1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
|
// Copyright (c) 2010-2013 AlphaSierraPapa for the SharpDevelop Team
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using ICSharpCode.NRefactory.Semantics;
using ICSharpCode.NRefactory.TypeSystem;
using ICSharpCode.NRefactory.TypeSystem.Implementation;
namespace ICSharpCode.NRefactory.CSharp.Resolver
{
public enum TypeInferenceAlgorithm
{
/// <summary>
/// C# 4.0 type inference.
/// </summary>
CSharp4,
/// <summary>
/// Improved algorithm (not part of any specification) using FindTypeInBounds for fixing.
/// </summary>
Improved,
/// <summary>
/// Improved algorithm (not part of any specification) using FindTypeInBounds for fixing;
/// uses <see cref="IntersectionType"/> to report all results (in case of ambiguities).
/// </summary>
ImprovedReturnAllResults
}
/// <summary>
/// Implements C# 4.0 Type Inference (§7.5.2).
/// </summary>
public sealed class TypeInference
{
readonly ICompilation compilation;
readonly CSharpConversions conversions;
TypeInferenceAlgorithm algorithm = TypeInferenceAlgorithm.CSharp4;
// determines the maximum generic nesting level; necessary to avoid infinite recursion in 'Improved' mode.
const int maxNestingLevel = 5;
int nestingLevel;
#region Constructor
public TypeInference(ICompilation compilation)
{
if (compilation == null)
throw new ArgumentNullException("compilation");
this.compilation = compilation;
this.conversions = CSharpConversions.Get(compilation);
}
internal TypeInference(ICompilation compilation, CSharpConversions conversions)
{
Debug.Assert(compilation != null);
Debug.Assert(conversions != null);
this.compilation = compilation;
this.conversions = conversions;
}
#endregion
#region Properties
/// <summary>
/// Gets/Sets the type inference algorithm used.
/// </summary>
public TypeInferenceAlgorithm Algorithm {
get { return algorithm; }
set { algorithm = value; }
}
TypeInference CreateNestedInstance()
{
TypeInference c = new TypeInference(compilation, conversions);
c.algorithm = algorithm;
c.nestingLevel = nestingLevel + 1;
return c;
}
#endregion
TP[] typeParameters;
IType[] parameterTypes;
ResolveResult[] arguments;
bool[,] dependencyMatrix;
IList<IType> classTypeArguments;
#region InferTypeArguments (main function)
/// <summary>
/// Performs type inference.
/// </summary>
/// <param name="typeParameters">The method type parameters that should be inferred.</param>
/// <param name="arguments">The arguments passed to the method.</param>
/// <param name="parameterTypes">The parameter types of the method.</param>
/// <param name="success">Out: whether type inference was successful</param>
/// <param name="classTypeArguments">
/// Class type arguments. These are substituted for class type parameters in the formal parameter types
/// when inferring a method group or lambda.
/// </param>
/// <returns>The inferred type arguments.</returns>
public IType[] InferTypeArguments(IList<ITypeParameter> typeParameters, IList<ResolveResult> arguments, IList<IType> parameterTypes, out bool success, IList<IType> classTypeArguments = null)
{
if (typeParameters == null)
throw new ArgumentNullException("typeParameters");
if (arguments == null)
throw new ArgumentNullException("arguments");
if (parameterTypes == null)
throw new ArgumentNullException("parameterTypes");
try {
this.typeParameters = new TP[typeParameters.Count];
for (int i = 0; i < this.typeParameters.Length; i++) {
if (i != typeParameters[i].Index)
throw new ArgumentException("Type parameter has wrong index");
if (typeParameters[i].OwnerType != SymbolKind.Method)
throw new ArgumentException("Type parameter must be owned by a method");
this.typeParameters[i] = new TP(typeParameters[i]);
}
this.parameterTypes = new IType[Math.Min(arguments.Count, parameterTypes.Count)];
this.arguments = new ResolveResult[this.parameterTypes.Length];
for (int i = 0; i < this.parameterTypes.Length; i++) {
if (arguments[i] == null || parameterTypes[i] == null)
throw new ArgumentNullException();
this.arguments[i] = arguments[i];
this.parameterTypes[i] = parameterTypes[i];
}
this.classTypeArguments = classTypeArguments;
Log.WriteLine("Type Inference");
Log.WriteLine(" Signature: M<" + string.Join<TP>(", ", this.typeParameters) + ">"
+ "(" + string.Join<IType>(", ", this.parameterTypes) + ")");
Log.WriteCollection(" Arguments: ", arguments);
Log.Indent();
PhaseOne();
success = PhaseTwo();
Log.Unindent();
Log.WriteLine(" Type inference finished " + (success ? "successfully" : "with errors") + ": " +
"M<" + string.Join(", ", this.typeParameters.Select(tp => tp.FixedTo ?? SpecialType.UnknownType)) + ">");
return this.typeParameters.Select(tp => tp.FixedTo ?? SpecialType.UnknownType).ToArray();
} finally {
Reset();
}
}
void Reset()
{
// clean up so that memory used by the operation can be garbage collected as soon as possible
this.typeParameters = null;
this.parameterTypes = null;
this.arguments = null;
this.dependencyMatrix = null;
this.classTypeArguments = null;
}
/// <summary>
/// Infers type arguments for the <paramref name="typeParameters"/> occurring in the <paramref name="targetType"/>
/// so that the resulting type (after substition) satisfies the given bounds.
