1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
package utils
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"crypto/x509/pkix"
"encoding/pem"
"errors"
"fmt"
"io"
"io/ioutil"
"math/big"
"time"
"github.com/sirupsen/logrus"
"github.com/theupdateframework/notary"
"github.com/theupdateframework/notary/tuf/data"
"golang.org/x/crypto/ed25519"
)
// CanonicalKeyID returns the ID of the public bytes version of a TUF key.
// On regular RSA/ECDSA TUF keys, this is just the key ID. On X509 RSA/ECDSA
// TUF keys, this is the key ID of the public key part of the key in the leaf cert
func CanonicalKeyID(k data.PublicKey) (string, error) {
if k == nil {
return "", errors.New("public key is nil")
}
switch k.Algorithm() {
case data.ECDSAx509Key, data.RSAx509Key:
return X509PublicKeyID(k)
default:
return k.ID(), nil
}
}
// LoadCertFromPEM returns the first certificate found in a bunch of bytes or error
// if nothing is found. Taken from https://golang.org/src/crypto/x509/cert_pool.go#L85.
func LoadCertFromPEM(pemBytes []byte) (*x509.Certificate, error) {
for len(pemBytes) > 0 {
var block *pem.Block
block, pemBytes = pem.Decode(pemBytes)
if block == nil {
return nil, errors.New("no certificates found in PEM data")
}
if block.Type != "CERTIFICATE" || len(block.Headers) != 0 {
continue
}
cert, err := x509.ParseCertificate(block.Bytes)
if err != nil {
continue
}
return cert, nil
}
return nil, errors.New("no certificates found in PEM data")
}
// X509PublicKeyID returns a public key ID as a string, given a
// data.PublicKey that contains an X509 Certificate
func X509PublicKeyID(certPubKey data.PublicKey) (string, error) {
// Note that this only loads the first certificate from the public key
cert, err := LoadCertFromPEM(certPubKey.Public())
if err != nil {
return "", err
}
pubKeyBytes, err := x509.MarshalPKIXPublicKey(cert.PublicKey)
if err != nil {
return "", err
}
var key data.PublicKey
switch certPubKey.Algorithm() {
case data.ECDSAx509Key:
key = data.NewECDSAPublicKey(pubKeyBytes)
case data.RSAx509Key:
key = data.NewRSAPublicKey(pubKeyBytes)
}
return key.ID(), nil
}
func parseLegacyPrivateKey(block *pem.Block, passphrase string) (data.PrivateKey, error) {
var privKeyBytes []byte
var err error
if x509.IsEncryptedPEMBlock(block) {
privKeyBytes, err = x509.DecryptPEMBlock(block, []byte(passphrase))
if err != nil {
return nil, errors.New("could not decrypt private key")
}
} else {
privKeyBytes = block.Bytes
}
switch block.Type {
case "RSA PRIVATE KEY":
rsaPrivKey, err := x509.ParsePKCS1PrivateKey(privKeyBytes)
if err != nil {
return nil, fmt.Errorf("could not parse DER encoded key: %v", err)
}
tufRSAPrivateKey, err := RSAToPrivateKey(rsaPrivKey)
if err != nil {
return nil, fmt.Errorf("could not convert rsa.PrivateKey to data.PrivateKey: %v", err)
}
return tufRSAPrivateKey, nil
case "EC PRIVATE KEY":
ecdsaPrivKey, err := x509.ParseECPrivateKey(privKeyBytes)
if err != nil {
return nil, fmt.Errorf("could not parse DER encoded private key: %v", err)
}
tufECDSAPrivateKey, err := ECDSAToPrivateKey(ecdsaPrivKey)
if err != nil {
return nil, fmt.Errorf("could not convert ecdsa.PrivateKey to data.PrivateKey: %v", err)
}
return tufECDSAPrivateKey, nil
case "ED25519 PRIVATE KEY":
// We serialize ED25519 keys by concatenating the private key
// to the public key and encoding with PEM. See the
// ED25519ToPrivateKey function.
