1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
/*
* Normaliz
* Copyright (C) 2007-2025 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#ifndef LIBNORMALIZ_FUSION_H_
#define LIBNORMALIZ_FUSION_H_
#include <vector>
#include <list>
#include <map>
#include <set>
#include <fstream>
#include "libnormaliz/general.h"
#include "libnormaliz/matrix.h"
#include "libnormaliz/input_type.h"
#include "libnormaliz/list_and_map_operations.h"
namespace libnormaliz {
using std::vector;
using std::map;
using std::list;
using std::set;
using std::ifstream;
using std::pair;
template <typename Integer>
class FusionComp;
class FusionBasic {
public:
bool commutative;
bool use_modular_grading;
bool candidate_given;
bool type_and_duality_set;
size_t fusion_rank;
vector<key_t> fusion_type;
vector<long> fusion_type_from_command;
string fusion_type_string;
vector<key_t> duality;
vector<key_t> subring_base_key;
vector<renf_elem_class> renf_fusion_type; // used to circumvent mising renf_class
double total_FPdim;
vector<vector<dynamic_bitset> > ModularGradings;
size_t group_order;
string group_type;
vector<vector<int> > GradMultTable;
vector<dynamic_bitset> chosen_modular_grading;
vector<key_t> fusion_image_type;
vector<key_t> fusion_image_duality;
string fusion_image_type_string;
vector<long long> fusion_image_ring;
Matrix<long long> fusion_ring_map;
bool fusion_image_commutative;
vector<vector<shortkey_t> > type_automs; // permutations of the basis vectors
bool type_automs_made;
// pair<bool, bool> read_data(const bool only_test);
FusionBasic();
template<typename Integer>
FusionBasic(const FusionComp<Integer>& FC);
template <typename Integer>
void read_data_from_input(InputMap<Integer>& input_data);
void data_from_renf_input(ifstream& cone_in);
void data_from_mpq_input(ifstream& cone_in);
void data_from_file_or_string(const string& our_fusion);
bool data_from_file(const string& file_name);
pair<bool, bool> data_from_string(const string& our_fusion, const bool return_on_failure);
void do_write_input_file(InputMap<mpq_class>& input) const;
template <typename Integer>
void make_gradings(const vector<Integer>& d);
vector<vector<dynamic_bitset> > make_part_classes(const vector<vector<dynamic_bitset> >& GradPartitions);
bool compatible_duality(const vector<dynamic_bitset >& parts);
void make_grad_mult_table();
void restrict_type_automs_to_grading();
template <typename Integer>
void set_renf_fusion_type(const vector<Integer>&);
void make_type_automs();
};
template <typename Integer>
class FusionComp {
template <typename, typename>
friend class ProjectAndLift;
public:
bool activated;
bool type_and_duality_set;
bool verbose;
bool commutative;
bool use_modular_grading;
bool check_simplicity;
bool select_simple;
bool candidate_given;
bool automorphisms_mde;
bool type_automs_made;
bool use_automorphisms;
bool write_mult_tables;
size_t nr_coordinates;
size_t fusion_rank;
vector<key_t> fusion_type; // only coincidence pattern
string fusion_type_string;
vector<key_t> duality;
vector<key_t> fusion_image_type;
vector<key_t> fusion_image_duality;
string fusion_image_type_string;
vector<Integer> fusion_image_ring;
Matrix<Integer> fusion_ring_map;
bool fusion_image_commutative;
vector<dynamic_bitset> chosen_modular_grading;
vector<vector<int> > GradMultTable;
set<vector<key_t> > ZeroCoords; // made 0 by grading
double total_FPdim;
void initialize();
void import_global_data();
vector<vector<vector<key_t> > > all_critical_coords_keys;
vector<vector<key_t> > coords_to_check_key;
vector<dynamic_bitset> coords_to_check_ind;
vector<vector<key_t> > all_ind_tuples;