/// </summary>
public IType[] InferTypeArgumentsFromBounds(IList<ITypeParameter> typeParameters, IType targetType, IList<IType> lowerBounds, IList<IType> upperBounds, out bool success)
{
if (typeParameters == null)
throw new ArgumentNullException("typeParameters");
if (targetType == null)
throw new ArgumentNullException("targetType");
if (lowerBounds == null)
throw new ArgumentNullException("lowerBounds");
if (upperBounds == null)
throw new ArgumentNullException("upperBounds");
this.typeParameters = new TP[typeParameters.Count];
for (int i = 0; i < this.typeParameters.Length; i++) {
if (i != typeParameters[i].Index)
throw new ArgumentException("Type parameter has wrong index");
this.typeParameters[i] = new TP(typeParameters[i]);
}
foreach (IType b in lowerBounds) {
MakeLowerBoundInference(b, targetType);
}
foreach (IType b in upperBounds) {
MakeUpperBoundInference(b, targetType);
}
IType[] result = new IType[this.typeParameters.Length];
success = true;
for (int i = 0; i < result.Length; i++) {
success &= Fix(this.typeParameters[i]);
result[i] = this.typeParameters[i].FixedTo ?? SpecialType.UnknownType;
}
Reset();
return result;
}
#endregion
sealed class TP
{
public readonly HashSet<IType> LowerBounds = new HashSet<IType>();
public readonly HashSet<IType> UpperBounds = new HashSet<IType>();
public readonly ITypeParameter TypeParameter;
public IType FixedTo;
public bool IsFixed {
get { return FixedTo != null; }
}
public bool HasBounds {
get { return LowerBounds.Count > 0 || UpperBounds.Count > 0; }
}
public TP(ITypeParameter typeParameter)
{
if (typeParameter == null)
throw new ArgumentNullException("typeParameter");
this.TypeParameter = typeParameter;
}
public override string ToString()
{
return TypeParameter.Name;
}
}
sealed class OccursInVisitor : TypeVisitor
{
readonly TP[] tp;
public readonly bool[] Occurs;
public OccursInVisitor(TypeInference typeInference)
{
this.tp = typeInference.typeParameters;
this.Occurs = new bool[tp.Length];
}
public override IType VisitTypeParameter(ITypeParameter type)
{
int index = type.Index;
if (index < tp.Length && tp[index].TypeParameter == type)
Occurs[index] = true;
return base.VisitTypeParameter(type);
}
}
#region Inference Phases
void PhaseOne()
{
// C# 4.0 spec: §7.5.2.1 The first phase
Log.WriteLine("Phase One");
for (int i = 0; i < arguments.Length; i++) {
ResolveResult Ei = arguments[i];
IType Ti = parameterTypes[i];
LambdaResolveResult lrr = Ei as LambdaResolveResult;
if (lrr != null) {
MakeExplicitParameterTypeInference(lrr, Ti);
}
if (lrr != null || Ei is MethodGroupResolveResult) {
// this is not in the spec???
if (OutputTypeContainsUnfixed(Ei, Ti) && !InputTypesContainsUnfixed(Ei, Ti)) {
MakeOutputTypeInference(Ei, Ti);
}
}
if (IsValidType(Ei.Type)) {
if (Ti is ByReferenceType) {
MakeExactInference(Ei.Type, Ti);
} else {
MakeLowerBoundInference(Ei.Type, Ti);
}
}
}
}
static bool IsValidType(IType type)
{
return type.Kind != TypeKind.Unknown && type.Kind != TypeKind.Null;
}
bool PhaseTwo()
{
// C# 4.0 spec: §7.5.2.2 The second phase
Log.WriteLine("Phase Two");
// All unfixed type variables Xi which do not depend on any Xj are fixed.
