1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
/*
* Normaliz
* Copyright (C) 2007-2014 Winfried Bruns, Bogdan Ichim, Christof Soeger
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
//---------------------------------------------------------------------------
#include <iostream>
#include <string>
#include <algorithm>
#include <list>
#include "libQnormaliz/Qinteger.h"
#include "libQnormaliz/Qvector_operations.h"
#include "libQnormaliz/Qmatrix.h"
//---------------------------------------------------------------------------
namespace libQnormaliz {
using namespace std;
//---------------------------------------------------------------------------
template<typename Number>
Number v_scalar_product(const vector<Number>& av,const vector<Number>& bv){
//loop stretching ; brings some small speed improvement
Number ans = 0;
size_t i,n=av.size();
typename vector<Number>::const_iterator a=av.begin(), b=bv.begin();
if( n >= 16 )
{
for( i = 0; i < ( n >> 4 ); ++i, a += 16, b +=16 ){
ans += a[0] * b[0];
ans += a[1] * b[1];
ans += a[2] * b[2];
ans += a[3] * b[3];
ans += a[4] * b[4];
ans += a[5] * b[5];
ans += a[6] * b[6];
ans += a[7] * b[7];
ans += a[8] * b[8];
ans += a[9] * b[9];
ans += a[10] * b[10];
ans += a[11] * b[11];
ans += a[12] * b[12];
ans += a[13] * b[13];
ans += a[14] * b[14];
ans += a[15] * b[15];
}
n -= i<<4;
}
if( n >= 8)
{
ans += a[0] * b[0];
ans += a[1] * b[1];
ans += a[2] * b[2];
ans += a[3] * b[3];
ans += a[4] * b[4];
ans += a[5] * b[5];
ans += a[6] * b[6];
ans += a[7] * b[7];
n -= 8;
a += 8;
b += 8;
}
if( n >= 4)
{
ans += a[0] * b[0];
ans += a[1] * b[1];
ans += a[2] * b[2];
ans += a[3] * b[3];
n -= 4;
a += 4;
b += 4;
}
if( n >= 2)
{
ans += a[0] * b[0];
ans += a[1] * b[1];
n -= 2;
a += 2;
b += 2;
}
if(n>0)
ans += a[0]*b[0];
return ans;
}
//---------------------------------------------------------------------------
template<typename Number>
vector<Number> v_add(const vector<Number>& a,const vector<Number>& b){
assert(a.size() == b.size());
size_t i,s=a.size();
vector<Number> d(s);
for (i = 0; i <s; i++) {
d[i]=a[i]+b[i];
}
return d;
}
//---------------------------------------------------------------------------
template<typename Number>
void v_add_result(vector<Number>& result, const size_t s, const vector<Number>& a,const vector<Number>& b){
assert(a.size() == b.size() && a.size() == result.size());
size_t i;
// vector<Number> d(s);
for (i = 0; i <s; i++) {
result[i]=a[i]+b[i];
}
// return d;
}
//---------------------------------------------------------------------------
template<typename Number>
vector<Number>& v_abs(vector<Number>& v){
size_t i, size=v.size();
for (i = 0; i < size; i++) {
if (v[i]<0) v[i] = Iabs(v[i]);
}
return v;
}
//---------------------------------------------------------------------------
template<typename Number>
vector<Number> v_abs_value(vector<Number>& v){
size_t i, size=v.size();
vector<Number> w=v;
for (i = 0; i < size; i++) {
if (v[i]<0) w[i] = Iabs(v[i]);
}
return w;
}
//---------------------------------------------------------------------------
// the following function removes the denominators and then extracts the Gcd of the numerators
mpq_class v_simplify(vector<mpq_class>& v, const vector<mpq_class>& LF){