vector<vector<key_t> > selected_ind_tuples; // the lex smallest in each FrobRec set
map<set<vector<key_t> >, key_t> CoordMap;
vector<vector<shortkey_t> > Automorphisms; // permutations of the coordinates
vector<vector<shortkey_t> > type_automs; // permutations of the basis vectors
vector<dynamic_bitset> Orbits;
vector<vector<Matrix<Integer> > > AllTables;
FusionComp();
FusionComp(const FusionBasic&);
void set_options(const ConeProperties& ToCompute, const bool verb);
//void read_data_from_file();
// coordinates
void make_CoordMap();
set<vector<key_t> > FrobRec(const vector<key_t>& ind_tuple);
set<vector<key_t> > FrobRec_6(const vector<key_t>& ind_tuple);
set<vector<key_t> > FrobRec_12(const vector<key_t>& ind_tuple);
key_t coord(set<vector<key_t> >& FR);
key_t coord(vector<key_t>& ind_tuple);
key_t coord_cone(vector<key_t>& ind_tuple);
void make_all_ind_tuples();
Integer value(const vector<Integer>& ring, vector<key_t>& ind_tuple);
// for simplicity check
vector<key_t> subring_base_key;
dynamic_bitset critical_coords(const vector<key_t>& base_key);
vector<vector<key_t> > all_base_keys;
void make_all_base_keys();
void prepare_simplicity_check();
Matrix<Integer> do_select_simple_inner(const Matrix<Integer>& LattPoints);
// Matrix<Integer> do_iso_classes_inner(const Matrix<Integer>& LattPoints);
Matrix<Integer> do_select_simple(const Matrix<Integer>& LattPoints) const;
// Matrix<Integer> do_iso_classes(const Matrix<Integer>& LattPoints) const;
vector<Integer> normal_form_of(const vector<Integer>& solution) const;
bool simplicity_check(const vector<key_t>& subring, const vector<Integer>& sol);
bool simplicity_check(const vector<vector<key_t> >& subrings, const vector<Integer>& sol);
bool automs_compatible(const vector<key_t>& cand) const;
// for automosphisms
void make_automorphisms();
vector<Integer> norrmal_form(const vector<Integer> lattice_point);
Matrix<Integer> make_linear_constraints(const vector<Integer>& d);
vector<Integer> make_linear_equation(const map<vector<key_t>, Integer>& components, const Integer& rhs);
Matrix<Integer> make_linear_constraints_partition(const vector<Integer>& d,
const vector<long>& card);
pair<Integer, vector<key_t> > term(const key_t& i, const key_t& j, const key_t& k);
set<map<vector<key_t>, Integer> > make_associativity_constraints();
// void set_global_fusion_data();
Matrix<Integer> make_add_constraints_for_grading();
void write_all_data_tables(const Matrix<Integer>& rings, ostream& table_out);
void tables_for_all_rings(const Matrix<Integer>& rings);
vector<Matrix<Integer> > make_all_data_tables(const vector<Integer>& ring);
Matrix<Integer> data_table(const vector<Integer>& ring, const size_t i);
Matrix<Integer> make_homomorphism_constraints();
};
// helpers
Matrix<long long> extract_latt_points_from_out(ifstream& in_out);
template <typename Integer>
Matrix<Integer> select_simple(const Matrix<Integer>& LattPoints, const ConeProperties& ToCompute, const bool verb);
template <typename Integer>
Matrix<Integer> fusion_iso_classes(const Matrix<Integer>& LattPoints, const ConeProperties& ToCompute, const bool verb);
//void select_simple_fusion_rings();
template <typename Integer>
void split_into_simple_and_nonsimple(const FusionBasic& basic, Matrix<Integer>& SimpleFusionRings, Matrix<Integer>& NonsimpleFusionRings, const Matrix<Integer>& FusionRings, bool verb);
template <typename Integer>
void make_full_input(const FusionBasic& FusionInput, InputMap<Integer>& input_data);
template <typename Integer>
void make_full_input_partition(InputMap<Integer>& input_data);