tufECDSAPrivateKey, err := ED25519ToPrivateKey(privKeyBytes)
if err != nil {
return nil, fmt.Errorf("could not convert ecdsa.PrivateKey to data.PrivateKey: %v", err)
}
return tufECDSAPrivateKey, nil
default:
return nil, fmt.Errorf("unsupported key type %q", block.Type)
}
}
// ParsePEMPrivateKey returns a data.PrivateKey from a PEM encoded private key. It
// supports PKCS#8 as well as RSA/ECDSA (PKCS#1) only in non-FIPS mode and
// attempts to decrypt using the passphrase, if encrypted.
func ParsePEMPrivateKey(pemBytes []byte, passphrase string) (data.PrivateKey, error) {
return parsePEMPrivateKey(pemBytes, passphrase, notary.FIPSEnabled())
}
func parsePEMPrivateKey(pemBytes []byte, passphrase string, fips bool) (data.PrivateKey, error) {
block, _ := pem.Decode(pemBytes)
if block == nil {
return nil, errors.New("no valid private key found")
}
switch block.Type {
case "RSA PRIVATE KEY", "EC PRIVATE KEY", "ED25519 PRIVATE KEY":
if fips {
return nil, fmt.Errorf("%s not supported in FIPS mode", block.Type)
}
return parseLegacyPrivateKey(block, passphrase)
case "ENCRYPTED PRIVATE KEY", "PRIVATE KEY":
if passphrase == "" {
return ParsePKCS8ToTufKey(block.Bytes, nil)
}
return ParsePKCS8ToTufKey(block.Bytes, []byte(passphrase))
default:
return nil, fmt.Errorf("unsupported key type %q", block.Type)
}
}
// CertToPEM is a utility function returns a PEM encoded x509 Certificate
func CertToPEM(cert *x509.Certificate) []byte {
pemCert := pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: cert.Raw})
return pemCert
}
// CertChainToPEM is a utility function returns a PEM encoded chain of x509 Certificates, in the order they are passed
func CertChainToPEM(certChain []*x509.Certificate) ([]byte, error) {
var pemBytes bytes.Buffer
for _, cert := range certChain {
if err := pem.Encode(&pemBytes, &pem.Block{Type: "CERTIFICATE", Bytes: cert.Raw}); err != nil {
return nil, err
}
}
return pemBytes.Bytes(), nil
}
// LoadCertFromFile loads the first certificate from the file provided. The
// data is expected to be PEM Encoded and contain one of more certificates
// with PEM type "CERTIFICATE"
func LoadCertFromFile(filename string) (*x509.Certificate, error) {
certs, err := LoadCertBundleFromFile(filename)
if err != nil {
return nil, err
}
return certs[0], nil
}
// LoadCertBundleFromFile loads certificates from the []byte provided. The
// data is expected to be PEM Encoded and contain one of more certificates
// with PEM type "CERTIFICATE"
func LoadCertBundleFromFile(filename string) ([]*x509.Certificate, error) {
b, err := ioutil.ReadFile(filename)
if err != nil {
return nil, err
}
return LoadCertBundleFromPEM(b)
}
// LoadCertBundleFromPEM loads certificates from the []byte provided. The
// data is expected to be PEM Encoded and contain one of more certificates
// with PEM type "CERTIFICATE"
func LoadCertBundleFromPEM(pemBytes []byte) ([]*x509.Certificate, error) {
certificates := []*x509.Certificate{}
var block *pem.Block
block, pemBytes = pem.Decode(pemBytes)
for ; block != nil; block, pemBytes = pem.Decode(pemBytes) {
if block.Type == "CERTIFICATE" {
cert, err := x509.ParseCertificate(block.Bytes)
if err != nil {
return nil, err
}
certificates = append(certificates, cert)
} else {
return nil, fmt.Errorf("invalid pem block type: %s", block.Type)
}
}
if len(certificates) == 0 {
return nil, fmt.Errorf("no valid certificates found")
}
return certificates, nil
}
// GetLeafCerts parses a list of x509 Certificates and returns all of them
// that aren't CA
func GetLeafCerts(certs []*x509.Certificate) []*x509.Certificate {
var leafCerts []*x509.Certificate
for _, cert := range certs {
if cert.IsCA {
continue
}
leafCerts = append(leafCerts, cert)
}
return leafCerts
}
// GetIntermediateCerts parses a list of x509 Certificates and returns all of the
// ones marked as a CA, to be used as intermediates
func GetIntermediateCerts(certs []*x509.Certificate) []*x509.Certificate {
var intCerts []*x509.Certificate
for _, cert := range certs {
if cert.IsCA {
intCerts = append(intCerts, cert)
}
}
return intCerts
}
// ParsePEMPublicKey returns a data.PublicKey from a PEM encoded public key or certificate.