List<TP> typeParametersToFix = new List<TP>();
foreach (TP Xi in typeParameters) {
if (Xi.IsFixed == false) {
if (!typeParameters.Any((TP Xj) => !Xj.IsFixed && DependsOn(Xi, Xj))) {
typeParametersToFix.Add(Xi);
}
}
}
// If no such type variables exist, all unfixed type variables Xi are fixed for which all of the following hold:
if (typeParametersToFix.Count == 0) {
Log.WriteLine("Type parameters cannot be fixed due to dependency cycles");
Log.WriteLine("Trying to break the cycle by fixing any TPs that have non-empty bounds...");
foreach (TP Xi in typeParameters) {
// Xi has a nonempty set of bounds
if (!Xi.IsFixed && Xi.HasBounds) {
// There is at least one type variable Xj that depends on Xi
if (typeParameters.Any((TP Xj) => DependsOn(Xj, Xi))) {
typeParametersToFix.Add(Xi);
}
}
}
}
// now fix 'em
bool errorDuringFix = false;
foreach (TP tp in typeParametersToFix) {
if (!Fix(tp))
errorDuringFix = true;
}
if (errorDuringFix)
return false;
bool unfixedTypeVariablesExist = typeParameters.Any((TP X) => X.IsFixed == false);
if (typeParametersToFix.Count == 0 && unfixedTypeVariablesExist) {
// If no such type variables exist and there are still unfixed type variables, type inference fails.
Log.WriteLine("Type inference fails: there are still unfixed TPs remaining");
return false;
} else if (!unfixedTypeVariablesExist) {
// Otherwise, if no further unfixed type variables exist, type inference succeeds.
return true;
} else {
// Otherwise, for all arguments ei with corresponding parameter type Ti
for (int i = 0; i < arguments.Length; i++) {
ResolveResult Ei = arguments[i];
IType Ti = parameterTypes[i];
// where the output types (§7.4.2.4) contain unfixed type variables Xj
// but the input types (§7.4.2.3) do not
if (OutputTypeContainsUnfixed(Ei, Ti) && !InputTypesContainsUnfixed(Ei, Ti)) {
// an output type inference (§7.4.2.6) is made for ei with type Ti.
Log.WriteLine("MakeOutputTypeInference for argument #" + i);
MakeOutputTypeInference(Ei, Ti);
}
}
// Then the second phase is repeated.
return PhaseTwo();
}
}
#endregion
#region Input Types / Output Types (§7.5.2.3 + §7.5.2.4)
static readonly IType[] emptyTypeArray = new IType[0];
IType[] InputTypes(ResolveResult e, IType t)
{
// C# 4.0 spec: §7.5.2.3 Input types
LambdaResolveResult lrr = e as LambdaResolveResult;
if (lrr != null && lrr.IsImplicitlyTyped || e is MethodGroupResolveResult) {
IMethod m = GetDelegateOrExpressionTreeSignature(t);
if (m != null) {
IType[] inputTypes = new IType[m.Parameters.Count];
for (int i = 0; i < inputTypes.Length; i++) {
inputTypes[i] = m.Parameters[i].Type;
}
return inputTypes;
}
}
return emptyTypeArray;
}
IType[] OutputTypes(ResolveResult e, IType t)
{
// C# 4.0 spec: §7.5.2.4 Output types
LambdaResolveResult lrr = e as LambdaResolveResult;
if (lrr != null || e is MethodGroupResolveResult) {
IMethod m = GetDelegateOrExpressionTreeSignature(t);
if (m != null) {
return new[] { m.ReturnType };
}
}
return emptyTypeArray;
}
static IMethod GetDelegateOrExpressionTreeSignature(IType t)
{
ParameterizedType pt = t as ParameterizedType;
if (pt != null && pt.TypeParameterCount == 1 && pt.Name == "Expression"
&& pt.Namespace == "System.Linq.Expressions")
{
t = pt.GetTypeArgument(0);
