1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
/*
* Normaliz
* Copyright (C) 2007-2022 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#ifndef LIBNORMALIZ_INDUCTION_H_
#define LIBNORMALIZ_INDUCTION_H_
#include <vector>
#include <list>
#include <utility>
#include "libnormaliz/general.h"
#include "libnormaliz/matrix.h"
#include "libnormaliz/dynamic_bitset.h"
#include "libnormaliz/nmz_polynomial.h"
#include "libnormaliz/fusion.h"
namespace libnormaliz {
using std::vector;
template <typename Integer>
class Induction {
public:
bool verbose;
bool mult_of_ev_ok;
bool commutative;
bool near_integral;
Matrix<Integer> F;
size_t fusion_rank;
vector<Integer> fusion_type; // to be made from fusion_type_string
string fusion_type_string;
vector<key_t> duality;
vector<vector<key_t > > type_automs;
vector<Integer> ImageRing;
Integer FPdim;
long long FPdim_S; // for near integral fusion rings
Integer FPSquare;
FusionBasic FusBasic;
FusionComp<Integer> FusComp;
vector<Matrix<Integer> > Tables;
vector<Integer> divisors;
vector<Integer> candidates_m_i;
// In the next line the first size_t is the multiplicity, the second the n_i
map<Integer,pair<size_t, size_t> > EV_mult_n_i;
Matrix<Integer> EVMat;
// for the near-inegral case with minimal polynomial a^2 - kkk*a - FPdim_S
Integer kkk, d_plus, d_minus; // zeroes d_plus > 0 and d_minus < 0
// first: the m_i for i < s = number of irreducible presentations
// second: the dimensions of the irreducibles
vector<pair<Integer, long long> > low_m;
vector<Matrix<Integer> > InductionMatrices;
vector<Matrix<long long> > LowParts;
size_t iupper_bound;
size_t nr_rows_low_part; // = number of irreducibles
Integer N(const key_t i, const key_t j, const key_t k);
// map< Integer, Matrix<Integer > > LowRepresentations; // F_ij for i <= r (counting from 1), F_i1 = 1
Matrix<long long> HighRepresentations; // F_ij for i > 1 (counting from 1), F_i1 = 0
Matrix<long long> HighRepsHere;
Matrix<Integer> Bounds_Int;
Matrix<long long> Bounds;
vector<string> BoundsPolys; // Bounds as polynomials
Induction();
Induction(const vector<Integer>& fus_type, const vector<key_t>& fus_duality , const vector<Integer>& FusRing, bool verb);
void test_commutativity();
void codegrees_and_mult_commutative();
void codegrees_and_mult_noncommutative();
void codegrees_and_mult_near_integral();
// void start_low_parts();
void make_divisors();
void make_divisors_near_integral();
void make_candidates_m_i();
void make_low_m_i();
void build_low_parts();
void solve_system_low_parts();
void from_low_to_full();
void augment_induction_matrices();
void high_parts_recursive(const Matrix<long long>& Remaining, size_t p, long start, const Matrix<long long>& Ind_so_far);
bool column_normal(const Matrix<long long>& mat) const;
Integer conjugate(const Integer& val);
//bool is_algebraic_integer(const Integer& val);
// bool is_algebraic_integer_old(const Integer& val);
Matrix<Integer> make_allowed_transpositions(Matrix<Integer> FusionMap);
void compute();
//void extend_matrix(Matrix<Integer> matrix_so_far, key_t rep_index, Matrix<Integer> bounds_so_far, Integer FPdim_so_far);
}; // class Induction end
template<typename Integer>
Matrix<long long> SplitRepresentation(Integer val, vector<Integer> summands);
} // namespace
#endif /* LIBNORMALIZ_INDUCTION_H */
|