void try_signed_dec_inner(ConeProperties& ToCompute);
void compute_projection(ConeProperties& ToCompute);
void compute_projection_from_gens(const vector<Integer>& GradOrDehom, ConeProperties& ToComput);
// out of use: void compute_projection_from_constraints(const vector<Integer>& GradOrDehom, ConeProperties& ToCompute);
// in order to avoid getRank from inside compute
size_t get_rank_internal();
const Sublattice_Representation<Integer>& get_sublattice_internal();
void prepare_volume_computation(ConeProperties& ToCompute);
void compute_affine_dim_and_recession_rank();
void compute_recession_rank();
template <typename IntegerFC>
vector<vector<key_t> > extract_permutations(const vector<vector<key_t> >& FC_Permutations,
Matrix<IntegerFC>& FC_Vectors,
const Matrix<Integer>& ConeVectors,
bool primal,
vector<key_t>& Key,
const bool must_transform);
vector<vector<key_t> > extract_subsets(const vector<vector<key_t> >& FC_Subsets, size_t max_index, const vector<key_t>& Key);
};
// helpers
template <typename Integer>
Matrix<Integer> find_input_matrix(const InputMap<Integer>& multi_input_data,
const InputType type);
template <typename Integer>
void insert_zero_column(Matrix<Integer>& mat, size_t col);
template <typename Integer>
void insert_column(Matrix<Integer>& mat, size_t col, Integer entry);
// computes approximating lattice simplex using the A_n dissection of the unit cube
// q is a rational vector with the denominator in the FIRST component q[0]
template <typename Integer>
inline void approx_simplex(const vector<Integer>& q, std::list<vector<Integer> >& approx, const long approx_level) {
// ; << "approximate the point " << q;
long dim = q.size();
long l = approx_level;
// if (approx_level>q[0]) l=q[0]; // approximating on level q[0](=grading) is the best we can do
// TODO in this case, skip the rest and just approximate on q[0]
Matrix<Integer> quot = Matrix<Integer>(l, dim);
Matrix<Integer> remain = Matrix<Integer>(l, dim);
for (long j = 0; j < approx_level; j++) {
for (long i = 0; i < dim; ++i) {
quot[j][i] = (q[i] * (j + 1)) / q[0]; // write q[i]=quot*q[0]+remain
// quot[j][0] = 1;
remain[j][i] = (q[i] * (j + 1)) % q[0]; // with 0 <= remain < q[0]
if (remain[j][i] < 0) {
remain[j][i] += q[0];
quot[j][i]--;
}
}
v_make_prime(quot[j]);
remain[j][0] = q[0]; // helps to avoid special treatment of i=0
}
// choose best level
// cout << "this is the qout matrix" << endl;
// quot.pretty_print(cout);
// cout << "this is the remain matrix" << endl;
// remain.pretty_print(cout);
long best_level = l - 1;
vector<long> nr_zeros(l);
for (long j = l - 1; j >= 0; j--) {
for (long i = 0; i < dim; ++i) {
if (remain[j][i] == 0)
nr_zeros[j]++;
}
if (nr_zeros[j] > nr_zeros[best_level])
best_level = j;
}
// cout << "the best level is " << (best_level+1) << endl;
// now we proceed as before
vector<pair<Integer, size_t> > best_remain(dim);
for (long i = 0; i < dim; i++) {
best_remain[i].first = remain[best_level][i];
best_remain[i].second = i; // after sorting we must know where elements come from
}
sort(best_remain.begin(), best_remain.end());
reverse(best_remain.begin(), best_remain.end()); // we sort remain into descending order
/*for(long i=0;i<dim;++i){
cout << remain[i].first << " " << remain[i].second << endl;
} */
for (long i = 1; i < dim; ++i) {
if (best_remain[i].first < best_remain[i - 1].first) {
approx.push_back(quot[best_level]);
// cout << "add the point " << quot[best_level];
// cout << i << " + " << remain[i].first << " + " << quot << endl;
}
quot[best_level][best_remain[i].second]++;
}
if (best_remain[dim - 1].first > 0) {
// cout << "E " << quot << endl;
approx.push_back(quot[best_level]);
// cout << "add the point " << quot[best_level];
}
}
template <>
inline void approx_simplex(const vector<renf_elem_class>& q,
std::list<vector<renf_elem_class> >& approx,
const long approx_level) {
assert(false);
}
// Doubly templated functions
template <typename Integer>
template <typename T>
void Cone<Integer>::modifyCone(InputType input_type, const vector<vector<T> >& Input) {
// convert to a map
InputMap<T> multi_add_input;
multi_add_input[input_type] = Matrix<T>(Input);
modifyCone(multi_add_input);
}
//---------------------------------------------------------------------------
template <typename Integer>
template <typename T>
void Cone<Integer>::modifyCone(InputType input_type, const Matrix<T>& Input) {
// convert to a map
InputMap<T> multi_add_input;
multi_add_input[input_type] = Input;
modifyCone(multi_add_input);
}
template <typename Integer>
template <typename T>
void Cone<Integer>::modifyCone(const InputMapVV<T>& Input) {
InputMap<T> multi_add_input;
for(auto M = Input.begin(); M != Input.end(); ++M)
multi_add_input[M->first] = M->second;
modifyCone(multi_add_input);
}
#ifdef NMZ_EXTENDED_TESTS
void run_additional_tests_libnormaliz();
#endif
} // end namespace libnormaliz
#endif /* LIBNORMALIZ_CONE_H_ */
|