1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
|
/*
* Normaliz
* Copyright (C) 2007-2022 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
//---------------------------------------------------------------------------
#ifndef LIBNORMALIZ_VECTOR_OPERATIONS_H
#define LIBNORMALIZ_VECTOR_OPERATIONS_H
//---------------------------------------------------------------------------
#include <vector>
#include <ostream>
#include <list>
#include "libnormaliz/general.h"
#include "libnormaliz/integer.h"
// #include "libnormaliz/convert.h"
#include "libnormaliz/dynamic_bitset.h"
#include "libnormaliz/my_omp.h"
#ifdef NMZ_FLINT
#include "flint/flint.h"
#include "flint/fmpq_poly.h"
#endif
namespace libnormaliz {
using std::vector;
//---------------------------------------------------------------------------
// Output
//---------------------------------------------------------------------------
template <typename T>
std::ostream& operator<<(std::ostream& out, const vector<T>& vec) {
for (size_t i = 0; i < vec.size(); ++i) {
out << vec[i] << " ";
}
out << std::endl;
return out;
}
//---------------------------------------------------------------------------
// Prototypes for vector_operations.cpp
//---------------------------------------------------------------------------
template <typename Integer>
Integer v_scalar_product(const vector<Integer>& a, const vector<Integer>& b);
template <typename Integer>
Integer v_make_prime(vector<Integer>& v);
nmz_float l1norm(vector<nmz_float>& v);
template <typename Integer>
void v_scalar_division(vector<Integer>& v, const Integer scalar);
// special version of order_by_perm (below) since special swap is needed
void order_by_perm_bool(vector<bool>& v, const vector<key_t>& permfix);
template <typename Integer>
vector<Integer> v_select_coordinates(const vector<Integer>& v, const vector<key_t> projection_key);
template <typename Integer>
dynamic_bitset v_support(const vector<Integer>& v);
template <typename Integer>
vector<Integer> v_insert_coordinates(const vector<Integer>& v, const vector<key_t> projection_key, const size_t nr_cols);
//---------------------------------------------------------------------------
// Templated functions
//---------------------------------------------------------------------------
// returns the scalar product of the truncations of vectors a and b to minimum of lengths
// template<typename Integer>
template <typename Integer>
Integer v_scalar_product_vectors_unequal_lungth(const vector<Integer>& a, const vector<Integer>& b) {
size_t n = std::min(a.size(), b.size());
vector<Integer> trunc_a = a;
vector<Integer> trunc_b = b;
trunc_a.resize(n);
trunc_b.resize(n);
return v_scalar_product(trunc_a, trunc_b);
}
// v = v * scalar
template <typename Integer>
void v_scalar_multiplication(vector<Integer>& v, const Integer scalar) {
size_t i, size = v.size();
for (i = 0; i < size; i++) {
v[i] *= scalar;
}
}
// make random vector of length n with entries between -m and m
template <typename Integer>
vector<Integer> v_random(size_t n, long m) {
vector<Integer> result(n);
for (size_t i = 0; i < n; ++i)
result[i] = rand() % (2 * m + 1) - m;
return result;
}
template <typename Integer>
bool compare_last(const vector<Integer>& a, const vector<Integer>& b) {
return a.back() < b.back();
}
// swaps entry i and j of the vector<bool> v
void v_bool_entry_swap(vector<bool>& v, size_t i, size_t j);
vector<key_t> identity_key(size_t n);
vector<key_t> reverse_key(size_t n);
vector<key_t> random_key(size_t n);
template <typename T>
void order_by_perm(vector<T>& v, const vector<key_t>& permfix) {
// orders v "in place", v --> w such that
// w[i]=v[permfix[i]]
// if v is the map i --> v[i], then the resulting map is v \circ permfix
vector<key_t> perm = permfix; // we may want to use permfix a second time
vector<key_t> inv(perm.size());
for (key_t i = 0; i < perm.size(); ++i)
inv[perm[i]] = i;
for (key_t i = 0; i < perm.size(); ++i) {
key_t j = perm[i];
std::swap(v[i], v[perm[i]]);
std::swap(perm[i], perm[inv[i]]);
std::swap(inv[i], inv[j]);
}
}
inline vector<key_t> conjugate_perm(const vector<key_t>& p, const vector<key_t>& k) {
// p is a permutation of [0,n-1], i --> p[i]
// k is an injective map [0,m-1] --> [0,n-1]
// k^{-1} is the partially defined inverse
// computes k^{-1} p k
// works only if Image(k) is stable under p.
