File: PyNormaliz.py

package info (click to toggle)
normaliz 3.6.3%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 25,880 kB
  • sloc: cpp: 37,346; makefile: 1,611; python: 596
file content (581 lines) | stat: -rw-r--r-- 24,116 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# encoding=utf8

import PyNormaliz_cpp
from PyNormaliz_cpp import *


class Cone:

    def __init__(self, *args, **kwargs):
        input_list = [k for k in args]
        for i in kwargs:
            current_input = kwargs[i]
            if type(current_input) == list and len(current_input) > 0 and type(current_input[0]) != list:
                kwargs[i] = [current_input]
            elif type(current_input) == bool and current_input == True:
                kwargs[i] = current_input = [[]]
            elif type(current_input) == bool and current_input == False:
                kwargs.pop(i)
        self.cone = PyNormaliz_cpp.NmzCone(input_list,**kwargs)

    def __process_keyword_args(self, keywords):
        input_list = []
        for i in keywords:
            if keywords[i] == True:
                input_list.append(i)
        return input_list

    def print_properties(self):
        props = PyNormaliz_cpp.NmzListConeProperties()
        goals = props[0]
        for x in goals:
            if (PyNormaliz_cpp.NmzIsComputed(self.cone, x)):
                print(x + ":")
                print(PyNormaliz_cpp.NmzResult(self.cone, x))
                print("\n")

    def __str__(self):
        return "<Normaliz Cone>"

    def __repr__(self):
        return "<Normaliz Cone>"

    def Compute(self, *args):
        return PyNormaliz_cpp.NmzCompute(self.cone, args)

    def setVerbose(self, verbose=True):
        return NmzSetVerbose(self.cone, verbose)

    # This one is not like the others!
    def IntegerHull(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("IntegerHull")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        new_inner_cone = PyNormaliz_cpp.NmzResult(self.cone, "IntegerHull")
        return_cone = Cone.__new__(Cone)
        return_cone.cone = new_inner_cone
        return return_cone

    def ProjectCone(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("ProjectCone")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        new_inner_cone = PyNormaliz_cpp.NmzResult(self.cone, "ProjectCone")
        return_cone = Cone.__new__(Cone)
        return_cone.cone = new_inner_cone
        return return_cone

    def EuclideanVolume(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Volume")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzGetEuclideanVolume(self.cone)

    def HilbertSeries(self, **kwargs):
        try:
            as_hsop = kwargs["HSOP"]
        except KeyError:
            as_hsop = 28
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("HilbertSeries")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        if as_hsop == 28:
            return PyNormaliz_cpp.NmzHilbertSeries(self.cone)
        if type(as_hsop) == bool:
            return PyNormaliz_cpp.NmzHilbertSeries(self.cone, as_hsop)
        raise TypeError("If HSOP is given, it must be True or False")

    def EhrhartSeries(self, **kwargs):
        try:
            as_hsop = kwargs["HSOP"]
        except KeyError:
            as_hsop = 28
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("EhrhartSeries")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        if as_hsop == 28:
            return PyNormaliz_cpp.NmzHilbertSeries(self.cone)
        if type(as_hsop) == bool:
            return PyNormaliz_cpp.NmzHilbertSeries(self.cone, as_hsop)
        raise TypeError("If HSOP is given, it must be True or False")

    def Polynomial(self, **kwargs):
        return PyNormaliz_cpp.NmzGetPolynomial(self.cone)

    def NrCoeffQuasiPol(self, bound=-1):
        return PyNormaliz_cpp.NmzSetNrCoeffQuasiPol(self.cone, bound)

    def SymmetrizedCone(self, **kwargs):
        new_inner_cone = PyNormaliz_cpp.NmzSymmetrizedCone(self.cone)
        if new_inner_cone == None:
            return None
        return_cone = Cone.__new__(Cone)
        return_cone.cone = new_inner_cone
        return return_cone

    def HilbertSeriesExpansion(self,degree):
        return NmzGetHilbertSeriesExpansion(self.cone,degree)

    def WeightedEhrhartSeriesExpansion(self,degree):
        return NmzGetWeightedEhrhartSeriesExpansion(self.cone,degree)

    def PrettyPolynomialTuple(self, numCoefficients, denCoefficients):
        """
        Strings for numerator and denominator of the a hilbert series.

        Parameters
        ----------
        numCoefficients : list
            The coefficients for the numerator.
        denCofficients : list
            The coefficients for the denominator where the value represents the
            exponent of 't' and the frequency indicates the outer coefficient.