func ParsePEMPublicKey(pubKeyBytes []byte) (data.PublicKey, error) {
pemBlock, _ := pem.Decode(pubKeyBytes)
if pemBlock == nil {
return nil, errors.New("no valid public key found")
}
switch pemBlock.Type {
case "CERTIFICATE":
cert, err := x509.ParseCertificate(pemBlock.Bytes)
if err != nil {
return nil, fmt.Errorf("could not parse provided certificate: %v", err)
}
err = ValidateCertificate(cert, true)
if err != nil {
return nil, fmt.Errorf("invalid certificate: %v", err)
}
return CertToKey(cert), nil
case "PUBLIC KEY":
keyType, err := keyTypeForPublicKey(pemBlock.Bytes)
if err != nil {
return nil, err
}
return data.NewPublicKey(keyType, pemBlock.Bytes), nil
default:
return nil, fmt.Errorf("unsupported PEM block type %q, expected CERTIFICATE or PUBLIC KEY", pemBlock.Type)
}
}
func keyTypeForPublicKey(pubKeyBytes []byte) (string, error) {
pub, err := x509.ParsePKIXPublicKey(pubKeyBytes)
if err != nil {
return "", fmt.Errorf("unable to parse pem encoded public key: %v", err)
}
switch pub.(type) {
case *ecdsa.PublicKey:
return data.ECDSAKey, nil
case *rsa.PublicKey:
return data.RSAKey, nil
}
return "", fmt.Errorf("unknown public key format")
}
// ValidateCertificate returns an error if the certificate is not valid for notary
// Currently this is only ensuring the public key has a large enough modulus if RSA,
// using a non SHA1 signature algorithm, and an optional time expiry check
func ValidateCertificate(c *x509.Certificate, checkExpiry bool) error {
if (c.NotBefore).After(c.NotAfter) {
return fmt.Errorf("certificate validity window is invalid")
}
// Can't have SHA1 sig algorithm
if c.SignatureAlgorithm == x509.SHA1WithRSA || c.SignatureAlgorithm == x509.DSAWithSHA1 || c.SignatureAlgorithm == x509.ECDSAWithSHA1 {
return fmt.Errorf("certificate with CN %s uses invalid SHA1 signature algorithm", c.Subject.CommonName)
}
// If we have an RSA key, make sure it's long enough
if c.PublicKeyAlgorithm == x509.RSA {
rsaKey, ok := c.PublicKey.(*rsa.PublicKey)
if !ok {
return fmt.Errorf("unable to parse RSA public key")
}
if rsaKey.N.BitLen() < notary.MinRSABitSize {
return fmt.Errorf("RSA bit length is too short")
}
}
if checkExpiry {
now := time.Now()
tomorrow := now.AddDate(0, 0, 1)
// Give one day leeway on creation "before" time, check "after" against today
if (tomorrow).Before(c.NotBefore) || now.After(c.NotAfter) {
return data.ErrCertExpired{CN: c.Subject.CommonName}
}
// If this certificate is expiring within 6 months, put out a warning
if (c.NotAfter).Before(time.Now().AddDate(0, 6, 0)) {
logrus.Warnf("certificate with CN %s is near expiry", c.Subject.CommonName)
}
}
return nil
}
// GenerateKey returns a new private key using the provided algorithm or an
// error detailing why the key could not be generated
func GenerateKey(algorithm string) (data.PrivateKey, error) {
switch algorithm {
case data.ECDSAKey:
return GenerateECDSAKey(rand.Reader)
case data.ED25519Key:
return GenerateED25519Key(rand.Reader)
}
return nil, fmt.Errorf("private key type not supported for key generation: %s", algorithm)
}
// RSAToPrivateKey converts an rsa.Private key to a TUF data.PrivateKey type
func RSAToPrivateKey(rsaPrivKey *rsa.PrivateKey) (data.PrivateKey, error) {
// Get a DER-encoded representation of the PublicKey
