1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
1 lattice points in polytope (module generators) satisfying polynomial constraints
0 Hilbert basis elements of recession monoid
embedding dimension = 148
rank of recession monoid = 0 (polyhedron is polytope)
dehomogenization:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
***********************************************************************
1 lattice points in polytope (module generators) satisfying polynomial constraints:
1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 3 2 3 3 3 4 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 2 3 3 0 1 1 1 3 2 3 1 1 1 1 3 3 4 1 0 1 0 1 1 1 1 1 1 1 1 1 1 4 2 3 3 4 4 0 1 1 1 2 1 2 2 1 4 4 5 2 4 4 5 2 5 5 6 12 10 13 12 14 17 11 14 17 21 1
0 Hilbert basis elements of recession monoid:
|