}
return t.GetDelegateInvokeMethod();
}
bool InputTypesContainsUnfixed(ResolveResult argument, IType parameterType)
{
return AnyTypeContainsUnfixedParameter(InputTypes(argument, parameterType));
}
bool OutputTypeContainsUnfixed(ResolveResult argument, IType parameterType)
{
return AnyTypeContainsUnfixedParameter(OutputTypes(argument, parameterType));
}
bool AnyTypeContainsUnfixedParameter(IEnumerable<IType> types)
{
OccursInVisitor o = new OccursInVisitor(this);
foreach (var type in types) {
type.AcceptVisitor(o);
}
for (int i = 0; i < typeParameters.Length; i++) {
if (!typeParameters[i].IsFixed && o.Occurs[i])
return true;
}
return false;
}
#endregion
#region DependsOn (§7.5.2.5)
// C# 4.0 spec: §7.5.2.5 Dependance
void CalculateDependencyMatrix()
{
int n = typeParameters.Length;
dependencyMatrix = new bool[n, n];
for (int k = 0; k < arguments.Length; k++) {
OccursInVisitor input = new OccursInVisitor(this);
OccursInVisitor output = new OccursInVisitor(this);
foreach (var type in InputTypes(arguments[k], parameterTypes[k])) {
type.AcceptVisitor(input);
}
foreach (var type in OutputTypes(arguments[k], parameterTypes[k])) {
type.AcceptVisitor(output);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
dependencyMatrix[i, j] |= input.Occurs[j] && output.Occurs[i];
}
}
}
// calculate transitive closure using Warshall's algorithm:
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (dependencyMatrix[i, j]) {
for (int k = 0; k < n; k++) {
if (dependencyMatrix[j, k])
dependencyMatrix[i, k] = true;
}
}
}
}
}
bool DependsOn(TP x, TP y)
{
if (dependencyMatrix == null)
CalculateDependencyMatrix();
// x depends on y
return dependencyMatrix[x.TypeParameter.Index, y.TypeParameter.Index];
}
#endregion
#region MakeOutputTypeInference (§7.5.2.6)
void MakeOutputTypeInference(ResolveResult e, IType t)
{
Log.WriteLine(" MakeOutputTypeInference from " + e + " to " + t);
// If E is an anonymous function with inferred return type U (§7.5.2.12) and T is a delegate type or expression
// tree type with return type Tb, then a lower-bound inference (§7.5.2.9) is made from U to Tb.
LambdaResolveResult lrr = e as LambdaResolveResult;
if (lrr != null) {
IMethod m = GetDelegateOrExpressionTreeSignature(t);
if (m != null) {
IType inferredReturnType;
if (lrr.IsImplicitlyTyped) {
if (m.Parameters.Count != lrr.Parameters.Count)
return; // cannot infer due to mismatched parameter lists
TypeParameterSubstitution substitution = GetSubstitutionForFixedTPs();
IType[] inferredParameterTypes = new IType[m.Parameters.Count];
for (int i = 0; i < inferredParameterTypes.Length; i++) {
IType parameterType = m.Parameters[i].Type;
inferredParameterTypes[i] = parameterType.AcceptVisitor(substitution);
}
inferredReturnType = lrr.GetInferredReturnType(inferredParameterTypes);
} else {
inferredReturnType = lrr.GetInferredReturnType(null);
}
MakeLowerBoundInference(inferredReturnType, m.ReturnType);
return;
}
}
// Otherwise, if E is a method group and T is a delegate type or expression tree type
// with parameter types T1…Tk and return type Tb, and overload resolution
// of E with the types T1…Tk yields a single method with return type U, then a lower-bound
// inference is made from U to Tb.