rsaPubBytes, err := x509.MarshalPKIXPublicKey(&rsaPrivKey.PublicKey)
if err != nil {
return nil, fmt.Errorf("failed to marshal public key: %v", err)
}
// Get a DER-encoded representation of the PrivateKey
rsaPrivBytes := x509.MarshalPKCS1PrivateKey(rsaPrivKey)
pubKey := data.NewRSAPublicKey(rsaPubBytes)
return data.NewRSAPrivateKey(pubKey, rsaPrivBytes)
}
// GenerateECDSAKey generates an ECDSA Private key and returns a TUF PrivateKey
func GenerateECDSAKey(random io.Reader) (data.PrivateKey, error) {
ecdsaPrivKey, err := ecdsa.GenerateKey(elliptic.P256(), random)
if err != nil {
return nil, err
}
tufPrivKey, err := ECDSAToPrivateKey(ecdsaPrivKey)
if err != nil {
return nil, err
}
logrus.Debugf("generated ECDSA key with keyID: %s", tufPrivKey.ID())
return tufPrivKey, nil
}
// GenerateED25519Key generates an ED25519 private key and returns a TUF
// PrivateKey. The serialization format we use is just the public key bytes
// followed by the private key bytes
func GenerateED25519Key(random io.Reader) (data.PrivateKey, error) {
pub, priv, err := ed25519.GenerateKey(random)
if err != nil {
return nil, err
}
var serialized [ed25519.PublicKeySize + ed25519.PrivateKeySize]byte
copy(serialized[:], pub[:])
copy(serialized[ed25519.PublicKeySize:], priv[:])
tufPrivKey, err := ED25519ToPrivateKey(serialized[:])
if err != nil {
return nil, err
}
logrus.Debugf("generated ED25519 key with keyID: %s", tufPrivKey.ID())
return tufPrivKey, nil
}
// ECDSAToPrivateKey converts an ecdsa.Private key to a TUF data.PrivateKey type
func ECDSAToPrivateKey(ecdsaPrivKey *ecdsa.PrivateKey) (data.PrivateKey, error) {
// Get a DER-encoded representation of the PublicKey
ecdsaPubBytes, err := x509.MarshalPKIXPublicKey(&ecdsaPrivKey.PublicKey)
if err != nil {
return nil, fmt.Errorf("failed to marshal public key: %v", err)
}
// Get a DER-encoded representation of the PrivateKey
ecdsaPrivKeyBytes, err := x509.MarshalECPrivateKey(ecdsaPrivKey)
if err != nil {
return nil, fmt.Errorf("failed to marshal private key: %v", err)
}
pubKey := data.NewECDSAPublicKey(ecdsaPubBytes)
return data.NewECDSAPrivateKey(pubKey, ecdsaPrivKeyBytes)
}
// ED25519ToPrivateKey converts a serialized ED25519 key to a TUF
// data.PrivateKey type
func ED25519ToPrivateKey(privKeyBytes []byte) (data.PrivateKey, error) {
if len(privKeyBytes) != ed25519.PublicKeySize+ed25519.PrivateKeySize {
return nil, errors.New("malformed ed25519 private key")
}
pubKey := data.NewED25519PublicKey(privKeyBytes[:ed25519.PublicKeySize])
return data.NewED25519PrivateKey(*pubKey, privKeyBytes)
}
// ExtractPrivateKeyAttributes extracts role and gun values from private key bytes
func ExtractPrivateKeyAttributes(pemBytes []byte) (data.RoleName, data.GUN, error) {
return extractPrivateKeyAttributes(pemBytes, notary.FIPSEnabled())
}
func extractPrivateKeyAttributes(pemBytes []byte, fips bool) (data.RoleName, data.GUN, error) {
block, _ := pem.Decode(pemBytes)
if block == nil {
return "", "", errors.New("PEM block is empty")
}
switch block.Type {
case "RSA PRIVATE KEY", "EC PRIVATE KEY", "ED25519 PRIVATE KEY":
if fips {
return "", "", fmt.Errorf("%s not supported in FIPS mode", block.Type)
}
case "PRIVATE KEY", "ENCRYPTED PRIVATE KEY":