        Returns
        -------
        PrettyPolynomialTuple: tuple of strings

        Examples
        --------

        >>> numCoefficients = [3, 7, 4, -4, -6, 5]
        >>> denCoefficients = [1, 1, 2, 2, 2, 4]
        >>> PrettyPolynomialTuple(numCoefficients,denCoefficients)

        ('(3 + 7t + 4t² - 4t³ - 6t⁴ + 5t⁵)', '(1 - t)² (1 - t²)³ (1 - t⁴)')

        """
        def to_sup(s):
            sups = {u'0': u'\u2070',
                    u'1': u'\xb9',
                    u'2': u'\xb2',
                    u'3': u'\xb3',
                    u'4': u'\u2074',
                    u'5': u'\u2075',
                    u'6': u'\u2076',
                    u'7': u'\u2077',
                    u'8': u'\u2078',
                    u'9': u'\u2079'}
            if s is 1:
                return ''
            # lose the list comprehension
            return ''.join(sups.get(str(char), str(char)) for char in str(s))

        def getNumerator(coefficients):

            numerator = ''

            def isPositive(x):
                return x > 0

            firstNonZero = next(
                (i for i, x in enumerate(coefficients) if x != 0), 0)
            for exp, coefficient in enumerate(coefficients):
                if coefficient is 0:
                    continue
                # Exponent is 0 so keep only the coefficient
                if exp is 0:
                    numerator += '({}{!s}'.format('-' if not isPositive(coefficient)
                                                  else '', abs(coefficient))
                # Only include sign if `coefficient` is negative
                elif i is firstNonZero:
                    numerator += '{}{!s}t{}'.format('-' if not isPositive(
                        coefficient) else '', abs(coefficient), to_sup(exp))
                else:
                    numerator += ' {}{!s}t{}'.format('+ ' if isPositive(
                        coefficient) else '- ', abs(coefficient), to_sup(exp))
            numerator += ')'
            return numerator

        def getDenominator(coefficients):
            exponents = [(inner, coefficients.count(inner))
                         for inner in set(coefficients)]
            denominator = ' '.join('(1 - t{}){}'. format(to_sup(x[0]) if x[
                                   0] is not 1 else '', to_sup(x[1]) if x[1] is not 1 else '') for x in exponents)
            return denominator

        num = getNumerator(numCoefficients)
        den = getDenominator(denCoefficients)
        prettyPolynomial = (num, den)
        return prettyPolynomial

    def PrintPrettyHilbertSeries(self, numCoefficients, denCoefficients):
        """
        Make a pretty hilbert series string

        Parameters
        ----------
        numCoefficients : list of ints
            The coefficients for the numerator.
        denCofficients : list of ints
            The coefficients for the denominator where the value represents
            the exponent of 't' and the frequency indicates the outer
            coefficient.

        Returns
        -------
        PrintPrettyHilbertSeries : string

        Examples
        --------

        >>> numCoefficients = [3, 7, 4, -4, -6, 5]
        >>> deCoefficients = [1, 1, 2, 2, 2, 4]
        >>> PrintPrettyHilbertSeries(numCoefficients,deCoefficients)

        (3 + 7t + 4t² - 4t³ - 6t⁴ + 5t⁵)
        --------------------------------
           (1 - t)² (1 - t²)³ (1 - t⁴)

        """
        num, den = self.PrettyPolynomialTuple(numCoefficients, denCoefficients)
        prettyPolynomial = '{:^}\n{:-^{width}}\n{:^{width}}'.format(
            num, '', den, width=max(len(den),len(num)))
        return prettyPolynomial

    def PrintHilbertSeries(self):
        hilbert_series=self.HilbertSeries()
        shift=hilbert_series[2]
        shift=[ 0 for x in range(1,shift) ]
        numerator=shift+hilbert_series[0]
        denominator=hilbert_series[1]
        print(self.PrintPrettyHilbertSeries(numerator,denominator))
        return None

