1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
|
/*
* Normaliz
* Copyright (C) 2007-2014 Winfried Bruns, Bogdan Ichim, Christof Soeger
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
/**
* The class Sublattice_Representation represents a sublattice of Z^n as Z^r.
* To transform vectors of the sublattice use:
* Z^r --> Z^n and Z^n --> Z^r
* v |-> vA u |-> (uB)/c
* A r x n matrix
* B n x r matrix
* c Integer
*/
#include "libnormaliz/sublattice_representation.h"
#include "libnormaliz/vector_operations.h"
//---------------------------------------------------------------------------
namespace libnormaliz {
using namespace std;
/**
* creates a representation of Z^n as a sublattice of itself
*/
template<typename Integer>
Sublattice_Representation<Integer>::Sublattice_Representation(size_t n) {
dim = n;
rank = n;
external_index = 1;
A = Matrix<Integer>(n);
B = Matrix<Integer>(n);
c = 1;
Equations_computed=false;
Congruences_computed=false;
is_identity=true;
}
//---------------------------------------------------------------------------
/**
* Main Constructor
* creates a representation of a sublattice of Z^n
* if direct_summand is false the sublattice is generated by the rows of M
* otherwise it is a direct summand of Z^n containing the rows of M
*/
template<typename Integer>
Sublattice_Representation<Integer>::Sublattice_Representation(const Matrix<Integer>& M, bool take_saturation, bool use_LLL) {
bool success;
initialize(M,take_saturation,success);
if(success){
if(use_LLL)
LLL_improve();
}
else{
Matrix<mpz_class> mpz_M(M.nr,M.nc);
// mat_to_mpz(M,mpz_M);
convert(mpz_M,M);
Sublattice_Representation<mpz_class> mpz_SLR;
mpz_SLR.initialize(mpz_M,take_saturation,success);
if(use_LLL)
mpz_SLR.LLL_improve();
A=Matrix<Integer>(mpz_SLR.A.nr,mpz_SLR.A.nc);
B=Matrix<Integer>(mpz_SLR.B.nr,mpz_SLR.B.nc);
// mat_to_Int(mpz_SLR.A,A);
convert(A,mpz_SLR.A);
// mat_to_Int(mpz_SLR.B,B);
convert(B,mpz_SLR.B);
convert(c, mpz_SLR.c);
rank=mpz_SLR.rank;
}
}
/* Creates a representation from given maps and the factor c
*
*/
template<typename Integer>
Sublattice_Representation<Integer>::Sublattice_Representation(const Matrix<Integer>& GivenA,
const Matrix<Integer>& GivenB, Integer GivenC) {
dim = GivenA.nr;
rank= GivenA.nc;
assert(GivenB.nr==dim);
assert(GivenB.nc==rank);
Matrix<Integer> Test(rank);
Test.scalar_multiplication(GivenC);
Matrix<Integer> Test1=GivenA.multiplication(GivenB);
assert(Test1.equal(Test));
external_index = 1; // to have a value, will be computed if asked for
A = GivenA;
B = GivenB;
c = GivenC;
Equations_computed=false;
Congruences_computed=false;
is_identity=false;
Test1=Matrix<Integer>(rank);
if(A.equal(Test1) && c==1){
is_identity=true;
}
}
template<typename Integer>
void Sublattice_Representation<Integer>::initialize(const Matrix<Integer>& M, bool take_saturation, bool& success) {
Equations_computed=false;
Congruences_computed=false;
is_identity=false;
success=true;
dim=M.nr_of_columns();
Matrix<Integer> N=M;
rank=N.row_echelon_reduce(success); // reduce is importnat here, will be used
if(!success)
return;
if(rank==dim && take_saturation){
A = B = Matrix<Integer>(dim);
c=1;
is_identity=true;
return;
}
mpz_class row_index=1; // product of the corner elements in the row echelon form
vector<key_t> col(rank);
vector<bool> col_is_corner(dim,false); // indicates whether the column is a corner in the
for(size_t k=0;k<rank;++k){ // row echelin form
size_t j=0;
for(;j<dim;++j)
if(N[k][j]!=0)
break;
col_is_corner[j]=true;
col[k]=j;
if(N[k][j]<0)
v_scalar_multiplication<Integer>(N[k],-1); // make corner positive
row_index*=convertTo<mpz_class>(N[k][j]);
}
if(row_index==1 && rank==dim){ // the sublattice is the full lattice and no saturation needed
A = B = Matrix<Integer>(dim);
c=1;
is_identity=true;
return;
}
A=Matrix<Integer>(rank, dim);
B=Matrix<Integer>(dim,rank);
if(row_index==1){ // no saturation needed since sublattice is direct summand
for(size_t k=0;k<rank;++k)
A[k]=N[k]; // A is just the basis of our sublattice
size_t j=0;
for(size_t k=0;k<dim;++k){
if(col_is_corner[k]){
B[k][j]=1; // projection to the corner columns, allowed because of reduction!
j++;
}
};
c=1;
return;
}
if(!take_saturation){
Matrix<Integer> P(dim,dim); // A augmented by unit vectors to full rank
for(size_t k=0;k<rank;++k)
A[k]=P[k]=N[k];
size_t k=rank;
for(size_t j=0;j<dim;++j){
if(col_is_corner[j])
continue;
P[k][j]=1;
k++;
}
Matrix<Integer> Q=P.invert_unprotected(c,success);
if(!success)
return;
for(k=0;k<dim;++k) // we take the partial inverse belonging to the first rankk rows of A
for(size_t j=0;j<rank;++j)
B[k][j]=Q[k][j];
return;
}
// now we must take the saturation.
