1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
/*
* Normaliz
* Copyright (C) 2007-2022 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#include "libnormaliz/cone.h"
#include "libnormaliz/face_lattice.h"
#include "libnormaliz/vector_operations.h"
namespace libnormaliz {
using namespace std;
template <typename Integer>
FaceLattice<Integer>::FaceLattice() {
}
// It is assumed that the matrices in the constructor are for the pointed quotient,
// even if the names of the parameters don't indicate that.
template <typename Integer>
FaceLattice<Integer>::FaceLattice(Matrix<Integer>& SupportHyperplanes,
const Matrix<Integer>& VerticesOfPolyhedron,
const Matrix<Integer>& ExtremeRaysRecCone,
const bool cone_inhomogeneous,
bool swap_allowed) {
inhomogeneous = cone_inhomogeneous;
nr_supphyps = SupportHyperplanes.nr_of_rows();
nr_extr_rec_cone = ExtremeRaysRecCone.nr_of_rows();
nr_vert = VerticesOfPolyhedron.nr_of_rows();
nr_gens = nr_extr_rec_cone + nr_vert;
if (swap_allowed)
swap(SuppHyps, SupportHyperplanes);
else
SuppHyps = SupportHyperplanes;
dim = SuppHyps[0].size();
SuppHypInd.clear();
SuppHypInd.resize(nr_supphyps);
// order of the extreme rays:
//
// first the vertices of polyhedron (in the inhomogeneous case)
// then the extreme rays of the (recession) cone
//
bool skip_remaining = false;
std::exception_ptr tmp_exception;
int nr_simplial_facets = 0;
#pragma omp parallel for
for (size_t i = 0; i < nr_supphyps; ++i) {
if (skip_remaining)
continue;
int nr_gens_in_hyp = 0;
SuppHypInd[i].resize(nr_gens);
try {
INTERRUPT_COMPUTATION_BY_EXCEPTION
if (inhomogeneous) {
for (size_t j = 0; j < nr_vert; ++j) {
if (v_scalar_product(SuppHyps[i], VerticesOfPolyhedron[j]) == 0) {
nr_gens_in_hyp++;
SuppHypInd[i][j] = true;
}
}
}
for (size_t j = 0; j < nr_extr_rec_cone; ++j) {
if (v_scalar_product(SuppHyps[i], ExtremeRaysRecCone[j]) == 0) {
nr_gens_in_hyp++;
SuppHypInd[i][j + nr_vert] = true;
}
}
if (nr_gens_in_hyp == (int)(dim - 1))
//#pragma omp atomic
nr_simplial_facets++;
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
}
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
// if (verbose)
// verboseOutput() << "Simplicial facets " << nr_simplial_facets << " of " << nr_supphyps << endl;
}
struct FaceInfo {
// dynamic_bitset ExtremeRays;
dynamic_bitset HypsContaining;
int max_cutting_out;
bool max_subset;
// bool max_prec;
bool simple;
};
bool face_compare(const pair<dynamic_bitset, FaceInfo>& a, const pair<dynamic_bitset, FaceInfo>& b) {
return (a.first < b.first);
}
template <typename Integer>
void FaceLattice<Integer>::compute(const long face_codim_bound, const bool verbose, bool change_integer_type) {
bool bound_codim = false;
if (face_codim_bound >= 0)
bound_codim = true;
dynamic_bitset SimpleVert(nr_gens);
size_t nr_simpl = 0;
for (size_t j = 0; j < nr_gens; ++j) {
size_t nr_cont = 0;
for (size_t i = 0; i < nr_supphyps; ++i)
if (SuppHypInd[i][j])
nr_cont++;
if (nr_cont == dim - 1) {
SimpleVert[j] = 1;
nr_simpl++;
}
}
if (verbose)
verboseOutput() << "Cosimplicial gens " << nr_simpl << " of " << nr_gens << endl;
bool use_simple_vert = (10 * nr_simpl > nr_gens);
vector<size_t> prel_f_vector(dim + 1, 0);
dynamic_bitset the_cone(nr_gens);
the_cone.set();
dynamic_bitset empty(nr_supphyps);
dynamic_bitset AllFacets(nr_supphyps);
AllFacets.set();
map<dynamic_bitset, pair<dynamic_bitset, dynamic_bitset> > NewFaces;
map<dynamic_bitset, pair<dynamic_bitset, dynamic_bitset> > WorkFaces;
WorkFaces[empty] = make_pair(empty, AllFacets); // start with the full cone
dynamic_bitset ExtrRecCone(nr_gens); // in the inhomogeneous case
if (inhomogeneous) { // we exclude the faces of the recession cone
for (size_t j = 0; j < nr_extr_rec_cone; ++j)
ExtrRecCone[j + nr_vert] = 1;
;
}
Matrix<MachineInteger> SuppHyps_MI;
if (change_integer_type)
convert(SuppHyps_MI, SuppHyps);
/*for(int i=0;i< 10000;++i){ // for pertubation of order of supphyps
int j=rand()%nr_supphyps;