    # Auto generated stuff

    def Generators(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Generators")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "Generators")

    def ExtremeRays(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("ExtremeRays")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "ExtremeRays")

    def VerticesOfPolyhedron(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("VerticesOfPolyhedron")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "VerticesOfPolyhedron")

    def SupportHyperplanes(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("SupportHyperplanes")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "SupportHyperplanes")

    def HilbertBasis(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("HilbertBasis")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "HilbertBasis")

    def ModuleGenerators(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("ModuleGenerators")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "ModuleGenerators")

    def Deg1Elements(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Deg1Elements")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "Deg1Elements")

    def ModuleGeneratorsOverOriginalMonoid(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("ModuleGeneratorsOverOriginalMonoid")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "ModuleGeneratorsOverOriginalMonoid")

    def Sublattice(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Sublattice")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "Sublattice")

    def ExcludedFaces(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("ExcludedFaces")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "ExcludedFaces")

    def OriginalMonoidGenerators(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("OriginalMonoidGenerators")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "OriginalMonoidGenerators")

    def MaximalSubspace(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("MaximalSubspace")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "MaximalSubspace")

    def Equations(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Equations")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "Equations")

    def Congruences(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Congruences")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "Congruences")

    def Grading(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Grading")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "Grading")

    def Dehomogenization(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Dehomogenization")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "Dehomogenization")

    def WitnessNotIntegrallyClosed(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("WitnessNotIntegrallyClosed")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "WitnessNotIntegrallyClosed")

    def TriangulationSize(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("TriangulationSize")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "TriangulationSize")

    def TriangulationDetSum(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("TriangulationDetSum")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "TriangulationDetSum")

    def ReesPrimaryMultiplicity(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("ReesPrimaryMultiplicity")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "ReesPrimaryMultiplicity")

    def GradingDenom(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("GradingDenom")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "GradingDenom")

    def UnitGroupIndex(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("UnitGroupIndex")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "UnitGroupIndex")

    def InternalIndex(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("InternalIndex")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "InternalIndex")

    def ExternalIndex(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("ExternalIndex")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "ExternalIndex")

    def Multiplicity(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Multiplicity")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "Multiplicity")

    def RecessionRank(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("RecessionRank")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "RecessionRank")

    def AffineDim(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("AffineDim")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "AffineDim")

    def ModuleRank(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("ModuleRank")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "ModuleRank")

    def Rank(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Rank")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "Rank")

    def EmbeddingDim(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("EmbeddingDim")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "EmbeddingDim")

    def IsPointed(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("IsPointed")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "IsPointed")

    def IsDeg1ExtremeRays(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("IsDeg1ExtremeRays")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "IsDeg1ExtremeRays")

    def IsDeg1HilbertBasis(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("IsDeg1HilbertBasis")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "IsDeg1HilbertBasis")

    def IsIntegrallyClosed(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("IsIntegrallyClosed")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "IsIntegrallyClosed")

    def IsReesPrimary(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("IsReesPrimary")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "IsReesPrimary")

    def IsInhomogeneous(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("IsInhomogeneous")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "IsInhomogeneous")

    def Triangulation(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Triangulation")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "Triangulation")

    def InclusionExclusionData(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("InclusionExclusionData")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "InclusionExclusionData")

    def StanleyDec(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("StanleyDec")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "StanleyDec")

    def ClassGroup(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("ClassGroup")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "ClassGroup")

    def ConeDecomposition(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("ConeDecomposition")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "ConeDecomposition")

    def HilbertQuasiPolynomial(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("HilbertQuasiPolynomial")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "HilbertQuasiPolynomial")

    def EhrhartQuasiPolynomial(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("HilbertQuasiPolynomial")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "HilbertQuasiPolynomial")

    def IsTriangulationNested(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("IsTriangulationNested")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "IsTriangulationNested")

    def IsTriangulationPartial(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("IsTriangulationPartial")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "IsTriangulationPartial")

    def WeightedEhrhartQuasiPolynomial(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("WeightedEhrhartQuasiPolynomial")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "WeightedEhrhartQuasiPolynomial")

    def WeightedEhrhartSeries(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("WeightedEhrhartSeries")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "WeightedEhrhartSeries")

    def Integral(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Integral")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "Integral")

    def VirtualMultiplicity(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("VirtualMultiplicity")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "VirtualMultiplicity")

    def IsGorenstein(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("IsGorenstein")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "IsGorenstein")

    def GeneratorOfInterior(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("GeneratorOfInterior")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "GeneratorOfInterior")

    def VerticesFloat(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("VerticesFloat")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "VerticesFloat")

    def Volume(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("Volume")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "Volume")

    def SuppHypsFloat(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("SuppHypsFloat")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "SuppHypsFloat")

    def LatticePoints(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("LatticePoints")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "LatticePoints")

    def EuclideanIntegral(self, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append("EuclideanIntegral")
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, "EuclideanIntegral")