MethodGroupResolveResult mgrr = e as MethodGroupResolveResult;
if (mgrr != null) {
IMethod m = GetDelegateOrExpressionTreeSignature(t);
if (m != null) {
ResolveResult[] args = new ResolveResult[m.Parameters.Count];
TypeParameterSubstitution substitution = GetSubstitutionForFixedTPs();
for (int i = 0; i < args.Length; i++) {
IParameter param = m.Parameters[i];
IType parameterType = param.Type.AcceptVisitor(substitution);
if ((param.IsRef || param.IsOut) && parameterType.Kind == TypeKind.ByReference) {
parameterType = ((ByReferenceType)parameterType).ElementType;
args[i] = new ByReferenceResolveResult(parameterType, param.IsOut);
} else {
args[i] = new ResolveResult(parameterType);
}
}
var or = mgrr.PerformOverloadResolution(compilation,
args,
allowExpandingParams: false, allowOptionalParameters: false);
if (or.FoundApplicableCandidate && or.BestCandidateAmbiguousWith == null) {
IType returnType = or.GetBestCandidateWithSubstitutedTypeArguments().ReturnType;
MakeLowerBoundInference(returnType, m.ReturnType);
}
}
return;
}
// Otherwise, if E is an expression with type U, then a lower-bound inference is made from U to T.
if (IsValidType(e.Type)) {
MakeLowerBoundInference(e.Type, t);
}
}
TypeParameterSubstitution GetSubstitutionForFixedTPs()
{
IType[] fixedTypes = new IType[typeParameters.Length];
for (int i = 0; i < fixedTypes.Length; i++) {
fixedTypes[i] = typeParameters[i].FixedTo ?? SpecialType.UnknownType;
}
return new TypeParameterSubstitution(classTypeArguments, fixedTypes);
}
#endregion
#region MakeExplicitParameterTypeInference (§7.5.2.7)
void MakeExplicitParameterTypeInference(LambdaResolveResult e, IType t)
{
// C# 4.0 spec: §7.5.2.7 Explicit parameter type inferences
if (e.IsImplicitlyTyped || !e.HasParameterList)
return;
Log.WriteLine(" MakeExplicitParameterTypeInference from " + e + " to " + t);
IMethod m = GetDelegateOrExpressionTreeSignature(t);
if (m == null)
return;
for (int i = 0; i < e.Parameters.Count && i < m.Parameters.Count; i++) {
MakeExactInference(e.Parameters[i].Type, m.Parameters[i].Type);
}
}
#endregion
#region MakeExactInference (§7.5.2.8)
/// <summary>
/// Make exact inference from U to V.
/// C# 4.0 spec: §7.5.2.8 Exact inferences
/// </summary>
void MakeExactInference(IType U, IType V)
{
Log.WriteLine("MakeExactInference from " + U + " to " + V);
// If V is one of the unfixed Xi then U is added to the set of bounds for Xi.
TP tp = GetTPForType(V);
if (tp != null && tp.IsFixed == false) {
Log.WriteLine(" Add exact bound '" + U + "' to " + tp);
tp.LowerBounds.Add(U);
tp.UpperBounds.Add(U);
return;
}
// Handle by reference types:
ByReferenceType brU = U as ByReferenceType;
ByReferenceType brV = V as ByReferenceType;
if (brU != null && brV != null) {
MakeExactInference(brU.ElementType, brV.ElementType);
return;
}
// Handle array types:
ArrayType arrU = U as ArrayType;
ArrayType arrV = V as ArrayType;
if (arrU != null && arrV != null && arrU.Dimensions == arrV.Dimensions) {
MakeExactInference(arrU.ElementType, arrV.ElementType);
return;
}
// Handle parameterized type:
ParameterizedType pU = U as ParameterizedType;
ParameterizedType pV = V as ParameterizedType;
if (pU != null && pV != null
&& object.Equals(pU.GetDefinition(), pV.GetDefinition())
&& pU.TypeParameterCount == pV.TypeParameterCount)
{
Log.Indent();
for (int i = 0; i < pU.TypeParameterCount; i++) {
MakeExactInference(pU.GetTypeArgument(i), pV.GetTypeArgument(i));
}
Log.Unindent();
}
}
TP GetTPForType(IType v)
{
ITypeParameter p = v as ITypeParameter;
if (p != null) {
int index = p.Index;
if (index < typeParameters.Length && typeParameters[index].TypeParameter == p)
return typeParameters[index];
}
return null;
}
#endregion
#region MakeLowerBoundInference (§7.5.2.9)
/// <summary>
/// Make lower bound inference from U to V.
/// C# 4.0 spec: §7.5.2.9 Lower-bound inferences
/// </summary>
void MakeLowerBoundInference(IType U, IType V)
{
Log.WriteLine(" MakeLowerBoundInference from " + U + " to " + V);
// If V is one of the unfixed Xi then U is added to the set of bounds for Xi.