int k=rand()%nr_supphyps;
swap(SuppHypInd[j],SuppHypInd[k]);
swap(EmbeddedSuppHyps[j],EmbeddedSuppHyps[k]);
if(change_integer_type)
swap(EmbeddedSuppHyps_MI[j],EmbeddedSuppHyps_MI[k]);
}*/
vector<dynamic_bitset> Unit_bitset(nr_supphyps);
for (size_t i = 0; i < nr_supphyps; ++i) {
Unit_bitset[i].resize(nr_supphyps);
Unit_bitset[i][i] = 1;
}
long codimension_so_far = 0; // the lower bound for the codimension so far
const long VERBOSE_STEPS = 50;
const size_t RepBound = 1000;
bool report_written = false;
size_t total_inter = 0;
size_t avoided_inter = 0;
size_t total_new = 0;
size_t total_simple = 1; // the full cone is cosimplicial
size_t total_max_subset = 0;
while (true) {
codimension_so_far++; // codimension of faces put into NewFaces
bool CCC = false;
if (codimension_so_far == 1)
CCC = true;
if (bound_codim && codimension_so_far > face_codim_bound + 1)
break;
size_t nr_faces = WorkFaces.size();
if (verbose) {
if (report_written)
verboseOutput() << endl;
verboseOutput() << "codim " << codimension_so_far - 1 << " faces to process " << nr_faces << endl;
report_written = false;
}
long step_x_size = nr_faces - VERBOSE_STEPS;
bool skip_remaining = false;
std::exception_ptr tmp_exception;
#pragma omp parallel
{
size_t Fpos = 0;
auto F = WorkFaces.begin();
list<pair<dynamic_bitset, FaceInfo> > FreeFaces, Faces;
pair<dynamic_bitset, FaceInfo> fr;
fr.first.resize(nr_gens);
fr.second.HypsContaining.resize(nr_supphyps);
for (size_t i = 0; i < nr_supphyps; ++i) {
FreeFaces.push_back(fr);
}
#pragma omp for schedule(dynamic)
for (size_t kkk = 0; kkk < nr_faces; ++kkk) {
if (skip_remaining)
continue;
for (; kkk > Fpos; ++Fpos, ++F)
;
for (; kkk < Fpos; --Fpos, --F)
;
if (verbose && nr_faces >= RepBound) {
#pragma omp critical(VERBOSE)
while ((long)(kkk * VERBOSE_STEPS) >= step_x_size) {
step_x_size += nr_faces;
verboseOutput() << "." << flush;
report_written = true;
}
}
Faces.clear();
try {
INTERRUPT_COMPUTATION_BY_EXCEPTION
dynamic_bitset beta_F = F->second.first;
bool F_simple = ((long)F->first.count() == codimension_so_far - 1);
#pragma omp atomic
prel_f_vector[codimension_so_far - 1]++;
dynamic_bitset Gens = the_cone; // make indicator vector of *F
for (int i = 0; i < (int)nr_supphyps; ++i) {
if (F->second.first[nr_supphyps - 1 - i] == 0) // does not define F
continue;
// beta_F=i;
Gens = Gens & SuppHypInd[i];
}
dynamic_bitset MM_mother = F->second.second;
// now we produce the intersections with facets
dynamic_bitset Intersect(nr_gens);
size_t start;
if (CCC)
start = 0;
else {
start = F->second.first.find_first();
start = nr_supphyps - start;
}
for (size_t i = start; i < nr_supphyps; ++i) {
if (F->first[i] == 1) { // contains *F
continue;
}
#pragma omp atomic
total_inter++;
if (MM_mother[i] == 0) { // using restriction criteria of the paper
#pragma omp atomic
avoided_inter++;
continue;
}
Intersect = Gens & SuppHypInd[i];
if (inhomogeneous && Intersect.is_subset_of(ExtrRecCone))
continue;
Faces.splice(Faces.end(), FreeFaces, FreeFaces.begin());
Faces.back().first = Intersect;
Faces.back().second.max_cutting_out = static_cast<int>(i);
Faces.back().second.max_subset = true;
// Faces.back().second.HypsContaining.reset();
// Faces.push_back(make_pair(Intersect,fr));
}
Faces.sort(face_compare);
for (auto Fac = Faces.begin(); Fac != Faces.end(); ++Fac) {
if (Fac != Faces.begin()) {
auto Gac = Fac;
--Gac;
if (Fac->first == Gac->first) {
Fac->second.max_subset = false;
Gac->second.max_subset = false;
}
}
}
for (auto Fac = Faces.end(); Fac != Faces.begin();) { // first we check for inclusion
--Fac;
if (!Fac->second.max_subset)
continue;
auto Gac = Fac;
Gac++;
for (; Gac != Faces.end(); Gac++) {
if (!Gac->second.max_subset)
continue;
if (Fac->first.is_subset_of(Gac->first)) {
Fac->second.max_subset = false;
break;
}
}
}
dynamic_bitset MM_F(nr_supphyps);
for (auto Fac = Faces.end(); Fac != Faces.begin();) {
--Fac;
if (!Fac->second.max_subset)
continue;