// We do it by computing a complement of the smallest direct summand containing
// of the sublattice and then taking its complement.
Matrix<Integer> R_inv(dim);
success=N.column_trigonalize(rank,R_inv);
Matrix<Integer> R=R_inv.invert_unprotected(c,success); // yields c=1 as it should be in this case
if(!success)
return;
for (size_t i = 0; i < rank; i++) {
for (size_t j = 0; j < dim; j++) {
A[i][j]=R[i][j];
B[j][i]=R_inv[j][i];
}
}
return;
}
template<typename Integer>
void Sublattice_Representation<Integer>::LLL_improve(){
if(is_identity)
return;
// We want to give the matrix B small entries since it deternines
// the transformation to the sublattice
Sublattice_Representation LLL_trans=LLL_coordinates<Integer>(B);
compose(LLL_trans);
}
//---------------------------------------------------------------------------
// Manipulation operations
//---------------------------------------------------------------------------
/* first this then SR when going from Z^n to Z^r */
template<typename Integer>
void Sublattice_Representation<Integer>::compose(const Sublattice_Representation& SR) {
assert(rank == SR.dim); //TODO vielleicht doch exception?
if(SR.is_identity)
return;
if(is_identity){
*this=SR;
return;
}
Equations_computed=false;
Congruences_computed=false;
rank = SR.rank;
// A = SR.A * A
A = SR.A.multiplication(A);
// B = B * SR.B
B = B.multiplication(SR.B);
c = c * SR.c;
//check if a factor can be extraced from B //TODO necessary?
Integer g = B.matrix_gcd();
g = libnormaliz::gcd(g,c); //TODO necessary??
if (g > 1) {
c /= g;
B.scalar_division(g);
}
is_identity&=SR.is_identity;
}
template<typename Integer>
void Sublattice_Representation<Integer>::compose_dual(const Sublattice_Representation& SR) {
assert(rank == SR.dim); //
assert(SR.c==1);
if(SR.is_identity)
return;
Equations_computed=false;
Congruences_computed=false;
rank = SR.rank;
if(is_identity){
A=SR.B.transpose();
B=SR.A.transpose();
is_identity=false;
return;
}
// Now we compose with the dual of SR
A = SR.B.transpose().multiplication(A);
// B = B * SR.B
B = B.multiplication(SR.A.transpose());
//check if a factor can be extraced from B //TODO necessary?
Integer g = B.matrix_gcd();
g = libnormaliz::gcd(g,c); //TODO necessary??
if (g > 1) {
c /= g;
B.scalar_division(g);
}
is_identity&=SR.is_identity;
}
//---------------------------------------------------------------------------
// Transformations
//---------------------------------------------------------------------------
template<typename Integer>
Matrix<Integer> Sublattice_Representation<Integer>::to_sublattice (const Matrix<Integer>& M) const {
Matrix<Integer> N;
if(is_identity)
N=M;
else
N = M.multiplication(B);
if (c!=1) N.scalar_division(c);
return N;
}
template<typename Integer>
Matrix<Integer> Sublattice_Representation<Integer>::from_sublattice (const Matrix<Integer>& M) const {
Matrix<Integer> N;
if(is_identity)
N=M;
else
N = M.multiplication(A);
return N;
}
template<typename Integer>
Matrix<Integer> Sublattice_Representation<Integer>::to_sublattice_dual (const Matrix<Integer>& M) const {
Matrix<Integer> N;
if(is_identity)
N=M;
else
N = M.multiplication(A.transpose());
N.make_prime();
return N;
}
template<typename Integer>
Matrix<Integer> Sublattice_Representation<Integer>::from_sublattice_dual (const Matrix<Integer>& M) const {
Matrix<Integer> N;
if(is_identity)
N=M;
else
N = M.multiplication(B.transpose());
N.make_prime();
return N;
}
template<typename Integer>
vector<Integer> Sublattice_Representation<Integer>::to_sublattice (const vector<Integer>& V) const {
if(is_identity)
return V;
vector<Integer> N = B.VxM(V);
if (c!=1) v_scalar_division(N,c);
return N;
}
template<typename Integer>
vector<Integer> Sublattice_Representation<Integer>::from_sublattice (const vector<Integer>& V) const {
if(is_identity)
return V;
vector<Integer> N = A.VxM(V);
return N;
}
template<typename Integer>
vector<Integer> Sublattice_Representation<Integer>::to_sublattice_dual (const vector<Integer>& V) const {
vector<Integer> N;
if(is_identity)
N=V;
else
N = A.MxV(V);
v_make_prime(N);
return N;
}
template<typename Integer>
vector<Integer> Sublattice_Representation<Integer>::from_sublattice_dual (const vector<Integer>& V) const {
vector<Integer> N;
if(is_identity)
N=V;
else
N = B.MxV(V);
v_make_prime(N);
return N;
}
template<typename Integer>
