1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
|
16 lattice points in polytope (module generators) satisfying polynomial constraints
0 Hilbert basis elements of recession monoid
embedding dimension = 113
rank of recession monoid = 0 (polyhedron is polytope)
dehomogenization:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
***********************************************************************
16 lattice points in polytope (module generators) satisfying polynomial constraints:
0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 2 0 1 1 0 1 0 1 0 1 1 1 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 1 2 0 3 2 0 2 1 3 1 2 3 2 4 7 3 0 3 2 2 1 3 3 4 7 1 2 3 2 5 7 4 6 10 17 1
0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 2 1 1 2 2 1 1 2 3 1 2 3 2 4 7 2 1 2 2 2 1 3 3 4 7 1 2 3 2 5 7 4 6 10 17 1
0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 2 0 2 0 0 1 0 1 0 1 1 2 1 4 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 3 1 0 1 1 1 2 1 1 1 1 1 2 1 0 1 1 1 4 1 3 2 2 4 4 3 3 0 5 0 0 2 2 2 1 2 3 4 2 9 3 0 3 2 2 1 3 4 3 8 1 2 3 2 5 7 6 4 12 15 1
0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 2 0 2 0 0 1 0 1 0 1 1 2 1 4 1 2 1 1 1 1 0 1 1 2 1 0 1 0 0 1 0 3 1 0 1 1 1 2 2 1 1 2 1 1 1 0 1 1 1 4 0 3 2 1 4 5 3 3 0 5 0 0 2 2 2 1 2 3 4 2 9 3 0 3 2 2 1 3 4 3 8 2 2 2 2 5 8 6 4 12 14 1
0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 2 1 0 1 0 0 1 1 0 1 1 1 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 3 0 0 3 2 2 2 1 3 2 1 3 3 4 7 1 0 3 2 1 2 3 2 4 7 1 2 3 2 5 7 4 6 10 17 1
0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 2 1 0 1 1 0 2 0 0 1 1 2 1 4 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 0 1 0 3 1 1 1 1 1 2 1 1 0 1 1 4 1 2 3 2 4 4 3 0 0 3 2 3 2 2 2 2 1 3 4 3 8 3 0 5 0 1 2 3 4 2 9 1 2 3 2 5 7 6 4 12 15 1
0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 2 1 0 1 1 0 2 0 0 1 1 2 1 4 1 2 1 1 1 1 0 1 1 2 1 0 1 1 0 1 1 2 1 0 0 1 0 3 2 1 1 2 1 1 1 1 0 1 1 4 0 2 3 1 4 5 3 0 0 3 2 3 2 2 2 2 1 3 4 3 8 3 0 5 0 1 2 3 4 2 9 2 2 2 2 5 8 6 4 12 14 1
0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 2 1 1 2 2 1 1 2 3 2 1 3 3 4 7 2 1 2 2 1 2 3 2 4 7 1 2 3 2 5 7 4 6 10 17 1
1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 2 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 2 1 1 2 2 1 1 2 3 1 2 3 2 4 7 2 1 2 2 2 1 3 3 4 7 2 1 3 3 5 7 3 6 10 17 1
1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 2 1 1 0 1 0 1 3 1 4 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 0 1 0 3 1 1 1 1 1 2 1 1 0 1 1 4 1 2 3 2 4 4 2 1 1 2 2 2 1 3 2 1 2 3 3 3 8 4 1 4 0 2 1 3 5 2 9 2 1 3 3 5 7 5 4 12 15 1
1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 2 0 0 1 1 2 1 0 1 1 0 1 2 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 2 1 2 1 2 1 0 3 3 1 2 3 2 4 7 2 2 1 2 2 1 3 3 4 7 2 1 3 3 5 7 3 6 10 17 1
1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 2 0 0 1 1 3 1 1 0 1 0 1 3 1 4 0 1 0 1 0 0 2 0 1 1 0 2 0 1 1 0 2 2 1 1 0 1 1 2 1 0 1 1 0 3 0 2 1 0 3 3 2 2 2 3 3 4 1 1 2 0 3 0 1 2 3 0 3 3 0 5 6 6 2 3 0 2 2 2 3 3 9 2 0 4 5 4 7 0 7 10 17 1
1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 2 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 2 1 1 2 2 1 1 2 3 2 1 3 3 4 7 2 1 2 2 1 2 3 2 4 7 2 1 3 3 5 7 3 6 10 17 1
1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 2 0 1 0 1 2 0 1 1 1 0 1 2 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 2 1 0 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 3 1 2 2 2 3 5 2 1 2 1 2 1 0 3 3 2 1 3 3 4 7 2 2 1 2 1 2 3 2 4 7 2 1 3 3 5 7 3 6 10 17 1
1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 2 1 1 1 0 1 0 1 1 1 0 1 3 1 4 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 3 1 0 1 1 1 2 1 1 1 1 1 2 1 0 1 1 1 4 1 3 2 2 4 4 4 2 1 4 0 1 1 3 2 2 1 3 5 2 9 2 1 2 2 1 2 3 3 3 8 2 1 3 3 5 7 5 4 12 15 1
1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 3 0 1 1 0 2 0 1 1 1 0 1 3 1 4 0 1 1 0 0 0 2 1 0 1 0 2 1 0 1 1 1 2 0 1 1 0 2 2 1 1 0 1 0 3 0 1 2 0 3 3 2 2 2 3 3 4 6 0 2 3 0 1 1 2 3 2 2 2 3 3 9 1 2 0 3 0 3 3 0 5 6 2 0 4 5 4 7 0 7 10 17 1
0 Hilbert basis elements of recession monoid:
|