void make_input_from_fusion_data(const FusionBasic& FusionInput, InputMap<mpq_class>& input, const bool write_input_file);
void make_partition_input_from_fusion_data(const FusionBasic& FusionInput, InputMap<mpq_class>& input, const bool write_input_file);
vector<dynamic_bitset> make_all_subsets(const size_t card);
vector<vector<shortkey_t> > make_all_permutations(size_t n);
vector<vector<shortkey_t> > collect_coincidence_subset_keys(const vector<key_t>& type);
template <typename Integer>
vector<vector<shortkey_t> > make_all_permutations(const vector<key_t>& v, const vector<key_t>& duality,
const Matrix<Integer>& fusion_ring_map);
template <typename Integer>
vector<vector<shortkey_t> > make_all_permutations(const vector<key_t>& type, const vector<key_t>& duality,
const Matrix<Integer>& fusion_ring_map);
template <typename Integer>
void write_vec_vec_Mat(vector<vector<Matrix<Integer> > > AllTables, ostream& table_out);
// void remove_global_fusion_data();
// void post_process_fusion(const vector<string>& command_line_items);
template <typename Integer>
void string_to_type(vector<Integer>& our_type, const string& our_type_string){
istringstream type_stram(our_type_string);
for(size_t i = 0; i < our_type.size(); ++i){
type_stram >> our_type[i];
}
}
/*
#ifdef ENFNORMALIZ
inline void string_to_type(vector<renf_elem_class>& our_type, const string& our_type_string){
istringstream type_stram(our_type_string);
for(size_t i = 0; i < our_type.size(); ++i){
type_stram >> our_type[i];
}
}
#endif
*/
template <typename Integer>
vector<key_t> fusion_coincidence_pattern(const vector<Integer>& v);
template<typename Integer>
bool check_duality(vector<Integer> test_duality, const vector<Integer>& test_type){
if(test_duality[0] != 0 && test_duality[0] != -1)
return false;
test_duality[0] = 0;
for(Integer i = 0; i< test_duality.size(); ++i){
if(test_duality[i] < 0 || test_duality[i] >= test_duality.size())
return false;
if(test_duality[test_duality[i]] != i)
return false;
if(test_type[i] != test_type[test_duality[i]])
return false;
}
return true;
}
template <typename Integer>
void FusionBasic::set_renf_fusion_type(const vector<Integer>& full_type){
}
template <>
inline void FusionBasic::set_renf_fusion_type(const vector<renf_elem_class>& full_type){
renf_fusion_type = full_type;
}
// Note: the following routine must work for renf_elem_class
template <typename Integer>
void FusionBasic::read_data_from_input(InputMap<Integer>& input_data){
vector<Integer> full_type = input_data[Type::fusion_type][0];
set_renf_fusion_type<Integer>(full_type);
total_FPdim = 0;
for(size_t i = 0; i< full_type.size(); ++i){
double this_FPdim;
/* if(using_mpq_class<Integer>())
this_FPdim = mpq_to_nmz_float(full_type[i]);
else */
this_FPdim = convertTo_nmz_float<Integer>(full_type[i]);
total_FPdim += this_FPdim * this_FPdim;
}
// cout << "FULL " << full_type;
fusion_type = fusion_coincidence_pattern(full_type);
// cout << "COINC " << fusion_type_coinc_from_input;
fusion_rank = full_type.size();
stringstream for_type;
for_type << full_type;
fusion_type_string = for_type.str();
commutative = false;
if(contains(input_data, Type::fusion_duality)){
if(input_data[Type::fusion_duality].nr_of_rows() == 0)
throw BadInputException("Empty fusion duality");
vector<Integer> prel_duality = input_data[Type::fusion_duality][0];
// std::cout << "PREL " << prel_duality; //" -- " << prel_duality.size() << " -- " << fusion_rank_from_input << endl;
if(prel_duality.size() != fusion_rank || (prel_duality[0] != 0 && prel_duality[0] != -1 && prel_duality[0] != -2 && prel_duality[0] != -3))
throw BadInputException("Fusion duality corrupt");