vector<int> inv_k(p.size(), -1);
for (size_t i = 0; i < k.size(); ++i) {
inv_k[k[i]] = static_cast<int>(i);
}
vector<key_t> conj(k.size());
for (size_t i = 0; i < k.size(); ++i) {
assert(inv_k[k[i]] != -1);
conj[i] = inv_k[p[k[i]]];
}
return conj;
}
template <typename T>
void sort_individual_vectors(vector<vector<T> >& vv) {
for (size_t i = 0; i < vv.size(); ++i)
sort(vv[i].begin(), vv[i].end());
}
template <typename Integer>
bool v_scalar_mult_mod_inner(vector<Integer>& w, const vector<Integer>& v, const Integer& scalar, const Integer& modulus) {
size_t i, size = v.size();
Integer test;
for (i = 0; i < size; i++) {
test = v[i] * scalar;
if (!check_range(test)) {
return false;
}
w[i] = test % modulus;
if (w[i] < 0)
w[i] += modulus;
}
return true;
}
template <typename Integer>
vector<Integer> v_scalar_mult_mod(const vector<Integer>& v, const Integer& scalar, const Integer& modulus);
//---------------------------------------------------------------------------
/*
template <typename Integer>
size_t v_nr_negative(const vector<Integer>& v) {
size_t tmp = 0;
for (size_t i = 0; i < v.size(); ++i) {
if (v[i] < 0)
tmp++;
}
return tmp;
}
*/
//---------------------------------------------------------------------------
template <typename Integer>
bool v_non_negative(const vector<Integer>& v) {
for (size_t i = 0; i < v.size(); ++i) {
if (v[i] < 0)
return false;
}
return true;
}
//---------------------------------------------------------------------------
/*
// returns a key vector containing the positions of non-zero entrys of v
template <typename Integer>
vector<key_t> v_non_zero_pos(const vector<Integer>& v) {
vector<key_t> key;
size_t size = v.size();
key.reserve(size);
for (key_t i = 0; i < size; i++) {
if (v[i] != 0) {
key.push_back(i);
}
}
return key;
}
*/
//---------------------------------------------------------------------------
// returns the vector of absolute values, does not change the argument
template <typename Integer>
vector<Integer> v_abs_value(vector<Integer>& v) {
size_t i, size = v.size();
vector<Integer> w = v;
for (i = 0; i < size; i++) {
if (v[i] < 0)
w[i] = Iabs(v[i]);
}
return w;
}
//---------------------------------------------------------------------------
// returns gcd of the elements of v
template <typename Integer>
inline Integer v_gcd(const vector<Integer>& v) {
size_t i, size = v.size();
Integer g = 0;
for (i = 0; i < size; i++) {
g = libnormaliz::gcd(g, v[i]);
if (g == 1) {
return 1;
}
}
return g;
}
template <>
inline mpq_class v_gcd(const vector<mpq_class>& v) {
size_t i, size = v.size();
mpz_class g = 0;
for (i = 0; i < size; i++) {
g = libnormaliz::gcd(g, v[i].get_num());
if (g == 1) {
return 1;
}
}
return mpq_class(g);
}
#ifdef ENFNORMALIZ
inline mpz_class get_gcd_num(const renf_elem_class& x) {
vector<mpz_class> numerator = x.num_vector();
return v_gcd(numerator);
}
template <>
inline renf_elem_class v_gcd(const vector<renf_elem_class>& v) {
size_t i, size = v.size();
mpz_class g = 0;
mpz_class this_gcd;
for (i = 0; i < size; i++) {
// this_gcd=v[i].num_content();
this_gcd = get_gcd_num(v[i]);
g = libnormaliz::gcd(g, this_gcd);
if (g == 1) {
return 1;
}
}
return renf_elem_class(g);
}
#endif
//---------------------------------------------------------------------------
// returns lcm of the elements of v
template <typename Integer>
Integer v_lcm(const vector<Integer>& v) {
size_t i, size = v.size();
Integer g = 1;
for (i = 0; i < size; i++) {
g = libnormaliz::lcm(g, v[i]);
if (g == 0) {
return 0;
}
}
return g;
}
// returns lcm of the elements of v from index k up to index j
template <typename Integer>
Integer v_lcm_to(const vector<Integer>& v, const size_t k, const size_t j) {
assert(k <= j);
size_t i;
Integer g = 1;
for (i = k; i <= j; i++) {
g = libnormaliz::lcm(g, v[i]);
if (g == 0) {
return 0;
}
}
return g;
}
//---------------------------------------------------------------------------
template <typename Integer>
vector<Integer>& v_abs(vector<Integer>& v) {
size_t i, size = v.size();
for (i = 0; i < size; i++) {
if (v[i] < 0)
v[i] = Iabs(v[i]);
}
return v;
}
//---------------------------------------------------------------------------
// returns a new vector with the content of a extended by b
template <typename T>
vector<T> v_merge(const vector<T>& a, const T& b) {
size_t s = a.size();
vector<T> c(s + 1);
for (size_t i = 0; i < s; i++) {
c[i] = a[i];
}
c[s] = b;
return c;
}
//---------------------------------------------------------------------------
template <typename T>
vector<T> v_merge(const vector<T>& a, const vector<T>& b) {
size_t s1 = a.size(), s2 = b.size(), i;
vector<T> c(s1 + s2);
for (i = 0; i < s1; i++) {
c[i] = a[i];
}
for (i = 0; i < s2; i++) {
c[s1 + i] = b[i];
}
return c;
}
//---------------------------------------------------------------------------
template <typename Integer>
void v_reduction_modulo(vector<Integer>& v, const Integer& modulo) {
size_t i, size = v.size();
for (i = 0; i < size; i++) {
v[i] = v[i] % modulo;
if (v[i] < 0) {
v[i] = v[i] + modulo;
}
}
}
//---------------------------------------------------------------------------
template <typename Integer>
vector<Integer>& v_add_to_mod(vector<Integer>& a, const vector<Integer>& b, const Integer& m) {
// assert(a.size() == b.size());
size_t i, s = a.size();
for (i = 0; i < s; i++) {
// a[i] = (a[i]+b[i])%m;
if ((a[i] += b[i]) >= m) {
a[i] -= m;
}
}
return a;
}
//---------------------------------------------------------------------------
template <typename Integer>
bool v_is_zero(const vector<Integer>& v) {
for (size_t i = 0; i < v.size(); ++i) {
if (v[i] != 0)
return false;
}
return true;
}
//---------------------------------------------------------------------------
template <typename Integer>
vector<Integer> v_add(const vector<Integer>& a, const vector<Integer>& b) {
assert(a.size() == b.size());
size_t i, s = a.size();
vector<Integer> d(s);
for (i = 0; i < s; i++) {
d[i] = a[i] + b[i];
}
return d;
}
//---------------------------------------------------------------------------
template <typename Integer>
void v_add_result(vector<Integer>& result, const size_t s, const vector<Integer>& a, const vector<Integer>& b) {
assert(a.size() == b.size() && a.size() == result.size());
size_t i;
// vector<Integer> d(s);
for (i = 0; i < s; i++) {
result[i] = a[i] + b[i];
}
// return d;
}
//---------------------------------------------------------------------------
/*
// returns a new vector with the last size entries of v
template <typename T>
vector<T> v_cut_front(const vector<T>& v, size_t size) {
size_t s, k;
vector<T> tmp(size);
s = v.size() - size;
for (k = 0; k < size; k++) {
tmp[k] = v[s + k];
}
return tmp;
}
*/
//---------------------------------------------------------------------------
template <typename Integer>
bool v_is_symmetric(const vector<Integer>& v) {
for (size_t i = 0; i < v.size() / 2; ++i) {
if (v[i] != v[v.size() - 1 - i])
return false;
}
return true;
}
//---------------------------------------------------------------------------
template <typename Integer>
void v_el_trans(const vector<Integer>& av, vector<Integer>& bv, const Integer& F, const size_t start) {
size_t i, n = av.size();
auto a = av.begin();
auto b = bv.begin();
a += start;
b += start;
n -= start;
if (n >= 8) {
for (i = 0; i < (n >> 3); ++i, a += 8, b += 8) {
b[0] += F * a[0];
b[1] += F * a[1];
b[2] += F * a[2];
b[3] += F * a[3];
b[4] += F * a[4];
b[5] += F * a[5];
b[6] += F * a[6];
b[7] += F * a[7];
}
n -= i << 3;
}
if (n >= 4) {
b[0] += F * a[0];
b[1] += F * a[1];
b[2] += F * a[2];
b[3] += F * a[3];
n -= 4;
a += 4;
b += 4;
}
if (n >= 2) {
b[0] += F * a[0];
b[1] += F * a[1];
n -= 2;
a += 2;
b += 2;
}
if (n > 0)
b[0] += F * a[0];
for (size_t i = 0; i < bv.size(); ++i)
if (!check_range(bv[i]))
throw ArithmeticException("Vector entry out of range. Imminent danger of arithmetic overflow.");
}
/*
template <typename Integer>
Integer v_max_abs(const vector<Integer>& v) {
Integer tmp = 0;
for (size_t i = 0; i < v.size(); i++) {
if (Iabs(v[i]) > tmp)
tmp = Iabs(v[i]);
}
return tmp;
}
*/
template <typename Integer>
Integer v_standardize(vector<Integer>& v, const vector<Integer>& LF);
template <typename Integer>
Integer v_standardize(vector<Integer>& v);
vector<bool> bitset_to_bool(const dynamic_bitset& BS);
vector<key_t> bitset_to_key(const dynamic_bitset& BS);
dynamic_bitset bool_to_bitset(const vector<bool>& val);
dynamic_bitset key_to_bitset(const vector<key_t>& key, long size);
template <typename Integer>
inline void make_integral(vector<Integer>& vec) {
}
// from the old renfxx.h
#ifdef ENFNORMALIZ
inline void vector2fmpq_poly(fmpq_poly_t flp, const std::vector<mpq_class>& poly_vector) {
slong n = (slong)poly_vector.size();
fmpq_poly_fit_length(flp, n);
for (size_t i = 0; i < poly_vector.size(); ++i) {
fmpq_poly_set_coeff_mpq(flp, (slong)i, poly_vector[i].get_mpq_t());
}
}
inline void fmpq_poly2vector(std::vector<mpq_class>& poly_vector, const fmpq_poly_t flp) {
slong length = fmpq_poly_length(flp);
if (length == 0) {
poly_vector.push_back(mpz_class(0));
return;
}
poly_vector.resize(length);
for (slong i = 0; i < length; i++) {
mpq_t current_coeff;
mpq_init(current_coeff);
fmpq_poly_get_coeff_mpq(current_coeff, flp, (slong)i);
poly_vector[i] = mpq_class(current_coeff);
}
}
template <>
inline void make_integral(vector<renf_elem_class>& vec) {
mpz_class denom = 1;
for (size_t i = 0; i < vec.size(); ++i) {
denom = libnormaliz::lcm(denom, vec[i].den());
}
renf_elem_class fact(denom);
if (fact != 1)
v_scalar_multiplication(vec, fact);
}
#endif
template <>
inline void make_integral(vector<mpq_class>& vec) {
mpz_class denom = 1;
for (size_t i = 0; i < vec.size(); ++i) {
denom = libnormaliz::lcm(denom, vec[i].get_den());
}
mpq_class fact(denom);
if (fact != 1)
v_scalar_multiplication(vec, fact);
}
//=============================================================
// old vector_operations.cpp
template <typename Integer>
Integer v_scalar_product(const vector<Integer>& av, const vector<Integer>& bv) {
// loop stretching ; brings some small speed improvement
Integer ans = 0;
size_t i, n = av.size();
#if 0 // #ifdef __MIC__ // not for newer compiler versions
// this version seems to be better vectorizable on the mic
for (i=0; i<n; ++i)
ans += av[i]*bv[i];
#else // __MIC__
auto a = av.begin(), b = bv.begin();
if (n >= 16) {
for (i = 0; i < (n >> 4); ++i, a += 16, b += 16) {
ans += a[0] * b[0];
ans += a[1] * b[1];
ans += a[2] * b[2];
ans += a[3] * b[3];
ans += a[4] * b[4];
ans += a[5] * b[5];
ans += a[6] * b[6];
ans += a[7] * b[7];
ans += a[8] * b[8];
ans += a[9] * b[9];
ans += a[10] * b[10];
ans += a[11] * b[11];
ans += a[12] * b[12];
ans += a[13] * b[13];
ans += a[14] * b[14];
ans += a[15] * b[15];
}
n -= i << 4;
}
if (n >= 8) {
ans += a[0] * b[0];
ans += a[1] * b[1];
ans += a[2] * b[2];
ans += a[3] * b[3];
ans += a[4] * b[4];
ans += a[5] * b[5];
ans += a[6] * b[6];
ans += a[7] * b[7];
n -= 8;
a += 8;
b += 8;
}
if (n >= 4) {
ans += a[0] * b[0];
ans += a[1] * b[1];
ans += a[2] * b[2];
ans += a[3] * b[3];
n -= 4;
a += 4;
b += 4;
}
if (n >= 2) {
ans += a[0] * b[0];
ans += a[1] * b[1];
n -= 2;
a += 2;
b += 2;
}
if (n > 0)
ans += a[0] * b[0];
#endif // __MIC__
if (!check_range(ans)) {
#pragma omp atomic
GMP_scal_prod++;
// cout << "av " << av;
// cout << "bv " << bv;
vector<mpz_class> mpz_a(av.size()), mpz_b(bv.size());
convert(mpz_a, av);
convert(mpz_b, bv);
convert(ans, v_scalar_product(mpz_a, mpz_b));
}
return ans;
}
template <>
inline nmz_float v_scalar_product(const vector<nmz_float>& av, const vector<nmz_float>& bv) {
// loop stretching ; brings some small speed improvement
nmz_float ans = 0;
size_t i, n = av.size();
auto a = av.begin(), b = bv.begin();
if (n >= 16) {
for (i = 0; i < (n >> 4); ++i, a += 16, b += 16) {
ans += a[0] * b[0];
ans += a[1] * b[1];
ans += a[2] * b[2];
ans += a[3] * b[3];
ans += a[4] * b[4];
ans += a[5] * b[5];
ans += a[6] * b[6];
ans += a[7] * b[7];
ans += a[8] * b[8];
ans += a[9] * b[9];
ans += a[10] * b[10];
ans += a[11] * b[11];
ans += a[12] * b[12];
ans += a[13] * b[13];
ans += a[14] * b[14];
ans += a[15] * b[15];
}
n -= i << 4;
}
if (n >= 8) {
ans += a[0] * b[0];
ans += a[1] * b[1];
ans += a[2] * b[2];
ans += a[3] * b[3];
ans += a[4] * b[4];
ans += a[5] * b[5];
ans += a[6] * b[6];
ans += a[7] * b[7];
n -= 8;
a += 8;
b += 8;
}
if (n >= 4) {
ans += a[0] * b[0];
ans += a[1] * b[1];
ans += a[2] * b[2];
ans += a[3] * b[3];
n -= 4;
a += 4;
b += 4;
}
if (n >= 2) {
ans += a[0] * b[0];
ans += a[1] * b[1];
n -= 2;
a += 2;
b += 2;
}
if (n > 0)
ans += a[0] * b[0];
return ans;
}
#ifdef ENFNORMALIZ
template <>
inline renf_elem_class v_scalar_product(const vector<renf_elem_class>& av, const vector<renf_elem_class>& bv) {
// loop stretching ; brings some small speed improvement
assert(av.size() == bv.size());
renf_elem_class ans = 0;
size_t n = av.size();
renf_elem_class help;
for (size_t i = 0; i < n; ++i) {
if (av[i] != 0 && bv[i] != 0) {
ans += av[i] * bv[i];
/* help = av[i];
help *= bv[i]; // does not seem to help
ans += help;*/
}
}
return ans;
}
#endif
//---------------------------------------------------------------------------
template <>
inline mpq_class v_scalar_product(const vector<mpq_class>& av, const vector<mpq_class>& bv) {
// loop stretching ; brings some small speed improvement
assert(false);
return 0;
}
/* body removed for the time being
mpq_class ans = 0;
size_t i, n = av.size();
#if 0 // #ifdef __MIC__ // not for newer compiler versions
// this version seems to be better vectorizable on the mic
for (i=0; i<n; ++i)
ans += av[i]*bv[i];
#else // __MIC__
auto a = av.begin(), b = bv.begin();
if (n >= 16) {
for (i = 0; i < (n >> 4); ++i, a += 16, b += 16) {
ans += a[0] * b[0];
ans += a[1] * b[1];
ans += a[2] * b[2];
ans += a[3] * b[3];
ans += a[4] * b[4];
ans += a[5] * b[5];
ans += a[6] * b[6];
ans += a[7] * b[7];
ans += a[8] * b[8];
ans += a[9] * b[9];
ans += a[10] * b[10];
ans += a[11] * b[11];
ans += a[12] * b[12];
ans += a[13] * b[13];
ans += a[14] * b[14];
ans += a[15] * b[15];
}
n -= i << 4;
}
if (n >= 8) {
ans += a[0] * b[0];
ans += a[1] * b[1];
ans += a[2] * b[2];
ans += a[3] * b[3];
ans += a[4] * b[4];
ans += a[5] * b[5];
ans += a[6] * b[6];
ans += a[7] * b[7];
n -= 8;
a += 8;
b += 8;
}
if (n >= 4) {
ans += a[0] * b[0];
ans += a[1] * b[1];
ans += a[2] * b[2];
ans += a[3] * b[3];
n -= 4;
a += 4;
b += 4;
}
if (n >= 2) {
ans += a[0] * b[0];
ans += a[1] * b[1];
n -= 2;
a += 2;
b += 2;
}
if (n > 0)
ans += a[0] * b[0];
#endif // __MIC__
return ans;
}
*/
//---------------------------------------------------------------------------
template <typename Integer>
vector<Integer> v_select_coordinates(const vector<Integer>& v, const vector<key_t> projection_key) {
vector<Integer> w(projection_key.size());
for (size_t i = 0; i < w.size(); ++i)
w[i] = v[projection_key[i]];
return w;
}
//---------------------------------------------------------------------------
template <typename Integer>
dynamic_bitset v_support(const vector<Integer>& v){
dynamic_bitset supp(v.size());
for(size_t i = 0; i < v.size(); i++){
if(v[i] != 0)
supp[i] = 1;
}
return supp;
}
//---------------------------------------------------------------------------
template <typename Integer>
void v_transfer_coordinates(vector<Integer>& v, const vector<Integer>& w, const vector<key_t> insertion_key) {
for (size_t i = 0; i< insertion_key.size(); ++i)
v[insertion_key[i]] = w[i];
}
//---------------------------------------------------------------------------
template <typename Integer>
vector<Integer> v_insert_coordinates(const vector<Integer>& v, const vector<key_t> projection_key, const size_t nr_cols) {
vector<Integer> w(nr_cols);
for (size_t i = 0; i < projection_key.size(); ++i) {
assert(projection_key[i] < nr_cols);
w[projection_key[i]] = v[i];
}
return w;
}
//---------------------------------------------------------------------------
inline nmz_float l1norm(vector<nmz_float>& v) {
size_t i, size = v.size();
nmz_float g = 0;
for (i = 0; i < size; i++) {
if (Iabs(v[i]) > nmz_epsilon)
g += Iabs(v[i]);
else
v[i] = 0;
}
return g;
}
/*
mpq_class l1norm(vector<mpq_class>& v) {
size_t i, size = v.size();
mpq_class g = 0;
for (i = 0; i < size; i++) {
if (Iabs(v[i]) > 0)
g += Iabs(v[i]);
else
v[i] = 0;
}
return g;
}
*/
/* for nmz_float is norms the vector to l_1 norm 1.
*
* for mpq_class and renf_elem_class it makes the vector coefficients integral
*
* then it extracts the gcd of the coefficients
*/
template <typename Integer>
Integer v_make_prime(vector<Integer>& v) {
size_t i, size = v.size();
#ifdef ENFNORMALIZ
if (using_renf<Integer>()) {
v_standardize(v);
make_integral(v);
return (1);
}
#endif
if (using_mpq_class<Integer>())
make_integral(v);
Integer g = v_gcd(v);
if (g != 0 && g != 1) {
for (i = 0; i < size; i++) {
v[i] /= g;
}
}
return g;
}
template <>
inline nmz_float v_make_prime(vector<nmz_float>& v) {
size_t i, size = v.size();
nmz_float g = l1norm(v);
if (g != 0) {
for (i = 0; i < size; i++) {
v[i] /= g;
}
}
return g;
}
//---------------------------------------------------------------
// swaps entry i and j of the vector<bool> v
inline void v_bool_entry_swap(vector<bool>& v, size_t i, size_t j) {
if (v[i] != v[j]) {
v[i].flip();
v[j].flip();
}
}
//---------------------------------------------------------------
inline vector<key_t> identity_key(size_t n) {
vector<key_t> key(n);
for (size_t k = 0; k < n; ++k)
key[k] = static_cast<key_t>(k);
return key;
}
inline vector<key_t> reverse_key(size_t n) {
vector<key_t> key(n);
for (size_t k = 0; k < n; ++k)
key[k] = static_cast<key_t>((n - 1) - k);
return key;
}
inline vector<key_t> random_key(size_t n) {
vector<key_t> key = identity_key(n);
for (size_t k = 0; k < 3 * n; ++k)
std::swap(key[rand() % n], key[rand() % n]);
return key;
}
// vector<bool> is special because ordinary swap is not defined for it
inline void order_by_perm_bool(vector<bool>& v, const vector<key_t>& permfix) {
vector<key_t> perm = permfix; // we may want to use permfix a second time
vector<key_t> inv(perm.size());
for (key_t i = 0; i < perm.size(); ++i)
inv[perm[i]] = i;
for (key_t i = 0; i < perm.size(); ++i) {
key_t j = perm[i];
// v.swap(v[i],v[perm[i]]);
v_bool_entry_swap(v, i, perm[i]);
std::swap(perm[i], perm[inv[i]]);
std::swap(inv[i], inv[j]);
}
}
//---------------------------------------------------------------------------
template <typename Integer>
void v_scalar_division(vector<Integer>& v, const Integer scalar) {
size_t i, size = v.size();
assert(scalar != 0);
for (i = 0; i < size; i++) {
assert(v[i] % scalar == 0);
v[i] /= scalar;
}
}
template <>
inline void v_scalar_division(vector<nmz_float>& v, const nmz_float scalar) {
size_t i, size = v.size();
assert(scalar != 0);
for (i = 0; i < size; i++) {
v[i] /= scalar;
}
}
template <>
inline void v_scalar_division(vector<mpq_class>& v, const mpq_class scalar) {
size_t i, size = v.size();
assert(scalar != 0);
for (i = 0; i < size; i++) {
v[i] /= scalar;
}
}
#ifdef ENFNORMALIZ
template <>
inline void v_scalar_division(vector<renf_elem_class>& v, const renf_elem_class scalar) {
size_t i, size = v.size();
assert(scalar != 0);
renf_elem_class fact = 1 / scalar;
for (i = 0; i < size; i++) {
v[i] *= fact;
}
}
#endif
/* v_standardize
*
* defined only for mpq_class, nmz_float and renf_elem_class
*
* makes the value under LF equal to 1 (checks for positivity of value)
*
* or the last component equal to +-1
*/
template <typename Integer>
Integer v_standardize(vector<Integer>& v, const vector<Integer>& LF) {
assert(false);
return 0;
}
template <typename Integer>
Integer v_standardize(vector<Integer>& v) {
vector<Integer> LF;
return v_standardize(v, LF);
}
template <>
inline nmz_float v_standardize(vector<nmz_float>& v, const vector<nmz_float>& LF) {
nmz_float denom = 0;
if (LF.size() == v.size()) {
denom = v_scalar_product(v, LF);
}
if (denom == 0) {
for (long i = (long)v.size() - 1; i >= 0; --i) {
if (v[i] != 0) {
denom = v[i];
break;
}
}
}
denom = Iabs(denom);
if (denom == 0)
return denom;
if (denom != 1)
v_scalar_division(v, denom);
return denom;
}
/*
template <>
mpq_class v_standardize(vector<mpq_class>& v, const vector<mpq_class>& LF) {
mpq_class denom = 0;
if (LF.size() == v.size()) {
denom = v_scalar_product(v, LF);
};
if (denom == 0) {
for (long i = (long)v.size() - 1; i >= 0; --i) {
if (v[i] != 0) {
denom = v[i];
break;
}
}
}
denom = Iabs(denom);
if (denom == 0)
return denom;
if (denom != 1)
v_scalar_division(v, denom);
return denom;
}
*/
#ifdef ENFNORMALIZ
template <>
inline renf_elem_class v_standardize(vector<renf_elem_class>& v, const vector<renf_elem_class>& LF) {
renf_elem_class denom = 0;
if (LF.size() == v.size()) {
denom = v_scalar_product(v, LF);
}
if (denom == 0) {
for (long i = (long)v.size() - 1; i >= 0; --i) {
if (v[i] != 0) {
denom = v[i];
break;
}
}
}
denom = Iabs(denom);
if (denom == 0)
return denom;
if (denom != 1)
v_scalar_division(v, denom);
return denom;
}
#endif
/* Not used presently
// the following function removes the denominators and then extracts the Gcd of the numerators
mpq_class v_standardize(vector<mpq_class>& v, const vector<mpq_class>& LF){
size_t size=v.size();
mpz_class d=1;
for (size_t i = 0; i < size; i++)
//d=lcm(d,v[i].get_den()); // GMP C++ function only available in GMP >= 6.1
mpz_lcm(d.get_mpz_t(), d.get_mpz_t(), v[i].get_den().get_mpz_t());
for (size_t i = 0; i < size; i++)
v[i]*=d;
mpz_class g=0;
for (size_t i = 0; i < size; i++)
//g=gcd(g,v[i].get_num()); // GMP C++ function only available in GMP >= 6.1
mpz_gcd(g.get_mpz_t(), g.get_mpz_t(), v[i].get_num().get_mpz_t());
if (g==0)
return 0;
for (size_t i = 0; i < size; i++)
v[i]/=g;
return 1;
}
*/
template <typename Integer>
vector<Integer> v_scalar_mult_mod(const vector<Integer>& v, const Integer& scalar, const Integer& modulus) {
vector<Integer> w(v.size());
if (v_scalar_mult_mod_inner(w, v, scalar, modulus))
return w;
#pragma omp atomic
GMP_scal_prod++;
vector<mpz_class> x, y(v.size());
convert(x, v);
v_scalar_mult_mod_inner(y, x, convertTo<mpz_class>(scalar), convertTo<mpz_class>(modulus));
return convertTo<vector<Integer> >(y);
}
inline vector<bool> bitset_to_bool(const dynamic_bitset& val) {
vector<bool> ret(val.size());
for (size_t i = 0; i < val.size(); ++i)
ret[i] = val[i];
return ret;
}
inline dynamic_bitset bool_to_bitset(const vector<bool>& val) {
dynamic_bitset ret(val.size());
for (size_t i = 0; i < val.size(); ++i)
ret[i] = val[i];
return ret;
}
inline vector<key_t> bitset_to_key(const dynamic_bitset& val) {
vector<key_t> ret;
for (size_t i = 0; i < val.size(); ++i)
if (val[i])
ret.push_back(static_cast<key_t>(i));
return ret;
}
inline dynamic_bitset key_to_bitset(const vector<key_t>& key, long size) {
dynamic_bitset bs(size);
for (size_t i = 0; i < key.size(); ++i) {
assert(key[i] < size);
bs[key[i]] = 1;
}
return bs;
}
template <typename T>
vector<bool> binary_expansion(T n) {
vector<bool> bin;
while (n != 0) {
bin.push_back(n & 1);
n = n >> 1;
}
return bin;
}
template <typename Integer>
Integer vector_sum_cascade(vector<Integer>& summands) {
size_t step = 2;
bool added = true;
while (added) {
added = false;
#pragma omp parallel for
for (size_t k = 0; k < summands.size(); k += step) {
if (summands.size() > k + step / 2) {
summands[k] += summands[k + step / 2];
added = true;
}
}
step *= 2;
}
return summands[0];
}
//--------------------------------------------------------------
template <typename Integer>
class AdditionPyramid {
public:
vector<Integer> accumulator;
vector<size_t> counter;
size_t capacity;
void add_inner(const Integer summand, const size_t level);
AdditionPyramid();
AdditionPyramid(const size_t& given_capacity);
void add(const Integer& summand);
Integer sum();
void reset();
void set_capacity(const size_t& given_capacity);
};
template <typename Integer>
void AdditionPyramid<Integer>::add_inner(const Integer summand, const size_t level) {
// cout << "***** " << summand << " -- " << level << endl;
assert(level <= counter.size());
if (level == counter.size()) {
counter.resize(level + 1);
accumulator.resize(level + 1);
// cout << "$$$$$ " << accumulator[level] << " -- " << summand << endl;
accumulator[level] = summand;
// cout << "+++ " << accumulator[level] << endl;
return;
}
counter[level]++;
if (counter[level] < capacity) {
accumulator[level] += summand;
return;
}
add_inner(accumulator[level], level + 1);
counter[level] = 0;
accumulator[level] = summand;
}
template <typename Integer>
AdditionPyramid<Integer>::AdditionPyramid() {
}
template <typename Integer>
void AdditionPyramid<Integer>::reset() {
counter.clear();
accumulator.clear();
}
template <typename Integer>
AdditionPyramid<Integer>::AdditionPyramid(const size_t& given_capacity) {
capacity = given_capacity;
reset();
}
template <typename Integer>
void AdditionPyramid<Integer>::set_capacity(const size_t& given_capacity) {
capacity = given_capacity;
}
template <typename Integer>
Integer AdditionPyramid<Integer>::sum() {
Integer our_sum; // this version works also for CoCoALib::Bigrat
our_sum = 0;
for (size_t i = 0; i < accumulator.size(); ++i)
our_sum += accumulator[i];
return our_sum;
}
template <typename Integer>
void AdditionPyramid<Integer>::add(const Integer& summand) {
if (counter.size() > 0) {
if (counter[0] < capacity - 1) {
counter[0]++;
accumulator[0] += summand;
return;
}
}
add_inner(summand, 0);
}
} // namespace libnormaliz
//---------------------------------------------------------------------------
#endif
//---------------------------------------------------------------------------
|