// do nothing for PKCS#8 keys
default:
return "", "", errors.New("unknown key format")
}
return data.RoleName(block.Headers["role"]), data.GUN(block.Headers["gun"]), nil
}
// ConvertPrivateKeyToPKCS8 converts a data.PrivateKey to PKCS#8 Format
func ConvertPrivateKeyToPKCS8(key data.PrivateKey, role data.RoleName, gun data.GUN, passphrase string) ([]byte, error) {
var (
err error
der []byte
blockType = "PRIVATE KEY"
)
if passphrase == "" {
der, err = ConvertTUFKeyToPKCS8(key, nil)
} else {
blockType = "ENCRYPTED PRIVATE KEY"
der, err = ConvertTUFKeyToPKCS8(key, []byte(passphrase))
}
if err != nil {
return nil, fmt.Errorf("unable to convert to PKCS8 key")
}
headers := make(map[string]string)
if role != "" {
headers["role"] = role.String()
}
if gun != "" {
headers["gun"] = gun.String()
}
return pem.EncodeToMemory(&pem.Block{Bytes: der, Type: blockType, Headers: headers}), nil
}
// CertToKey transforms a single input certificate into its corresponding
// PublicKey
func CertToKey(cert *x509.Certificate) data.PublicKey {
block := pem.Block{Type: "CERTIFICATE", Bytes: cert.Raw}
pemdata := pem.EncodeToMemory(&block)
switch cert.PublicKeyAlgorithm {
case x509.RSA:
return data.NewRSAx509PublicKey(pemdata)
case x509.ECDSA:
return data.NewECDSAx509PublicKey(pemdata)
default:
logrus.Debugf("Unknown key type parsed from certificate: %v", cert.PublicKeyAlgorithm)
return nil
}
}
// CertsToKeys transforms each of the input certificate chains into its corresponding
// PublicKey
func CertsToKeys(leafCerts map[string]*x509.Certificate, intCerts map[string][]*x509.Certificate) map[string]data.PublicKey {
keys := make(map[string]data.PublicKey)
for id, leafCert := range leafCerts {
if key, err := CertBundleToKey(leafCert, intCerts[id]); err == nil {
keys[key.ID()] = key
}
}
return keys
}
// CertBundleToKey creates a TUF key from a leaf certs and a list of
// intermediates
func CertBundleToKey(leafCert *x509.Certificate, intCerts []*x509.Certificate) (data.PublicKey, error) {
certBundle := []*x509.Certificate{leafCert}
certBundle = append(certBundle, intCerts...)
certChainPEM, err := CertChainToPEM(certBundle)
if err != nil {
return nil, err
}
var newKey data.PublicKey
// Use the leaf cert's public key algorithm for typing
switch leafCert.PublicKeyAlgorithm {
case x509.RSA:
newKey = data.NewRSAx509PublicKey(certChainPEM)
case x509.ECDSA:
newKey = data.NewECDSAx509PublicKey(certChainPEM)
default:
logrus.Debugf("Unknown key type parsed from certificate: %v", leafCert.PublicKeyAlgorithm)
return nil, x509.ErrUnsupportedAlgorithm
}
return newKey, nil
}
// NewCertificate returns an X509 Certificate following a template, given a Common Name and validity interval.
func NewCertificate(commonName string, startTime, endTime time.Time) (*x509.Certificate, error) {
serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128)
serialNumber, err := rand.Int(rand.Reader, serialNumberLimit)
if err != nil {
return nil, fmt.Errorf("failed to generate new certificate: %v", err)
}
return &x509.Certificate{
SerialNumber: serialNumber,
Subject: pkix.Name{
CommonName: commonName,
},
NotBefore: startTime,
NotAfter: endTime,
KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageCodeSigning},
BasicConstraintsValid: true,
}, nil
}
|