TP tp = GetTPForType(V);
if (tp != null && tp.IsFixed == false) {
Log.WriteLine(" Add lower bound '" + U + "' to " + tp);
tp.LowerBounds.Add(U);
return;
}
// Handle nullable covariance:
if (NullableType.IsNullable(U) && NullableType.IsNullable(V)) {
MakeLowerBoundInference(NullableType.GetUnderlyingType(U), NullableType.GetUnderlyingType(V));
return;
}
// Handle array types:
ArrayType arrU = U as ArrayType;
ArrayType arrV = V as ArrayType;
ParameterizedType pV = V as ParameterizedType;
if (arrU != null && arrV != null && arrU.Dimensions == arrV.Dimensions) {
MakeLowerBoundInference(arrU.ElementType, arrV.ElementType);
return;
} else if (arrU != null && IsGenericInterfaceImplementedByArray(pV) && arrU.Dimensions == 1) {
MakeLowerBoundInference(arrU.ElementType, pV.GetTypeArgument(0));
return;
}
// Handle parameterized types:
if (pV != null) {
ParameterizedType uniqueBaseType = null;
foreach (IType baseU in U.GetAllBaseTypes()) {
ParameterizedType pU = baseU as ParameterizedType;
if (pU != null && object.Equals(pU.GetDefinition(), pV.GetDefinition()) && pU.TypeParameterCount == pV.TypeParameterCount) {
if (uniqueBaseType == null)
uniqueBaseType = pU;
else
return; // cannot make an inference because it's not unique
}
}
Log.Indent();
if (uniqueBaseType != null) {
for (int i = 0; i < uniqueBaseType.TypeParameterCount; i++) {
IType Ui = uniqueBaseType.GetTypeArgument(i);
IType Vi = pV.GetTypeArgument(i);
if (Ui.IsReferenceType == true) {
// look for variance
ITypeParameter Xi = pV.GetDefinition().TypeParameters[i];
switch (Xi.Variance) {
case VarianceModifier.Covariant:
MakeLowerBoundInference(Ui, Vi);
break;
case VarianceModifier.Contravariant:
MakeUpperBoundInference(Ui, Vi);
break;
default: // invariant
MakeExactInference(Ui, Vi);
break;
}
} else {
// not known to be a reference type
MakeExactInference(Ui, Vi);
}
}
}
Log.Unindent();
}
}
static bool IsGenericInterfaceImplementedByArray(ParameterizedType rt)
{
if (rt == null || rt.TypeParameterCount != 1)
return false;
switch (rt.GetDefinition().FullName) {
case "System.Collections.Generic.IEnumerable":
case "System.Collections.Generic.ICollection":
case "System.Collections.Generic.IList":
case "System.Collections.Generic.IReadOnlyList":
return true;
default:
return false;
}
}
#endregion
#region MakeUpperBoundInference (§7.5.2.10)
/// <summary>
/// Make upper bound inference from U to V.
/// C# 4.0 spec: §7.5.2.10 Upper-bound inferences
/// </summary>
void MakeUpperBoundInference(IType U, IType V)
{
Log.WriteLine(" MakeUpperBoundInference from " + U + " to " + V);
// If V is one of the unfixed Xi then U is added to the set of bounds for Xi.