#pragma omp atomic
total_max_subset++;
INTERRUPT_COMPUTATION_BY_EXCEPTION
dynamic_bitset Containing = F->first;
Containing[Fac->second.max_cutting_out] = 1;
bool simple = false;
if (F_simple && use_simple_vert) {
if ((Fac->first & SimpleVert).any()) {
simple = true;
}
}
if (!simple) {
bool extra_hyp = false;
for (size_t j = 0; j < nr_supphyps; ++j) { // beta_F
if (Containing[j] == 0 && Fac->first.is_subset_of(SuppHypInd[j])) {
Containing[j] = 1;
extra_hyp = true;
}
}
simple = F_simple && !extra_hyp;
}
long codim_of_face = 0; // to make gcc happy
if (simple)
codim_of_face = codimension_so_far;
else {
dynamic_bitset Containing(nr_supphyps);
for (size_t j = 0; j < nr_supphyps; ++j) { // beta_F
if (Containing[j] == 0 && Fac->first.is_subset_of(SuppHypInd[j])) {
Containing[j] = 1;
}
}
vector<bool> selection = bitset_to_bool(Containing);
if (change_integer_type) {
try {
codim_of_face = SuppHyps_MI.submatrix(selection).rank();
} catch (const ArithmeticException& e) {
change_integer_type = false;
}
}
if (!change_integer_type)
codim_of_face = SuppHyps.submatrix(selection).rank();
if (codim_of_face > codimension_so_far) {
Fac->second.max_subset = false;
continue;
}
}
MM_F[Fac->second.max_cutting_out] = 1;
Fac->second.simple = simple;
Fac->second.HypsContaining = Containing;
}
for (auto Fac = Faces.end(); Fac != Faces.begin();) { // why backwards??
--Fac;
if (!Fac->second.max_subset)
continue;
bool simple = Fac->second.simple;
beta_F[nr_supphyps - 1 - Fac->second.max_cutting_out] =
1; // we must go to revlex, beta_F reconstituted below
#pragma omp critical(INSERT_NEW)
{
total_new++;
if (simple) {
NewFaces[Fac->second.HypsContaining] = make_pair(beta_F, MM_F);
total_simple++;
}
else {
auto G = NewFaces.find(Fac->second.HypsContaining);
if (G == NewFaces.end()) {
NewFaces[Fac->second.HypsContaining] = make_pair(beta_F, MM_F);
}
else {
if (G->second.first < beta_F) { // because of revlex < instead of >
G->second.first = beta_F;
G->second.second = MM_F;
}
}
}
} // critical
beta_F[nr_supphyps - 1 - Fac->second.max_cutting_out] = 0;
}
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
FreeFaces.splice(FreeFaces.end(), Faces);
} // omp for
} // parallel
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
// if (ToCompute.test(ConeProperty::FaceLattice))
for (auto H = WorkFaces.begin(); H != WorkFaces.end(); ++H)
FaceLat[H->first] = static_cast<int>(codimension_so_far - 1);
WorkFaces.clear();
if (NewFaces.empty())
break;
swap(WorkFaces, NewFaces);
}
if (inhomogeneous && nr_vert != 1) { // we want the empty face in the face lattice
// (never the case in homogeneous computations)
dynamic_bitset NoGens(nr_gens);
size_t codim_max_subspace = SuppHyps.rank();
FaceLat[AllFacets] = static_cast<int>(codim_max_subspace);
if (!(bound_codim && (int)codim_max_subspace > face_codim_bound))
prel_f_vector[codim_max_subspace]++;
}
size_t total_nr_faces = 0;
for (ssize_t i = prel_f_vector.size() - 1; i >= 0; --i) {
if (prel_f_vector[i] != 0) {
f_vector.push_back(prel_f_vector[i]);
total_nr_faces += prel_f_vector[i];
}
}
// cout << " Total " << FaceLattice.size() << endl;
if (verbose) {
verboseOutput() << endl << "Total number of faces computed " << total_nr_faces << endl;
verboseOutput() << "f-vector " << f_vector;
}
}
template <typename Integer>
vector<size_t> FaceLattice<Integer>::getFVector() {
return f_vector;
}
template <typename Integer>
void FaceLattice<Integer>::get(map<dynamic_bitset, int>& FaceLatticeOutput) {
swap(FaceLat, FaceLatticeOutput);
}
template <typename Integer>
void FaceLattice<Integer>::get(vector<dynamic_bitset>& SuppHypIndOutput) {
swap(SuppHypInd, SuppHypIndOutput);
}
#ifndef NMZ_MIC_OFFLOAD // offload with long is not supported
template class FaceLattice<long>;
#endif
template class FaceLattice<long long>;
template class FaceLattice<mpz_class>;
#ifdef ENFNORMALIZ
template class FaceLattice<renf_elem_class>;
#endif
} // namespace libnormaliz
|