if(prel_duality[0] == -1 || prel_duality[0] == -3) {
commutative = true;
if(prel_duality[0] == -3)
use_modular_grading = true;
prel_duality[0] = 0;
}
if(prel_duality[0] == -2) {
commutative = true;
use_modular_grading = true;
prel_duality[0] = 0;
}
convert_vector_via_string(duality, prel_duality);
for(size_t i = 0; i < fusion_rank; ++i){
if(duality[i] > fusion_rank)
throw BadInputException("Fusion duality out of range");
}
if(key_to_bitset(duality, fusion_rank).count() != fusion_rank)
throw BadInputException("Fusion duality has repeated entries");
if(!check_duality<key_t>(duality, fusion_type))
throw BadInputException("Fusion duality does not fit type");
}
else{
duality = identity_key(fusion_rank);
}
if(contains(input_data, Type::candidate_subring)){
dynamic_bitset cand_indicator(input_data[Type::candidate_subring][0].size());
if(cand_indicator.size() != fusion_rank)
throw BadInputException("Candidate subring has wrong size");
for(size_t i = 0; i < cand_indicator.size(); ++i){
if(input_data[Type::candidate_subring][0][i] == 0){
continue;
}
if(input_data[Type::candidate_subring][0][i] == 1){
cand_indicator[i] = 1;
continue;
}
throw BadInputException("Candidate subring not 0-1");
}
if(!cand_indicator[0] || cand_indicator.count() <=1 || cand_indicator.count() == full_type.size())
throw BadInputException("Candidate subring corrupt");
for(size_t i = 0; i < cand_indicator.size(); ++i){
if(cand_indicator[i] && !cand_indicator[duality[i]])
throw BadInputException("Candidate subring not closed iunder duality");
}
subring_base_key = bitset_to_key(cand_indicator);
}
type_and_duality_set = true;
bool has_fusion_image = false;
if(contains(input_data, Type::fusion_image_ring)) {
if(!contains(input_data, Type::fusion_image_type)
|| !contains(input_data, Type::fusion_ring_map) )
throw BadInputException("Incomplete fusion image data");
has_fusion_image = true;
}
if(!has_fusion_image)
return;
convert_vector_via_string(fusion_image_ring,input_data[Type::fusion_image_ring][0]);
convert_matrix_via_string(fusion_ring_map, input_data[Type::fusion_ring_map]);
if(!contains(input_data, Type::fusion_image_duality)){ // take the default
input_data[Type::fusion_image_duality].resize(1);
input_data[Type::fusion_image_duality][0].resize(fusion_ring_map.nr_of_columns());
for(long i = 0; i < fusion_ring_map.nr_of_columns(); ++i)
input_data[Type::fusion_image_duality][0][i] = i;
}
InputMap<Integer> Help;
Help[Type::fusion_type]= input_data[Type::fusion_image_type][0];
Help[Type::fusion_duality] = input_data[Type::fusion_image_duality][0];
FusionBasic HB;
HB.read_data_from_input(Help);
fusion_image_type = HB.fusion_type;
fusion_image_type_string = HB.fusion_type_string;
fusion_image_duality = HB.duality;
fusion_image_commutative = HB.commutative;
if(fusion_image_type.size() != fusion_ring_map.nr_of_columns()
|| fusion_image_duality.size() != fusion_ring_map.nr_of_columns()
|| fusion_type.size() != fusion_ring_map.nr_of_rows())
throw BadInputException("Formats of image data don't fit");
for(size_t i = 0; i < fusion_ring_map.nr_of_rows(); ++i){
for(size_t j = 0; j < fusion_ring_map.nr_of_columns(); ++j){
if(fusion_ring_map[i][fusion_image_duality[j]] != fusion_ring_map[duality[i]][j])
throw BadInputException("Fusion ring map not compatible with dualities:" + to_string(i) + "* = "
+to_string(duality[i]) + " not allowed");
}
}
vector<Integer> test_vector = input_data[Type::fusion_ring_map].MxV(input_data[Type::fusion_image_type][0]);
if(test_vector != input_data[Type::fusion_type][0])
throw BadInputException("Fusion types do not fit fusion ring map");