TP tp = GetTPForType(V);
if (tp != null && tp.IsFixed == false) {
Log.WriteLine(" Add upper bound '" + U + "' to " + tp);
tp.UpperBounds.Add(U);
return;
}
// Handle array types:
ArrayType arrU = U as ArrayType;
ArrayType arrV = V as ArrayType;
ParameterizedType pU = U as ParameterizedType;
if (arrV != null && arrU != null && arrU.Dimensions == arrV.Dimensions) {
MakeUpperBoundInference(arrU.ElementType, arrV.ElementType);
return;
} else if (arrV != null && IsGenericInterfaceImplementedByArray(pU) && arrV.Dimensions == 1) {
MakeUpperBoundInference(pU.GetTypeArgument(0), arrV.ElementType);
return;
}
// Handle parameterized types:
if (pU != null) {
ParameterizedType uniqueBaseType = null;
foreach (IType baseV in V.GetAllBaseTypes()) {
ParameterizedType pV = baseV as ParameterizedType;
if (pV != null && object.Equals(pU.GetDefinition(), pV.GetDefinition()) && pU.TypeParameterCount == pV.TypeParameterCount) {
if (uniqueBaseType == null)
uniqueBaseType = pV;
else
return; // cannot make an inference because it's not unique
}
}
Log.Indent();
if (uniqueBaseType != null) {
for (int i = 0; i < uniqueBaseType.TypeParameterCount; i++) {
IType Ui = pU.GetTypeArgument(i);
IType Vi = uniqueBaseType.GetTypeArgument(i);
if (Ui.IsReferenceType == true) {
// look for variance
ITypeParameter Xi = pU.GetDefinition().TypeParameters[i];
switch (Xi.Variance) {
case VarianceModifier.Covariant:
MakeUpperBoundInference(Ui, Vi);
break;
case VarianceModifier.Contravariant:
MakeLowerBoundInference(Ui, Vi);
break;
default: // invariant
MakeExactInference(Ui, Vi);
break;
}
} else {
// not known to be a reference type
MakeExactInference(Ui, Vi);
}
}
}
Log.Unindent();
}
}
#endregion
#region Fixing (§7.5.2.11)
bool Fix(TP tp)
{
Log.WriteLine(" Trying to fix " + tp);
Debug.Assert(!tp.IsFixed);
Log.Indent();
var types = CreateNestedInstance().FindTypesInBounds(tp.LowerBounds.ToArray(), tp.UpperBounds.ToArray());
Log.Unindent();
if (algorithm == TypeInferenceAlgorithm.ImprovedReturnAllResults) {
tp.FixedTo = IntersectionType.Create(types);
Log.WriteLine(" T was fixed " + (types.Count >= 1 ? "successfully" : "(with errors)") + " to " + tp.FixedTo);
return types.Count >= 1;
} else {
tp.FixedTo = GetFirstTypePreferNonInterfaces(types);
Log.WriteLine(" T was fixed " + (types.Count == 1 ? "successfully" : "(with errors)") + " to " + tp.FixedTo);
return types.Count == 1;
}
}
#endregion
#region Finding the best common type of a set of expresssions
/// <summary>
/// Gets the best common type (C# 4.0 spec: §7.5.2.14) of a set of expressions.
/// </summary>
public IType GetBestCommonType(IList<ResolveResult> expressions, out bool success)
{
if (expressions == null)
throw new ArgumentNullException("expressions");
if (expressions.Count == 1) {
success = (expressions[0].Type.Kind != TypeKind.Unknown);
return expressions[0].Type;
}
Log.WriteCollection("GetBestCommonType() for ", expressions);
try {
ITypeParameter tp = DummyTypeParameter.GetMethodTypeParameter(0);
this.typeParameters = new TP[1] { new TP(tp) };
foreach (ResolveResult r in expressions) {
MakeOutputTypeInference(r, tp);
}
success = Fix(typeParameters[0]);
return typeParameters[0].FixedTo ?? SpecialType.UnknownType;
} finally {
Reset();
}
}
#endregion
#region FindTypeInBounds
/// <summary>
/// Finds a type that satisfies the given lower and upper bounds.
/// </summary>
public IType FindTypeInBounds(IList<IType> lowerBounds, IList<IType> upperBounds)
{
if (lowerBounds == null)
throw new ArgumentNullException("lowerBounds");
if (upperBounds == null)
throw new ArgumentNullException("upperBounds");
IList<IType> result = FindTypesInBounds(lowerBounds, upperBounds);
if (algorithm == TypeInferenceAlgorithm.ImprovedReturnAllResults) {
return IntersectionType.Create(result);
} else {
// return any of the candidates (prefer non-interfaces)
return GetFirstTypePreferNonInterfaces(result);
}
}
static IType GetFirstTypePreferNonInterfaces(IList<IType> result)
{
return result.FirstOrDefault(c => c.Kind != TypeKind.Interface)
?? result.FirstOrDefault() ?? SpecialType.UnknownType;
}
IList<IType> FindTypesInBounds(IList<IType> lowerBounds, IList<IType> upperBounds)
{
// If there's only a single type; return that single type.
// If both inputs are empty, return the empty list.
if (lowerBounds.Count == 0 && upperBounds.Count <= 1)
return upperBounds;
if (upperBounds.Count == 0 && lowerBounds.Count <= 1)
return lowerBounds;
if (nestingLevel > maxNestingLevel)
return EmptyList<IType>.Instance;
// Finds a type X so that "LB <: X <: UB"
Log.WriteCollection("FindTypesInBound, LowerBounds=", lowerBounds);
Log.WriteCollection("FindTypesInBound, UpperBounds=", upperBounds);
// First try the Fixing algorithm from the C# spec (§7.5.2.11)
List<IType> candidateTypes = lowerBounds.Union(upperBounds)
.Where(c => lowerBounds.All(b => conversions.ImplicitConversion(b, c).IsValid))
.Where(c => upperBounds.All(b => conversions.ImplicitConversion(c, b).IsValid))
.ToList(); // evaluate the query only once
Log.WriteCollection("FindTypesInBound, Candidates=", candidateTypes);
// According to the C# specification, we need to pick the most specific
// of the candidate types. (the type which has conversions to all others)
// However, csc actually seems to choose the least specific.
candidateTypes = candidateTypes.Where(
c => candidateTypes.All(o => conversions.ImplicitConversion(o, c).IsValid)
).ToList();
// If the specified algorithm produces a single candidate, we return
// that candidate.
// We also return the whole candidate list if we're not using the improved
// algorithm.
if (candidateTypes.Count == 1 || !(algorithm == TypeInferenceAlgorithm.Improved || algorithm == TypeInferenceAlgorithm.ImprovedReturnAllResults))
{
return candidateTypes;
}
candidateTypes.Clear();
// Now try the improved algorithm
Log.Indent();
List<ITypeDefinition> candidateTypeDefinitions;
if (lowerBounds.Count > 0) {
// Find candidates by using the lower bounds:
var hashSet = new HashSet<ITypeDefinition>(lowerBounds[0].GetAllBaseTypeDefinitions());
for (int i = 1; i < lowerBounds.Count; i++) {
hashSet.IntersectWith(lowerBounds[i].GetAllBaseTypeDefinitions());
}
candidateTypeDefinitions = hashSet.ToList();
} else {
// Find candidates by looking at all classes in the project:
candidateTypeDefinitions = compilation.GetAllTypeDefinitions().ToList();
}
// Now filter out candidates that violate the upper bounds:
foreach (IType ub in upperBounds) {
ITypeDefinition ubDef = ub.GetDefinition();
if (ubDef != null) {
candidateTypeDefinitions.RemoveAll(c => !c.IsDerivedFrom(ubDef));
}
}
foreach (ITypeDefinition candidateDef in candidateTypeDefinitions) {
// determine the type parameters for the candidate:
IType candidate;
if (candidateDef.TypeParameterCount == 0) {
candidate = candidateDef;
} else {
Log.WriteLine("Inferring arguments for candidate type definition: " + candidateDef);
bool success;
IType[] result = InferTypeArgumentsFromBounds(
candidateDef.TypeParameters,
new ParameterizedType(candidateDef, candidateDef.TypeParameters),
lowerBounds, upperBounds,
out success);
if (success) {
candidate = new ParameterizedType(candidateDef, result);
} else {
Log.WriteLine("Inference failed; ignoring candidate");
continue;
}
}
Log.WriteLine("Candidate type: " + candidate);
if (upperBounds.Count == 0) {
// if there were only lower bounds, we aim for the most specific candidate:
// if this candidate isn't made redundant by an existing, more specific candidate:
if (!candidateTypes.Any(c => c.GetDefinition().IsDerivedFrom(candidateDef))) {
// remove all existing candidates made redundant by this candidate:
candidateTypes.RemoveAll(c => candidateDef.IsDerivedFrom(c.GetDefinition()));
// add new candidate
candidateTypes.Add(candidate);
}
} else {
// if there were upper bounds, we aim for the least specific candidate:
// if this candidate isn't made redundant by an existing, less specific candidate:
if (!candidateTypes.Any(c => candidateDef.IsDerivedFrom(c.GetDefinition()))) {
// remove all existing candidates made redundant by this candidate:
candidateTypes.RemoveAll(c => c.GetDefinition().IsDerivedFrom(candidateDef));
// add new candidate
candidateTypes.Add(candidate);
}
}
}
Log.Unindent();
return candidateTypes;
}
#endregion
}
}
|