File: simple_grading.ref

package info (click to toggle)
normaliz 3.11.1%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 41,376 kB
  • sloc: cpp: 48,779; makefile: 2,266; sh: 1
file content (64 lines) | stat: -rw-r--r-- 1,108 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
3 Hilbert basis elements
0 lattice points in polytope (Hilbert basis elements of degree 1)
2 extreme rays
2 support hyperplanes

embedding dimension = 2
rank = 2 (maximal)
external index = 1
internal index = 1
original monoid is integrally closed in chosen lattice

size of triangulation   = 2
resulting sum of |det|s = 2

grading:
1 1 

degrees of extreme rays:
3:2  

multiplicity = 1/3
multiplicity (float) = 0.333333333333

Hilbert series:
1 -1 1 
denominator with 2 factors:
1:1  3:1  

degree of Hilbert Series as rational function = -2

The numerator of the Hilbert series is symmetric.

Hilbert series with cyclotomic denominator:
1 -1 1 
cyclotomic denominator:
1:2  3:1  

Hilbert quasi-polynomial of period 3:
 0:   3 1
 1:  -1 1
 2:   1 1
with common denominator = 3

rank of class group = 0
finite cyclic summands:
3:1  

***********************************************************************

0 lattice points in polytope (Hilbert basis elements of degree 1):

3 further Hilbert basis elements of higher degree:
 1 1
 1 2
 2 1

2 extreme rays:
 1 2
 2 1

2 support hyperplanes:
 -1  2
  2 -1