File: A7.ref

package info (click to toggle)
normaliz 3.11.1%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 41,376 kB
  • sloc: cpp: 48,779; makefile: 2,266; sh: 1
file content (32 lines) | stat: -rw-r--r-- 4,328 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
16 lattice points in polytope (module generators) satisfying polynomial constraints
0 Hilbert basis elements of recession monoid

embedding dimension = 113
rank of recession monoid = 0 (polyhedron is polytope)

dehomogenization:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 


***********************************************************************

16 lattice points in polytope (module generators) satisfying polynomial constraints:
 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 2 0 1 1 0 1 0 1 0 1 1 1 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 1 2 0 3 2 0 2 1 3 1 2 3 2 4 7 3 0 3 2 2 1 3 3 4 7 1 2 3 2 5 7 4 6 10 17 1
 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 2 1 1 2 2 1 1 2 3 1 2 3 2 4 7 2 1 2 2 2 1 3 3 4 7 1 2 3 2 5 7 4 6 10 17 1
 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 2 0 2 0 0 1 0 1 0 1 1 2 1 4 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 3 1 0 1 1 1 2 1 1 1 1 1 2 1 0 1 1 1 4 1 3 2 2 4 4 3 3 0 5 0 0 2 2 2 1 2 3 4 2 9 3 0 3 2 2 1 3 4 3 8 1 2 3 2 5 7 6 4 12 15 1
 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 2 0 2 0 0 1 0 1 0 1 1 2 1 4 1 2 1 1 1 1 0 1 1 2 1 0 1 0 0 1 0 3 1 0 1 1 1 2 2 1 1 2 1 1 1 0 1 1 1 4 0 3 2 1 4 5 3 3 0 5 0 0 2 2 2 1 2 3 4 2 9 3 0 3 2 2 1 3 4 3 8 2 2 2 2 5 8 6 4 12 14 1
 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 2 1 0 1 0 0 1 1 0 1 1 1 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 3 0 0 3 2 2 2 1 3 2 1 3 3 4 7 1 0 3 2 1 2 3 2 4 7 1 2 3 2 5 7 4 6 10 17 1
 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 2 1 0 1 1 0 2 0 0 1 1 2 1 4 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 0 1 0 3 1 1 1 1 1 2 1 1 0 1 1 4 1 2 3 2 4 4 3 0 0 3 2 3 2 2 2 2 1 3 4 3 8 3 0 5 0 1 2 3 4 2 9 1 2 3 2 5 7 6 4 12 15 1
 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 2 1 0 1 1 0 2 0 0 1 1 2 1 4 1 2 1 1 1 1 0 1 1 2 1 0 1 1 0 1 1 2 1 0 0 1 0 3 2 1 1 2 1 1 1 1 0 1 1 4 0 2 3 1 4 5 3 0 0 3 2 3 2 2 2 2 1 3 4 3 8 3 0 5 0 1 2 3 4 2 9 2 2 2 2 5 8 6 4 12 14 1
 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 2 1 1 2 2 1 1 2 3 2 1 3 3 4 7 2 1 2 2 1 2 3 2 4 7 1 2 3 2 5 7 4 6 10 17 1
 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 2 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 2 1 1 2 2 1 1 2 3 1 2 3 2 4 7 2 1 2 2 2 1 3 3 4 7 2 1 3 3 5 7 3 6 10 17 1
 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 2 1 1 0 1 0 1 3 1 4 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 0 1 0 3 1 1 1 1 1 2 1 1 0 1 1 4 1 2 3 2 4 4 2 1 1 2 2 2 1 3 2 1 2 3 3 3 8 4 1 4 0 2 1 3 5 2 9 2 1 3 3 5 7 5 4 12 15 1
 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 2 0 0 1 1 2 1 0 1 1 0 1 2 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 2 1 2 1 2 1 0 3 3 1 2 3 2 4 7 2 2 1 2 2 1 3 3 4 7 2 1 3 3 5 7 3 6 10 17 1
 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 2 0 0 1 1 3 1 1 0 1 0 1 3 1 4 0 1 0 1 0 0 2 0 1 1 0 2 0 1 1 0 2 2 1 1 0 1 1 2 1 0 1 1 0 3 0 2 1 0 3 3 2 2 2 3 3 4 1 1 2 0 3 0 1 2 3 0 3 3 0 5 6 6 2 3 0 2 2 2 3 3 9 2 0 4 5 4 7 0 7 10 17 1
 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 2 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 2 1 1 2 2 1 1 2 3 2 1 3 3 4 7 2 1 2 2 1 2 3 2 4 7 2 1 3 3 5 7 3 6 10 17 1
 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 2 0 1 0 1 2 0 1 1 1 0 1 2 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 2 1 2 1 2 1 0 3 3 2 1 3 3 4 7 2 2 1 2 1 2 3 2 4 7 2 1 3 3 5 7 3 6 10 17 1
 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 2 1 1 1 0 1 0 1 1 1 0 1 3 1 4 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 3 1 0 1 1 1 2 1 1 1 1 1 2 1 0 1 1 1 4 1 3 2 2 4 4 4 2 1 4 0 1 1 3 2 2 1 3 5 2 9 2 1 2 2 1 2 3 3 3 8 2 1 3 3 5 7 5 4 12 15 1
 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 3 0 1 1 0 2 0 1 1 1 0 1 3 1 4 0 1 1 0 0 0 2 1 0 1 0 2 1 0 1 1 1 2 0 1 1 0 2 2 1 1 0 1 0 3 0 1 2 0 3 3 2 2 2 3 3 4 6 0 2 3 0 1 1 2 3 2 2 2 3 3 9 1 2 0 3 0 3 3 0 5 6 2 0 4 5 4 7 0 7 10 17 1

0 Hilbert basis elements of recession monoid: