File: vector_operations.h

package info (click to toggle)
normaliz 3.9.4%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 27,624 kB
  • sloc: cpp: 39,173; makefile: 2,008; python: 715; sh: 6
file content (1362 lines) | stat: -rw-r--r-- 35,835 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
/*
 * Normaliz
 * Copyright (C) 2007-2022  W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 * As an exception, when this program is distributed through (i) the App Store
 * by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
 * by Google Inc., then that store may impose any digital rights management,
 * device limits and/or redistribution restrictions that are required by its
 * terms of service.
 */
//---------------------------------------------------------------------------
#ifndef LIBNORMALIZ_VECTOR_OPERATIONS_H
#define LIBNORMALIZ_VECTOR_OPERATIONS_H
//---------------------------------------------------------------------------

#include <vector>
#include <ostream>
#include <list>

#include "libnormaliz/general.h"
#include "libnormaliz/integer.h"
// #include "libnormaliz/convert.h"
#include "libnormaliz/dynamic_bitset.h"
#include "libnormaliz/my_omp.h"

#ifdef NMZ_FLINT
#include "flint/flint.h"
#include "flint/fmpq_poly.h"
#endif

namespace libnormaliz {
using std::vector;

//---------------------------------------------------------------------------
//				Output
//---------------------------------------------------------------------------

template <typename T>
std::ostream& operator<<(std::ostream& out, const vector<T>& vec) {
    for (size_t i = 0; i < vec.size(); ++i) {
        out << vec[i] << " ";
    }
    out << std::endl;
    return out;
}

//---------------------------------------------------------------------------
//          Prototypes for vector_operations.cpp
//---------------------------------------------------------------------------

template <typename Integer>
Integer v_scalar_product(const vector<Integer>& a, const vector<Integer>& b);

template <typename Integer>
Integer v_make_prime(vector<Integer>& v);

nmz_float l1norm(vector<nmz_float>& v);

template <typename Integer>
void v_scalar_division(vector<Integer>& v, const Integer scalar);

// special version of order_by_perm (below) since special swap is needed
void order_by_perm_bool(vector<bool>& v, const vector<key_t>& permfix);

template <typename Integer>
vector<Integer> v_select_coordinates(const vector<Integer>& v, const vector<key_t> projection_key);
template <typename Integer>
dynamic_bitset v_support(const vector<Integer>& v);
template <typename Integer>
vector<Integer> v_insert_coordinates(const vector<Integer>& v, const vector<key_t> projection_key, const size_t nr_cols);

//---------------------------------------------------------------------------
//         Templated functions
//---------------------------------------------------------------------------

// returns the scalar product of the truncations of vectors a and b to minimum of lengths
// template<typename Integer>
template <typename Integer>
Integer v_scalar_product_vectors_unequal_lungth(const vector<Integer>& a, const vector<Integer>& b) {
    size_t n = std::min(a.size(), b.size());
    vector<Integer> trunc_a = a;
    vector<Integer> trunc_b = b;
    trunc_a.resize(n);
    trunc_b.resize(n);
    return v_scalar_product(trunc_a, trunc_b);
}

// v = v * scalar
template <typename Integer>
void v_scalar_multiplication(vector<Integer>& v, const Integer scalar) {
    size_t i, size = v.size();
    for (i = 0; i < size; i++) {
        v[i] *= scalar;
    }
}

// make random vector of length n with entries between -m and m
template <typename Integer>
vector<Integer> v_random(size_t n, long m) {
    vector<Integer> result(n);
    for (size_t i = 0; i < n; ++i)
        result[i] = rand() % (2 * m + 1) - m;
    return result;
}

template <typename Integer>
bool compare_last(const vector<Integer>& a, const vector<Integer>& b) {
    return a.back() < b.back();
}

// swaps entry i and j of the vector<bool> v
void v_bool_entry_swap(vector<bool>& v, size_t i, size_t j);

vector<key_t> identity_key(size_t n);
vector<key_t> reverse_key(size_t n);
vector<key_t> random_key(size_t n);

template <typename T>
void order_by_perm(vector<T>& v, const vector<key_t>& permfix) {
    // orders v "in place", v --> w such that
    // w[i]=v[permfix[i]]
    // if v is  the map i --> v[i], then the resulting map is v \circ permfix

    vector<key_t> perm = permfix;  // we may want to use permfix a second time
    vector<key_t> inv(perm.size());
    for (key_t i = 0; i < perm.size(); ++i)
        inv[perm[i]] = i;
    for (key_t i = 0; i < perm.size(); ++i) {
        key_t j = perm[i];
        std::swap(v[i], v[perm[i]]);
        std::swap(perm[i], perm[inv[i]]);
        std::swap(inv[i], inv[j]);
    }
}

inline vector<key_t> conjugate_perm(const vector<key_t>& p, const vector<key_t>& k) {
    // p is a permutation of [0,n-1], i --> p[i]
    // k is an injective map [0,m-1] --> [0,n-1]
    // k^{-1} is the partially defined inverse
    // computes   k^{-1} p k
    // works only if Image(k) is stable under p.

    vector<int> inv_k(p.size(), -1);
    for (size_t i = 0; i < k.size(); ++i) {
        inv_k[k[i]] = static_cast<int>(i);
    }
    vector<key_t> conj(k.size());
    for (size_t i = 0; i < k.size(); ++i) {
        assert(inv_k[k[i]] != -1);
        conj[i] = inv_k[p[k[i]]];
    }
    return conj;
}

template <typename T>
void sort_individual_vectors(vector<vector<T> >& vv) {
    for (size_t i = 0; i < vv.size(); ++i)
        sort(vv[i].begin(), vv[i].end());
}

template <typename Integer>
bool v_scalar_mult_mod_inner(vector<Integer>& w, const vector<Integer>& v, const Integer& scalar, const Integer& modulus) {
    size_t i, size = v.size();
    Integer test;
    for (i = 0; i < size; i++) {
        test = v[i] * scalar;
        if (!check_range(test)) {
            return false;
        }
        w[i] = test % modulus;
        if (w[i] < 0)
            w[i] += modulus;
    }
    return true;
}

template <typename Integer>
vector<Integer> v_scalar_mult_mod(const vector<Integer>& v, const Integer& scalar, const Integer& modulus);

//---------------------------------------------------------------------------

/*
template <typename Integer>
size_t v_nr_negative(const vector<Integer>& v) {
    size_t tmp = 0;
    for (size_t i = 0; i < v.size(); ++i) {
        if (v[i] < 0)
            tmp++;
    }
    return tmp;
}
*/
//---------------------------------------------------------------------------

template <typename Integer>
bool v_non_negative(const vector<Integer>& v) {
    for (size_t i = 0; i < v.size(); ++i) {
        if (v[i] < 0)
            return false;
    }
    return true;
}

//---------------------------------------------------------------------------
/*
// returns a key vector containing the positions of non-zero entrys of v
template <typename Integer>
vector<key_t> v_non_zero_pos(const vector<Integer>& v) {
    vector<key_t> key;
    size_t size = v.size();
    key.reserve(size);
    for (key_t i = 0; i < size; i++) {
        if (v[i] != 0) {
            key.push_back(i);
        }
    }
    return key;
}
*/

//---------------------------------------------------------------------------
// returns the vector of absolute values, does not change the argument
template <typename Integer>
vector<Integer> v_abs_value(vector<Integer>& v) {
    size_t i, size = v.size();
    vector<Integer> w = v;
    for (i = 0; i < size; i++) {
        if (v[i] < 0)
            w[i] = Iabs(v[i]);
    }
    return w;
}

//---------------------------------------------------------------------------
// returns gcd of the elements of v
template <typename Integer>
inline Integer v_gcd(const vector<Integer>& v) {
    size_t i, size = v.size();
    Integer g = 0;
    for (i = 0; i < size; i++) {
        g = libnormaliz::gcd(g, v[i]);
        if (g == 1) {
            return 1;
        }
    }
    return g;
}

template <>
inline mpq_class v_gcd(const vector<mpq_class>& v) {
    size_t i, size = v.size();
    mpz_class g = 0;
    for (i = 0; i < size; i++) {
        g = libnormaliz::gcd(g, v[i].get_num());
        if (g == 1) {
            return 1;
        }
    }
    return mpq_class(g);
}

#ifdef ENFNORMALIZ

inline mpz_class get_gcd_num(const renf_elem_class& x) {
    vector<mpz_class> numerator = x.num_vector();
    return v_gcd(numerator);
}

template <>
inline renf_elem_class v_gcd(const vector<renf_elem_class>& v) {
    size_t i, size = v.size();
    mpz_class g = 0;
    mpz_class this_gcd;
    for (i = 0; i < size; i++) {
        // this_gcd=v[i].num_content();
        this_gcd = get_gcd_num(v[i]);
        g = libnormaliz::gcd(g, this_gcd);
        if (g == 1) {
            return 1;
        }
    }
    return renf_elem_class(g);
}
#endif

//---------------------------------------------------------------------------
// returns lcm of the elements of v
template <typename Integer>
Integer v_lcm(const vector<Integer>& v) {
    size_t i, size = v.size();
    Integer g = 1;
    for (i = 0; i < size; i++) {
        g = libnormaliz::lcm(g, v[i]);
        if (g == 0) {
            return 0;
        }
    }
    return g;
}

// returns lcm of the elements of v from index k up to index j
template <typename Integer>
Integer v_lcm_to(const vector<Integer>& v, const size_t k, const size_t j) {
    assert(k <= j);
    size_t i;
    Integer g = 1;
    for (i = k; i <= j; i++) {
        g = libnormaliz::lcm(g, v[i]);
        if (g == 0) {
            return 0;
        }
    }
    return g;
}

//---------------------------------------------------------------------------

template <typename Integer>
vector<Integer>& v_abs(vector<Integer>& v) {
    size_t i, size = v.size();
    for (i = 0; i < size; i++) {
        if (v[i] < 0)
            v[i] = Iabs(v[i]);
    }
    return v;
}

//---------------------------------------------------------------------------
// returns a new vector with the content of a extended by b
template <typename T>
vector<T> v_merge(const vector<T>& a, const T& b) {
    size_t s = a.size();
    vector<T> c(s + 1);
    for (size_t i = 0; i < s; i++) {
        c[i] = a[i];
    }
    c[s] = b;
    return c;
}

//---------------------------------------------------------------------------

template <typename T>
vector<T> v_merge(const vector<T>& a, const vector<T>& b) {
    size_t s1 = a.size(), s2 = b.size(), i;
    vector<T> c(s1 + s2);
    for (i = 0; i < s1; i++) {
        c[i] = a[i];
    }
    for (i = 0; i < s2; i++) {
        c[s1 + i] = b[i];
    }
    return c;
}

//---------------------------------------------------------------------------

template <typename Integer>
void v_reduction_modulo(vector<Integer>& v, const Integer& modulo) {
    size_t i, size = v.size();
    for (i = 0; i < size; i++) {
        v[i] = v[i] % modulo;
        if (v[i] < 0) {
            v[i] = v[i] + modulo;
        }
    }
}

//---------------------------------------------------------------------------

template <typename Integer>
vector<Integer>& v_add_to_mod(vector<Integer>& a, const vector<Integer>& b, const Integer& m) {
    //  assert(a.size() == b.size());
    size_t i, s = a.size();
    for (i = 0; i < s; i++) {
        //      a[i] = (a[i]+b[i])%m;
        if ((a[i] += b[i]) >= m) {
            a[i] -= m;
        }
    }
    return a;
}

//---------------------------------------------------------------------------

template <typename Integer>
bool v_is_zero(const vector<Integer>& v) {
    for (size_t i = 0; i < v.size(); ++i) {
        if (v[i] != 0)
            return false;
    }
    return true;
}

//---------------------------------------------------------------------------

template <typename Integer>
vector<Integer> v_add(const vector<Integer>& a, const vector<Integer>& b) {
    assert(a.size() == b.size());
    size_t i, s = a.size();
    vector<Integer> d(s);
    for (i = 0; i < s; i++) {
        d[i] = a[i] + b[i];
    }
    return d;
}

//---------------------------------------------------------------------------

template <typename Integer>
void v_add_result(vector<Integer>& result, const size_t s, const vector<Integer>& a, const vector<Integer>& b) {
    assert(a.size() == b.size() && a.size() == result.size());
    size_t i;
    // vector<Integer> d(s);
    for (i = 0; i < s; i++) {
        result[i] = a[i] + b[i];
    }
    // return d;
}

//---------------------------------------------------------------------------
/*
// returns a new vector with the last size entries of v
template <typename T>
vector<T> v_cut_front(const vector<T>& v, size_t size) {
    size_t s, k;
    vector<T> tmp(size);
    s = v.size() - size;
    for (k = 0; k < size; k++) {
        tmp[k] = v[s + k];
    }
    return tmp;
}
*/

//---------------------------------------------------------------------------

template <typename Integer>
bool v_is_symmetric(const vector<Integer>& v) {
    for (size_t i = 0; i < v.size() / 2; ++i) {
        if (v[i] != v[v.size() - 1 - i])
            return false;
    }
    return true;
}

//---------------------------------------------------------------------------

template <typename Integer>
void v_el_trans(const vector<Integer>& av, vector<Integer>& bv, const Integer& F, const size_t start) {
    size_t i, n = av.size();

    auto a = av.begin();
    auto b = bv.begin();

    a += start;
    b += start;
    n -= start;

    if (n >= 8) {
        for (i = 0; i < (n >> 3); ++i, a += 8, b += 8) {
            b[0] += F * a[0];
            b[1] += F * a[1];
            b[2] += F * a[2];
            b[3] += F * a[3];
            b[4] += F * a[4];
            b[5] += F * a[5];
            b[6] += F * a[6];
            b[7] += F * a[7];
        }
        n -= i << 3;
    }

    if (n >= 4) {
        b[0] += F * a[0];
        b[1] += F * a[1];
        b[2] += F * a[2];
        b[3] += F * a[3];

        n -= 4;
        a += 4;
        b += 4;
    }

    if (n >= 2) {
        b[0] += F * a[0];
        b[1] += F * a[1];

        n -= 2;
        a += 2;
        b += 2;
    }

    if (n > 0)
        b[0] += F * a[0];

    for (size_t i = 0; i < bv.size(); ++i)
        if (!check_range(bv[i]))
            throw ArithmeticException("Vector entry out of range. Imminent danger of arithmetic overflow.");
}

/*
template <typename Integer>
Integer v_max_abs(const vector<Integer>& v) {
    Integer tmp = 0;
    for (size_t i = 0; i < v.size(); i++) {
        if (Iabs(v[i]) > tmp)
            tmp = Iabs(v[i]);
    }
    return tmp;
}
*/

template <typename Integer>
Integer v_standardize(vector<Integer>& v, const vector<Integer>& LF);

template <typename Integer>
Integer v_standardize(vector<Integer>& v);

vector<bool> bitset_to_bool(const dynamic_bitset& BS);
vector<key_t> bitset_to_key(const dynamic_bitset& BS);
dynamic_bitset bool_to_bitset(const vector<bool>& val);
dynamic_bitset key_to_bitset(const vector<key_t>& key, long size);

template <typename Integer>
inline void make_integral(vector<Integer>& vec) {
}

// from the old renfxx.h

#ifdef ENFNORMALIZ

inline void vector2fmpq_poly(fmpq_poly_t flp, const std::vector<mpq_class>& poly_vector) {
    slong n = (slong)poly_vector.size();

    fmpq_poly_fit_length(flp, n);
    for (size_t i = 0; i < poly_vector.size(); ++i) {
        fmpq_poly_set_coeff_mpq(flp, (slong)i, poly_vector[i].get_mpq_t());
    }
}

inline void fmpq_poly2vector(std::vector<mpq_class>& poly_vector, const fmpq_poly_t flp) {
    slong length = fmpq_poly_length(flp);
    if (length == 0) {
        poly_vector.push_back(mpz_class(0));
        return;
    }
    poly_vector.resize(length);
    for (slong i = 0; i < length; i++) {
        mpq_t current_coeff;
        mpq_init(current_coeff);
        fmpq_poly_get_coeff_mpq(current_coeff, flp, (slong)i);
        poly_vector[i] = mpq_class(current_coeff);
    }
}

template <>
inline void make_integral(vector<renf_elem_class>& vec) {
    mpz_class denom = 1;
    for (size_t i = 0; i < vec.size(); ++i) {
        denom = libnormaliz::lcm(denom, vec[i].den());
    }
    renf_elem_class fact(denom);
    if (fact != 1)
        v_scalar_multiplication(vec, fact);
}
#endif

template <>
inline void make_integral(vector<mpq_class>& vec) {
    mpz_class denom = 1;
    for (size_t i = 0; i < vec.size(); ++i) {
        denom = libnormaliz::lcm(denom, vec[i].get_den());
    }
    mpq_class fact(denom);
    if (fact != 1)
        v_scalar_multiplication(vec, fact);
}

//=============================================================

// old vector_operations.cpp

template <typename Integer>
Integer v_scalar_product(const vector<Integer>& av, const vector<Integer>& bv) {
    // loop stretching ; brings some small speed improvement

    Integer ans = 0;
    size_t i, n = av.size();

#if 0  // #ifdef __MIC__   // not for newer compiler versions
    // this version seems to be better vectorizable on the mic
    for (i=0; i<n; ++i)
        ans += av[i]*bv[i];

#else   // __MIC__
    auto a = av.begin(), b = bv.begin();

    if (n >= 16) {
        for (i = 0; i < (n >> 4); ++i, a += 16, b += 16) {
            ans += a[0] * b[0];
            ans += a[1] * b[1];
            ans += a[2] * b[2];
            ans += a[3] * b[3];
            ans += a[4] * b[4];
            ans += a[5] * b[5];
            ans += a[6] * b[6];
            ans += a[7] * b[7];
            ans += a[8] * b[8];
            ans += a[9] * b[9];
            ans += a[10] * b[10];
            ans += a[11] * b[11];
            ans += a[12] * b[12];
            ans += a[13] * b[13];
            ans += a[14] * b[14];
            ans += a[15] * b[15];
        }

        n -= i << 4;
    }

    if (n >= 8) {
        ans += a[0] * b[0];
        ans += a[1] * b[1];
        ans += a[2] * b[2];
        ans += a[3] * b[3];
        ans += a[4] * b[4];
        ans += a[5] * b[5];
        ans += a[6] * b[6];
        ans += a[7] * b[7];

        n -= 8;
        a += 8;
        b += 8;
    }

    if (n >= 4) {
        ans += a[0] * b[0];
        ans += a[1] * b[1];
        ans += a[2] * b[2];
        ans += a[3] * b[3];

        n -= 4;
        a += 4;
        b += 4;
    }

    if (n >= 2) {
        ans += a[0] * b[0];
        ans += a[1] * b[1];

        n -= 2;
        a += 2;
        b += 2;
    }

    if (n > 0)
        ans += a[0] * b[0];
#endif  // __MIC__

    if (!check_range(ans)) {
#pragma omp atomic
        GMP_scal_prod++;

        // cout << "av " << av;
        // cout << "bv " << bv;
        vector<mpz_class> mpz_a(av.size()), mpz_b(bv.size());
        convert(mpz_a, av);
        convert(mpz_b, bv);
        convert(ans, v_scalar_product(mpz_a, mpz_b));
    }

    return ans;
}

template <>
inline nmz_float v_scalar_product(const vector<nmz_float>& av, const vector<nmz_float>& bv) {
    // loop stretching ; brings some small speed improvement

    nmz_float ans = 0;
    size_t i, n = av.size();

    auto a = av.begin(), b = bv.begin();

    if (n >= 16) {
        for (i = 0; i < (n >> 4); ++i, a += 16, b += 16) {
            ans += a[0] * b[0];
            ans += a[1] * b[1];
            ans += a[2] * b[2];
            ans += a[3] * b[3];
            ans += a[4] * b[4];
            ans += a[5] * b[5];
            ans += a[6] * b[6];
            ans += a[7] * b[7];
            ans += a[8] * b[8];
            ans += a[9] * b[9];
            ans += a[10] * b[10];
            ans += a[11] * b[11];
            ans += a[12] * b[12];
            ans += a[13] * b[13];
            ans += a[14] * b[14];
            ans += a[15] * b[15];
        }

        n -= i << 4;
    }

    if (n >= 8) {
        ans += a[0] * b[0];
        ans += a[1] * b[1];
        ans += a[2] * b[2];
        ans += a[3] * b[3];
        ans += a[4] * b[4];
        ans += a[5] * b[5];
        ans += a[6] * b[6];
        ans += a[7] * b[7];

        n -= 8;
        a += 8;
        b += 8;
    }

    if (n >= 4) {
        ans += a[0] * b[0];
        ans += a[1] * b[1];
        ans += a[2] * b[2];
        ans += a[3] * b[3];

        n -= 4;
        a += 4;
        b += 4;
    }

    if (n >= 2) {
        ans += a[0] * b[0];
        ans += a[1] * b[1];

        n -= 2;
        a += 2;
        b += 2;
    }

    if (n > 0)
        ans += a[0] * b[0];

    return ans;
}

#ifdef ENFNORMALIZ

template <>
inline renf_elem_class v_scalar_product(const vector<renf_elem_class>& av, const vector<renf_elem_class>& bv) {
    // loop stretching ; brings some small speed improvement

    assert(av.size() == bv.size());

    renf_elem_class ans = 0;
    size_t n = av.size();
    renf_elem_class help;

    for (size_t i = 0; i < n; ++i) {
        if (av[i] != 0 && bv[i] != 0) {
            ans += av[i] * bv[i];
            /* help = av[i];
            help *= bv[i]; // does not seem to help
            ans += help;*/
        }
    }
    return ans;
}

#endif

//---------------------------------------------------------------------------

template <>
inline mpq_class v_scalar_product(const vector<mpq_class>& av, const vector<mpq_class>& bv) {
    // loop stretching ; brings some small speed improvement

    assert(false);
    return 0;
}

/* body removed for the time being
    mpq_class ans = 0;
    size_t i, n = av.size();

#if 0  // #ifdef __MIC__   // not for newer compiler versions
    // this version seems to be better vectorizable on the mic
    for (i=0; i<n; ++i)
        ans += av[i]*bv[i];

#else   // __MIC__
    auto a = av.begin(), b = bv.begin();

    if (n >= 16) {
        for (i = 0; i < (n >> 4); ++i, a += 16, b += 16) {
            ans += a[0] * b[0];
            ans += a[1] * b[1];
            ans += a[2] * b[2];
            ans += a[3] * b[3];
            ans += a[4] * b[4];
            ans += a[5] * b[5];
            ans += a[6] * b[6];
            ans += a[7] * b[7];
            ans += a[8] * b[8];
            ans += a[9] * b[9];
            ans += a[10] * b[10];
            ans += a[11] * b[11];
            ans += a[12] * b[12];
            ans += a[13] * b[13];
            ans += a[14] * b[14];
            ans += a[15] * b[15];
        }

        n -= i << 4;
    }

    if (n >= 8) {
        ans += a[0] * b[0];
        ans += a[1] * b[1];
        ans += a[2] * b[2];
        ans += a[3] * b[3];
        ans += a[4] * b[4];
        ans += a[5] * b[5];
        ans += a[6] * b[6];
        ans += a[7] * b[7];

        n -= 8;
        a += 8;
        b += 8;
    }

    if (n >= 4) {
        ans += a[0] * b[0];
        ans += a[1] * b[1];
        ans += a[2] * b[2];
        ans += a[3] * b[3];

        n -= 4;
        a += 4;
        b += 4;
    }

    if (n >= 2) {
        ans += a[0] * b[0];
        ans += a[1] * b[1];

        n -= 2;
        a += 2;
        b += 2;
    }

    if (n > 0)
        ans += a[0] * b[0];
#endif  // __MIC__

    return ans;
}

*/

//---------------------------------------------------------------------------

template <typename Integer>
vector<Integer> v_select_coordinates(const vector<Integer>& v, const vector<key_t> projection_key) {
    vector<Integer> w(projection_key.size());
    for (size_t i = 0; i < w.size(); ++i)
        w[i] = v[projection_key[i]];
    return w;
}

//---------------------------------------------------------------------------
template <typename Integer>
dynamic_bitset v_support(const vector<Integer>& v){
    dynamic_bitset supp(v.size());
    for(size_t i = 0; i < v.size(); i++){
        if(v[i] != 0)
            supp[i] = 1;
    }
    return supp;
}

//---------------------------------------------------------------------------

template <typename Integer>
void v_transfer_coordinates(vector<Integer>& v, const vector<Integer>& w,   const vector<key_t> insertion_key) {
    for (size_t i = 0; i< insertion_key.size(); ++i)
        v[insertion_key[i]] = w[i];
}

//---------------------------------------------------------------------------

template <typename Integer>
vector<Integer> v_insert_coordinates(const vector<Integer>& v, const vector<key_t> projection_key, const size_t nr_cols) {
    vector<Integer> w(nr_cols);
    for (size_t i = 0; i < projection_key.size(); ++i) {
        assert(projection_key[i] < nr_cols);
        w[projection_key[i]] = v[i];
    }
    return w;
}
//---------------------------------------------------------------------------

inline nmz_float l1norm(vector<nmz_float>& v) {
    size_t i, size = v.size();
    nmz_float g = 0;
    for (i = 0; i < size; i++) {
        if (Iabs(v[i]) > nmz_epsilon)
            g += Iabs(v[i]);
        else
            v[i] = 0;
    }
    return g;
}

/*
mpq_class l1norm(vector<mpq_class>& v) {
    size_t i, size = v.size();
    mpq_class g = 0;
    for (i = 0; i < size; i++) {
        if (Iabs(v[i]) > 0)
            g += Iabs(v[i]);
        else
            v[i] = 0;
    }
    return g;
}
*/

/* for nmz_float is norms the vector to l_1 norm 1.
 *
 * for mpq_class and renf_elem_class it makes the vector coefficients integral
 *
 * then it extracts the gcd of the coefficients
 */

template <typename Integer>
Integer v_make_prime(vector<Integer>& v) {
    size_t i, size = v.size();

#ifdef ENFNORMALIZ
    if (using_renf<Integer>()) {
        v_standardize(v);
        make_integral(v);
        return (1);
    }
#endif

    if (using_mpq_class<Integer>())
        make_integral(v);
    Integer g = v_gcd(v);
    if (g != 0 && g != 1) {
        for (i = 0; i < size; i++) {
            v[i] /= g;
        }
    }
    return g;
}

template <>
inline nmz_float v_make_prime(vector<nmz_float>& v) {
    size_t i, size = v.size();
    nmz_float g = l1norm(v);
    if (g != 0) {
        for (i = 0; i < size; i++) {
            v[i] /= g;
        }
    }
    return g;
}

//---------------------------------------------------------------

// swaps entry i and j of the vector<bool> v
inline void v_bool_entry_swap(vector<bool>& v, size_t i, size_t j) {
    if (v[i] != v[j]) {
        v[i].flip();
        v[j].flip();
    }
}

//---------------------------------------------------------------

inline vector<key_t> identity_key(size_t n) {
    vector<key_t> key(n);
    for (size_t k = 0; k < n; ++k)
        key[k] = static_cast<key_t>(k);
    return key;
}

inline vector<key_t> reverse_key(size_t n) {
    vector<key_t> key(n);
    for (size_t k = 0; k < n; ++k)
        key[k] = static_cast<key_t>((n - 1) - k);
    return key;
}

inline vector<key_t> random_key(size_t n) {
    vector<key_t> key = identity_key(n);
    for (size_t k = 0; k < 3 * n; ++k)
        std::swap(key[rand() % n], key[rand() % n]);
    return key;
}

// vector<bool> is special because ordinary swap is not defined for it
inline void order_by_perm_bool(vector<bool>& v, const vector<key_t>& permfix) {
    vector<key_t> perm = permfix;  // we may want to use permfix a second time
    vector<key_t> inv(perm.size());
    for (key_t i = 0; i < perm.size(); ++i)
        inv[perm[i]] = i;
    for (key_t i = 0; i < perm.size(); ++i) {
        key_t j = perm[i];
        // v.swap(v[i],v[perm[i]]);
        v_bool_entry_swap(v, i, perm[i]);
        std::swap(perm[i], perm[inv[i]]);
        std::swap(inv[i], inv[j]);
    }
}

//---------------------------------------------------------------------------

template <typename Integer>
void v_scalar_division(vector<Integer>& v, const Integer scalar) {
    size_t i, size = v.size();
    assert(scalar != 0);
    for (i = 0; i < size; i++) {
        assert(v[i] % scalar == 0);
        v[i] /= scalar;
    }
}

template <>
inline void v_scalar_division(vector<nmz_float>& v, const nmz_float scalar) {
    size_t i, size = v.size();
    assert(scalar != 0);
    for (i = 0; i < size; i++) {
        v[i] /= scalar;
    }
}

template <>
inline void v_scalar_division(vector<mpq_class>& v, const mpq_class scalar) {
    size_t i, size = v.size();
    assert(scalar != 0);
    for (i = 0; i < size; i++) {
        v[i] /= scalar;
    }
}

#ifdef ENFNORMALIZ
template <>
inline void v_scalar_division(vector<renf_elem_class>& v, const renf_elem_class scalar) {
    size_t i, size = v.size();
    assert(scalar != 0);
    renf_elem_class fact = 1 / scalar;
    for (i = 0; i < size; i++) {
        v[i] *= fact;
    }
}
#endif

/* v_standardize
 *
 * defined only for mpq_class, nmz_float and renf_elem_class
 *
 * makes the value under LF equal to 1 (checks for positivity of value)
 *
 * or the last component equal to +-1
 */

template <typename Integer>
Integer v_standardize(vector<Integer>& v, const vector<Integer>& LF) {
    assert(false);
    return 0;
}

template <typename Integer>
Integer v_standardize(vector<Integer>& v) {
    vector<Integer> LF;
    return v_standardize(v, LF);
}

template <>
inline nmz_float v_standardize(vector<nmz_float>& v, const vector<nmz_float>& LF) {
    nmz_float denom = 0;
    if (LF.size() == v.size()) {
        denom = v_scalar_product(v, LF);
    }

    if (denom == 0) {
        for (long i = (long)v.size() - 1; i >= 0; --i) {
            if (v[i] != 0) {
                denom = v[i];
                break;
            }
        }
    }
    denom = Iabs(denom);

    if (denom == 0)
        return denom;
    if (denom != 1)
        v_scalar_division(v, denom);

    return denom;
}

/*
template <>
mpq_class v_standardize(vector<mpq_class>& v, const vector<mpq_class>& LF) {
    mpq_class denom = 0;
    if (LF.size() == v.size()) {
        denom = v_scalar_product(v, LF);
    };

    if (denom == 0) {
        for (long i = (long)v.size() - 1; i >= 0; --i) {
            if (v[i] != 0) {
                denom = v[i];
                break;
            }
        }
    }
    denom = Iabs(denom);

    if (denom == 0)
        return denom;
    if (denom != 1)
        v_scalar_division(v, denom);

    return denom;
}
*/

#ifdef ENFNORMALIZ

template <>
inline renf_elem_class v_standardize(vector<renf_elem_class>& v, const vector<renf_elem_class>& LF) {
    renf_elem_class denom = 0;
    if (LF.size() == v.size()) {
        denom = v_scalar_product(v, LF);
    }

    if (denom == 0) {
        for (long i = (long)v.size() - 1; i >= 0; --i) {
            if (v[i] != 0) {
                denom = v[i];
                break;
            }
        }
    }
    denom = Iabs(denom);

    if (denom == 0)
        return denom;
    if (denom != 1)
        v_scalar_division(v, denom);

    return denom;
}
#endif

/* Not used presently
// the following function removes the denominators and then extracts the Gcd of the numerators
mpq_class v_standardize(vector<mpq_class>& v, const vector<mpq_class>& LF){
    size_t size=v.size();
    mpz_class d=1;
    for (size_t i = 0; i < size; i++)
        //d=lcm(d,v[i].get_den());  // GMP C++ function only available in GMP >= 6.1
        mpz_lcm(d.get_mpz_t(), d.get_mpz_t(), v[i].get_den().get_mpz_t());
    for (size_t i = 0; i < size; i++)
        v[i]*=d;
    mpz_class g=0;
    for (size_t i = 0; i < size; i++)
        //g=gcd(g,v[i].get_num());  //  GMP C++ function only available in GMP >= 6.1
        mpz_gcd(g.get_mpz_t(), g.get_mpz_t(), v[i].get_num().get_mpz_t());
    if (g==0)
        return 0;
    for (size_t i = 0; i < size; i++)
        v[i]/=g;
    return 1;
}
*/

template <typename Integer>
vector<Integer> v_scalar_mult_mod(const vector<Integer>& v, const Integer& scalar, const Integer& modulus) {
    vector<Integer> w(v.size());
    if (v_scalar_mult_mod_inner(w, v, scalar, modulus))
        return w;

#pragma omp atomic
    GMP_scal_prod++;
    vector<mpz_class> x, y(v.size());
    convert(x, v);
    v_scalar_mult_mod_inner(y, x, convertTo<mpz_class>(scalar), convertTo<mpz_class>(modulus));
    return convertTo<vector<Integer> >(y);
}

inline vector<bool> bitset_to_bool(const dynamic_bitset& val) {
    vector<bool> ret(val.size());
    for (size_t i = 0; i < val.size(); ++i)
        ret[i] = val[i];
    return ret;
}

inline dynamic_bitset bool_to_bitset(const vector<bool>& val) {
    dynamic_bitset ret(val.size());
    for (size_t i = 0; i < val.size(); ++i)
        ret[i] = val[i];
    return ret;
}

inline vector<key_t> bitset_to_key(const dynamic_bitset& val) {
    vector<key_t> ret;
    for (size_t i = 0; i < val.size(); ++i)
        if (val[i])
            ret.push_back(static_cast<key_t>(i));
    return ret;
}

inline dynamic_bitset key_to_bitset(const vector<key_t>& key, long size) {
    dynamic_bitset bs(size);
    for (size_t i = 0; i < key.size(); ++i) {
        assert(key[i] < size);
        bs[key[i]] = 1;
    }
    return bs;
}

template <typename T>
vector<bool> binary_expansion(T n) {
    vector<bool> bin;
    while (n != 0) {
        bin.push_back(n & 1);
        n = n >> 1;
    }
    return bin;
}

template <typename Integer>
Integer vector_sum_cascade(vector<Integer>& summands) {
    size_t step = 2;
    bool added = true;
    while (added) {
        added = false;
#pragma omp parallel for
        for (size_t k = 0; k < summands.size(); k += step) {
            if (summands.size() > k + step / 2) {
                summands[k] += summands[k + step / 2];
                added = true;
            }
        }
        step *= 2;
    }
    return summands[0];
}

//--------------------------------------------------------------

template <typename Integer>
class AdditionPyramid {
   public:
    vector<Integer> accumulator;
    vector<size_t> counter;
    size_t capacity;
    void add_inner(const Integer summand, const size_t level);

    AdditionPyramid();
    AdditionPyramid(const size_t& given_capacity);
    void add(const Integer& summand);
    Integer sum();
    void reset();
    void set_capacity(const size_t& given_capacity);
};

template <typename Integer>
void AdditionPyramid<Integer>::add_inner(const Integer summand, const size_t level) {
    // cout << "***** " << summand << " -- " << level << endl;

    assert(level <= counter.size());

    if (level == counter.size()) {
        counter.resize(level + 1);
        accumulator.resize(level + 1);
        // cout << "$$$$$ " << accumulator[level] << " -- " << summand << endl;
        accumulator[level] = summand;
        // cout << "+++ " << accumulator[level] << endl;
        return;
    }

    counter[level]++;

    if (counter[level] < capacity) {
        accumulator[level] += summand;
        return;
    }

    add_inner(accumulator[level], level + 1);
    counter[level] = 0;
    accumulator[level] = summand;
}

template <typename Integer>
AdditionPyramid<Integer>::AdditionPyramid() {
}

template <typename Integer>
void AdditionPyramid<Integer>::reset() {
    counter.clear();
    accumulator.clear();
}

template <typename Integer>
AdditionPyramid<Integer>::AdditionPyramid(const size_t& given_capacity) {
    capacity = given_capacity;
    reset();
}

template <typename Integer>
void AdditionPyramid<Integer>::set_capacity(const size_t& given_capacity) {
    capacity = given_capacity;
}

template <typename Integer>
Integer AdditionPyramid<Integer>::sum() {
    Integer our_sum;  // this version works also for CoCoALib::Bigrat
    our_sum = 0;
    for (size_t i = 0; i < accumulator.size(); ++i)
        our_sum += accumulator[i];
    return our_sum;
}

template <typename Integer>
void AdditionPyramid<Integer>::add(const Integer& summand) {
    if (counter.size() > 0) {
        if (counter[0] < capacity - 1) {
            counter[0]++;
            accumulator[0] += summand;
            return;
        }
    }
    add_inner(summand, 0);
}

}  // namespace libnormaliz

//---------------------------------------------------------------------------
#endif
//---------------------------------------------------------------------------