size_t size=v.size();
mpz_class d=1;
for (size_t i = 0; i < size; i++)
//d=lcm(d,v[i].get_den()); // GMP C++ function only available in GMP >= 6.1
mpz_lcm(d.get_mpz_t(), d.get_mpz_t(), v[i].get_den().get_mpz_t());
for (size_t i = 0; i < size; i++)
v[i]*=d;
mpz_class g=0;
for (size_t i = 0; i < size; i++)
//g=gcd(g,v[i].get_num()); // GMP C++ function only available in GMP >= 6.1
mpz_gcd(g.get_mpz_t(), g.get_mpz_t(), v[i].get_num().get_mpz_t());
if (g==0)
return 0;
for (size_t i = 0; i < size; i++)
v[i]/=g;
return 1;
}
#ifdef ENFNORMALIZ
renf_elem_class v_simplify(vector<renf_elem_class>& v, const vector<renf_elem_class>& LF){
renf_elem_class denom;
if(LF.size()==v.size()){
denom=v_scalar_product(v,LF);
}
else{
for(long i=(long) v.size()-1;i>=0;--i){
if(v[i]!=0){
denom=v[i];
break;
}
}
}
denom=Iabs(denom);
if(denom==0)
return denom;
if(denom!=0 && denom!=1)
v_scalar_division(v, denom);
/* mpz_class lcm_denom;
lcm_denom=1;
for(size_t i=0;i<v.size();++i){
lcm_denom=lcm(lcm_denom,v[i].get_den());
}
for(size_t i=0;i<v.size();++i){
v[i]*=lcm_denom;
}
denom/=lcm_denom;*/
return denom;
}
#endif
//---------------------------------------------------------------------------
template<typename T>
vector<T> v_merge(const vector<T>& a, const T& b) {
size_t s=a.size();
vector<T> c(s+1);
for (size_t i = 0; i < s; i++) {
c[i]=a[i];
}
c[s] = b;
return c;
}
//---------------------------------------------------------------------------
template<typename T>
vector<T> v_merge(const vector<T>& a,const vector<T>& b){
size_t s1=a.size(), s2=b.size(), i;
vector<T> c(s1+s2);
for (i = 0; i < s1; i++) {
c[i]=a[i];
}
for (i = 0; i < s2; i++) {
c[s1+i]=b[i];
}
return c;
}
//---------------------------------------------------------------------------
template<typename T>
vector<T> v_cut_front(const vector<T>& v, size_t size){
size_t s,k;
vector<T> tmp(size);
s=v.size()-size;
for (k = 0; k < size; k++) {
tmp[k]=v[s+k];
}
return tmp;
}
//---------------------------------------------------------------------------
template<typename Number>
vector<key_t> v_non_zero_pos(const vector<Number>& v){
vector<key_t> key;
size_t size=v.size();
key.reserve(size);
for (key_t i = 0; i <size; i++) {
if (v[i]!=0) {
key.push_back(i);
}
}
return key;
}
//---------------------------------------------------------------------------
template<typename Number>
bool v_is_zero(const vector<Number>& v) {
for (size_t i = 0; i < v.size(); ++i) {
if (v[i] != 0) return false;
}
return true;
}
//---------------------------------------------------------------------------
template<typename Number>
bool v_is_symmetric(const vector<Number>& v) {
for (size_t i = 0; i < v.size()/2; ++i) {
if (v[i] != v[v.size()-1-i]) return false;
}
return true;
}
//---------------------------------------------------------------------------
template<typename Number>
bool v_is_nonnegative(const vector<Number>& v) {
for (size_t i = 0; i < v.size(); ++i) {
if (v[i] <0) return false;
}
return true;
}
//---------------------------------------------------------------------------
template<typename Number>
void v_el_trans(const vector<Number>& av,vector<Number>& bv, const Number& F, const size_t& start){
size_t i,n=av.size();
