File: rees_grading.ref

package info (click to toggle)
normaliz 3.11.1%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 41,376 kB
  • sloc: cpp: 48,779; makefile: 2,266; sh: 1
file content (126 lines) | stat: -rw-r--r-- 2,415 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
17 Hilbert basis elements
6 lattice points in polytope (Hilbert basis elements of degree 1)
10 generators of integral closure of the ideal
16 extreme rays
24 support hyperplanes

embedding dimension = 7
rank = 7 (maximal)
external index = 1
internal index = 1
original monoid is not integrally closed in chosen lattice

size of triangulation   = 69
resulting sum of |det|s = 72

grading:
1 1 1 1 1 1 0 

degrees of extreme rays:
1:6  3:10  

multiplicity = 322/243
multiplicity (float) = 1.32510288066

Hilbert series:
1 5 15 39 75 117 166 170 153 119 64 30 11 1 
denominator with 7 factors:
1:1  3:6  

degree of Hilbert Series as rational function = -6

Hilbert series with cyclotomic denominator:
-1 -5 -15 -39 -75 -117 -166 -170 -153 -119 -64 -30 -11 -1 
cyclotomic denominator:
1:7  3:6  

Hilbert quasi-polynomial of period 3:
 0:   87480 174960 143694 64395 17145 2565 161
 1:  104480 189366 146919 64370 17040 2544 161
 2:   79280 171012 139674 62305 16725 2523 161
with common denominator = 87480

ideal is not primary to the ideal generated by the indeterminates

rank of class group = 17
class group is free

***********************************************************************

6 lattice points in polytope (Hilbert basis elements of degree 1):
 0 0 0 0 0 1 0
 0 0 0 0 1 0 0
 0 0 0 1 0 0 0
 0 0 1 0 0 0 0
 0 1 0 0 0 0 0
 1 0 0 0 0 0 0

11 further Hilbert basis elements of higher degree:
 0 0 1 1 0 1 1
 0 0 1 1 1 0 1
 0 1 0 0 1 1 1
 0 1 0 1 1 0 1
 0 1 1 0 0 1 1
 1 0 0 0 1 1 1
 1 0 0 1 0 1 1
 1 0 1 0 1 0 1
 1 1 0 1 0 0 1
 1 1 1 0 0 0 1
 1 1 1 1 1 1 2

10 generators of integral closure of the ideal:
 0 0 1 1 0 1
 0 0 1 1 1 0
 0 1 0 0 1 1
 0 1 0 1 1 0
 0 1 1 0 0 1
 1 0 0 0 1 1
 1 0 0 1 0 1
 1 0 1 0 1 0
 1 1 0 1 0 0
 1 1 1 0 0 0

16 extreme rays:
 0 0 0 0 0 1 0
 0 0 0 0 1 0 0
 0 0 0 1 0 0 0
 0 0 1 0 0 0 0
 0 1 0 0 0 0 0
 1 0 0 0 0 0 0
 0 0 1 1 0 1 1
 0 0 1 1 1 0 1
 0 1 0 0 1 1 1
 0 1 0 1 1 0 1
 0 1 1 0 0 1 1
 1 0 0 0 1 1 1
 1 0 0 1 0 1 1
 1 0 1 0 1 0 1
 1 1 0 1 0 0 1
 1 1 1 0 0 0 1

24 support hyperplanes:
 0 0 0 0 0 0  1
 0 0 0 0 0 1  0
 0 0 0 0 1 0  0
 0 0 0 1 0 0  0
 0 0 1 0 0 0  0
 0 0 1 1 0 1 -1
 0 0 1 1 1 0 -1
 0 1 0 0 0 0  0
 0 1 0 0 1 1 -1
 0 1 0 1 1 0 -1
 0 1 1 0 0 1 -1
 0 1 1 1 1 1 -2
 1 0 0 0 0 0  0
 1 0 0 0 1 1 -1
 1 0 0 1 0 1 -1
 1 0 1 0 1 0 -1
 1 0 1 1 1 1 -2
 1 1 0 1 0 0 -1
 1 1 0 1 1 1 -2
 1 1 1 0 0 0 -1
 1 1 1 0 1 1 -2
 1 1 1 1 0 1 -2
 1 1 1 1 1 0 -2
 1 1 1 1 1 1 -3