}
template <typename Integer>
void make_full_input(FusionBasic& FusionInput, InputMap<Integer>& input_data) {
FusionInput.read_data_from_input(input_data);
FusionComp<Integer> OurFusion(FusionInput);
vector<Integer> full_type = input_data[Type::fusion_type][0];
// The following condition is true if we make an integer cone for
// the computation of fusion rings from a renf_elem_class cone
if(contains(input_data, Type::inhom_inequalities))
return;
Matrix<Integer> Equ = OurFusion.make_linear_constraints(full_type);
// FusionInput.type_aiutoms_mde = OurFusion.automorphisms_mde;
// swap(FusionInput.Automorphisms,OurFusion.Automorphisms);
// swap(FusionInput.type_automs, OurFusion.type_automs);
Matrix<Integer> InEqu = Equ;
Integer MinusOne = -1;
Equ.scalar_multiplication(MinusOne);
InEqu.append(Equ);
/* input_data.erase(Type::fusion_type);
input_data.erase(Type::fusion_duality);
input_data.erase(Type::candidate_subring);*/
input_data.clear();
input_data[Type::inhom_inequalities] = InEqu;
input_data[Type::inequalities] = Matrix<Integer>(InEqu.nr_of_columns()-1);
}
template <typename Integer>
inline bool is_divisible(Integer& part_FPdim,const Integer& full_FPdim, const size_t&group_order){
long group_long = group_order; // to avoid problems with MS Windows gmpxx
if(full_FPdim % group_long != 0)
return false;
part_FPdim = full_FPdim / group_long;
return true;
}
#ifdef ENFNORMALIZ
template <>
inline bool is_divisible(renf_elem_class& part_FPdim,const renf_elem_class& full_FPdim, const size_t&group_order){
part_FPdim = full_FPdim / group_order;
return true;
}
#endif
template <typename Integer>
vector<vector<dynamic_bitset> > make_FPdim_partitions(const vector<Integer>& d, const Integer& part_FPdim, const size_t& group_order,
vector<dynamic_bitset>& AllSubsets);
template <typename Integer>
void FusionBasic::make_gradings(const vector<Integer>& d){
group_order = 0;
for(auto& t: d){
if(t == 1)
group_order++;
if(t > 1)
break;
}
for(size_t i = group_order; i < d.size(); ++i){
if(d[i] == 1)
throw BadInputException("Fusion type has 1 at wrong place");
}
if(group_order > 4)
throw BadInputException("Group order > 4 not allowed for modular gradings");
if(group_order == 1)
throw BadInputException("Modular grading asked for perfect fusion rings");
if(group_order == 2)
group_type = "C2";
if(group_order == 3){
group_type = "C3";
if(duality[1] != 2)
throw BadInputException("Group " + group_type + " has wrong duality");
}
if(group_order == 4){
if(duality[1] == 1 && duality[2] == 2)
group_type = "C2xC2";
else
group_type = "C4";
}
if(verbose){
verboseOutput() << "Modular grading group is " << group_type << endl;
}
Integer full_FPdim = 0;
for(auto& t: d)
full_FPdim += t*t;
Integer part_FPdim;
if(!is_divisible(part_FPdim,full_FPdim, group_order))
throw BadInputException("Fusion type cannot be partitioned");
vector<dynamic_bitset> AllSubsets = make_all_subsets(fusion_rank);
vector<vector<dynamic_bitset> > FPdimParts = make_FPdim_partitions(d, part_FPdim, group_order, AllSubsets);
vector< vector<dynamic_bitset> > GradPartitions;
for(auto& P: FPdimParts){
if(compatible_duality(P)){
GradPartitions.push_back(P);
continue;
}
}
// identify partitions that are conjugate under automorphisms
make_type_automs();
ModularGradings = make_part_classes(GradPartitions);
if(verbose){
verboseOutput() << ModularGradings.size() << " grading partitions found:" << endl;
size_t i = 0;
for(auto& P: ModularGradings){
i++;
verboseOutput() << "Grading " << i << endl;
for(auto& p: P)
verboseOutput() << bitset_to_key(p);
}
}
}
} // end namespace libnormaliz
#endif /* FUSION_H_ */
|