typename vector<Number>::const_iterator a=av.begin();
typename vector<Number>::iterator b=bv.begin();
a += start;
b += start;
n -= start;
if( n >= 8 )
{
for( i = 0; i < ( n >> 3 ); ++i, a += 8, b += 8 ){
b[0] += F*a[0];
b[1] += F*a[1];
b[2] += F*a[2];
b[3] += F*a[3];
b[4] += F*a[4];
b[5] += F*a[5];
b[6] += F*a[6];
b[7] += F*a[7];
}
n -= i << 3;
}
if( n >= 4)
{
b[0] += F*a[0];
b[1] += F*a[1];
b[2] += F*a[2];
b[3] += F*a[3];
n -=4;
a +=4;
b +=4;
}
if( n >= 2)
{
b[0] += F*a[0];
b[1] += F*a[1];
n -=2;
a +=2;
b +=2;
}
if(n>0)
b[0] += F*a[0];
}
//---------------------------------------------------------------
vector<bool> v_bool_andnot(const vector<bool>& a, const vector<bool>& b) {
assert(a.size() == b.size());
vector<bool> result(a);
for (size_t i=0; i<b.size(); ++i) {
if (b[i])
result[i]=false;
}
return result;
}
// swaps entry i and j of the vector<bool> v
void v_bool_entry_swap(vector<bool>& v, size_t i, size_t j) {
if (v[i] != v[j]) {
v[i].flip();
v[j].flip();
}
}
vector<key_t> identity_key(size_t n){
vector<key_t> key(n);
for(size_t k=0;k<n;++k)
key[k]=k;
return key;
}
//---------------------------------------------------------------
// Sorting
template <typename T>
void order_by_perm(vector<T>& v, const vector<key_t>& permfix){
vector<key_t> perm=permfix; // we may want to use permfix a second time
vector<key_t> inv(perm.size());
for(key_t i=0;i<perm.size();++i)
inv[perm[i]]=i;
for(key_t i=0;i<perm.size();++i){
key_t j=perm[i];
swap(v[i],v[perm[i]]);
swap(perm[i],perm[inv[i]]);
swap(inv[i],inv[j]);
}
}
// vector<bool> is special
template <>
void order_by_perm(vector<bool>& v, const vector<key_t>& permfix){
vector<key_t> perm=permfix; // we may want to use permfix a second time
vector<key_t> inv(perm.size());
for(key_t i=0;i<perm.size();++i)
inv[perm[i]]=i;
for(key_t i=0;i<perm.size();++i){
key_t j=perm[i];
// v.swap(v[i],v[perm[i]]);
v_bool_entry_swap(v,i,perm[i]);
swap(perm[i],perm[inv[i]]);
swap(inv[i],inv[j]);
}
}
// make random vector of length n with entries between -m and m
template <typename Number>
vector<Number> v_random(size_t n, long m){
vector<Number> result(n);
for(size_t i=0;i<n;++i)
result[i]=rand()%(2*m+1)-m;
return result;
}
template bool v_is_nonnegative<long>(const vector<long>&);
template bool v_is_nonnegative<long long>(const vector<long long>&);
template bool v_is_nonnegative<mpz_class>(const vector<mpz_class>&);
template bool v_is_symmetric<long>(const vector<long>&);
template bool v_is_symmetric<long long>(const vector<long long>&);
template bool v_is_symmetric<mpz_class>(const vector<mpz_class>&);
//
template void v_add_result<long >(vector<long >&, size_t, const vector<long >&, const vector<long >&);
template void v_add_result<long long>(vector<long long>&, size_t, const vector<long long>&, const vector<long long>&);
template void v_add_result<mpz_class>(vector<mpz_class>&, size_t, const vector<mpz_class>&, const vector<mpz_class>&);
template long v_scalar_product(const vector<long>& a,const vector<long>& b);
template long long v_scalar_product(const vector<long long>& a,const vector<long long>& b);
template mpz_class v_scalar_product(const vector<mpz_class>& a,const vector<mpz_class>& b);
} // end namespace libQnormaliz
|