vector<Integer> Sublattice_Representation<Integer>::to_sublattice_dual_no_div (const vector<Integer>& V) const {
if(is_identity)
return V;
vector<Integer> N = A.MxV(V);
return N;
}
//---------------------------------------------------------------------------
// Data access
//---------------------------------------------------------------------------
/* returns the dimension of the ambient space */
template<typename Integer>
size_t Sublattice_Representation<Integer>::getDim() const {
return dim;
}
//---------------------------------------------------------------------------
/* returns the rank of the sublattice */
template<typename Integer>
size_t Sublattice_Representation<Integer>::getRank() const {
return rank;
}
//---------------------------------------------------------------------------
template<typename Integer>
const Matrix<Integer>& Sublattice_Representation<Integer>::getEmbeddingMatrix() const {
return A;
}
template<typename Integer>
const vector<vector<Integer> >& Sublattice_Representation<Integer>::getEmbedding() const{
return getEmbeddingMatrix().get_elements();
}
//---------------------------------------------------------------------------
template<typename Integer>
const Matrix<Integer>& Sublattice_Representation<Integer>::getProjectionMatrix() const {
return B;
}
template<typename Integer>
const vector<vector<Integer> >& Sublattice_Representation<Integer>::getProjection() const{
return getProjectionMatrix().get_elements();
}
//---------------------------------------------------------------------------
template<typename Integer>
Integer Sublattice_Representation<Integer>::getAnnihilator() const {
return c;
}
//---------------------------------------------------------------------------
template<typename Integer>
bool Sublattice_Representation<Integer>::IsIdentity() const{
return is_identity;
}
//---------------------------------------------------------------------------
/* returns the congruences defining the sublattice */
template<typename Integer>
const Matrix<Integer>& Sublattice_Representation<Integer>::getEquationsMatrix() const{
if(!Equations_computed)
make_equations();
return Equations;
}
template<typename Integer>
const vector<vector<Integer> >& Sublattice_Representation<Integer>::getEquations() const{
return getEquationsMatrix().get_elements();
}
template<typename Integer>
void Sublattice_Representation<Integer>::make_equations() const{
if(rank==dim)
Equations=Matrix<Integer>(0,dim);
else
Equations=A.kernel();
Equations_computed=true;
}
template<typename Integer>
const Matrix<Integer>& Sublattice_Representation<Integer>::getCongruencesMatrix() const{
if(!Congruences_computed)
make_congruences();
return Congruences;
}
template<typename Integer>
const vector<vector<Integer> >& Sublattice_Representation<Integer>::getCongruences() const{
return getCongruencesMatrix().get_elements();
}
template<typename Integer>
mpz_class Sublattice_Representation<Integer>::getExternalIndex() const{
if(!Congruences_computed)
make_congruences();
return external_index;
}
template<typename Integer>
void Sublattice_Representation<Integer>::make_congruences() const {
if ( c == 1) { // no congruences then
Congruences=Matrix<Integer>(0,dim+1);
Congruences_computed=true;
external_index=1;
return;
}
size_t dummy;
Matrix<Integer> A_Copy=A;
Matrix<Integer> Transf=A_Copy.SmithNormalForm(dummy);
// Congruences given by first rank columns of Transf transposed and with an extra column for the modulus m
// The moduli are the diagonal elements of the Smith normal form
// Transf.pretty_print(cout);
Transf.append(Matrix<Integer>(1,dim));
Transf = Transf.transpose();
Matrix<Integer> Transf2(0,dim+1); //only the relavant congruences
for(size_t k=0;k<rank;++k){
if(A_Copy[k][k]!=1){
Transf2.append(Transf[k]);
Transf2[Transf2.nr-1][dim]=A_Copy[k][k];
for(size_t j=0;j<dim;++j){
Transf2[Transf2.nr-1][j]%=A_Copy[k][k];
if(Transf2[Transf2.nr-1][j]<0)
Transf2[Transf2.nr-1][j]+=A_Copy[k][k];
}
}
}
Congruences=Transf2;
Congruences_computed=true;
external_index=1;
for(size_t i=0;i<Transf2.nr;++i)
external_index*=convertTo<mpz_class>(Transf2[i][dim]);
}
#ifndef NMZ_MIC_OFFLOAD //offload with long is not supported
template class Sublattice_Representation<long>;
#endif
template class Sublattice_Representation<long long>;
template class Sublattice_Representation<mpz_class>;
}
|