1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
|
/*
*
* The original code of setdest was included in ns-2.1b8a.
* This file is the modified version by J. Yoon <jkyoon@eecs.umich.edu>,
* Department of EECS, University of Michigan, Ann Arbor.
*
* (1) Input parameters
* <Original version>
* => -M maximum speed (minimum speed is zero as a default)
* => -p pause time (constant)
* => -n number of nodes
* => -x x dimension of space
* => -y y dimension of space
*
* <Modified version>
* => -s speed type (uniform, normal)
* => -m minimum speed > 0
* => -M maximum speed
* => -P pause type (constant, uniform)
* => -p pause time (a median if uniform is chosen)
* => -n number of nodes
* => -x x dimension of space
* => -y y dimension of space
*
* (2) In case of modified version, the steady-state speed distribution is applied to
* the first trip to eliminate any speed decay. If pause is not zero, the first
* trip could be either a move or a pause depending on the probabilty that the
* first trip is a pause. After the first trip regardless of whether it is
* a move or a pause, all subsequent speeds are determined from the given speed
* distribution (e.g., uniform or normal).
*
* (3) Refer to and use scenario-generating scripts (make-scen.csh for original version,
* make-scen-steadystate.csh for modified version).
*
*
*/
extern "C" {
#include <assert.h>
#include <fcntl.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#if !defined(sun)
#include <err.h>
#endif
};
#include "../../../tools/rng.h"
#include "setdest.h"
// #define DEBUG
#define SANITY_CHECKS
//#define SHOW_SYMMETRIC_PAIRS
#define GOD_FORMAT "$ns_ at %.12f \"$god_ set-dist %d %d %d\"\n"
#define GOD_FORMAT2 "$god_ set-dist %d %d %d\n"
#define NODE_FORMAT "$ns_ at %.12f \"$node_(%d) setdest %.12f %.12f %.12f\"\n"
#define NODE_FORMAT2 "$node_(%d) setdest %.12f %.12f %.12f\n"
#define NODE_FORMAT3 "$node_(%d) set %c_ %.12f\n"
#define RTG_INFINITY 0x00ffffff
#ifndef min
#define min(x,y) ((x) < (y) ? (x) : (y))
#define max(x,y) ((x) > (y) ? (x) : (y))
#endif
#define ROUND_ERROR 1e-9
#ifndef PI
#define PI 3.1415926
#endif
static int count = 0;
/* ======================================================================
Function Prototypes
====================================================================== */
void usage(char**);
void init(void);
double uniform(void);
void dumpall(void);
void ComputeW(void);
void floyd_warshall(void);
void show_diffs(void);
void show_routes(void);
void show_counters(void);
/* ======================================================================
Global Variables
====================================================================== */
const double RANGE = 250.0; // transmitter range in meters
double TIME = 0.0; // my clock;
double MAXTIME = 0.0; // duration of simulation
double MAXX = 0.0; // width of space
double MAXY = 0.0; // height of space
double PAUSE = 0.0; // pause time
double MAXSPEED = 0.0; // max speed
double MINSPEED = 0.0; // min speed
double SS_AVGSPEED = 0.0; // steady-state avg speed
double KAPPA = 0.0; // normalizing constant
double MEAN = 0.0; // mean for normal speed
double SIGMA = 0.0; // std for normal speed
double EXP_1_V = 0.0; // expactation of 1/V
double EXP_R = 0.0; // expectation of travel distance R
double PDFMAX = 0.0; // max of pdf for rejection technique
u_int32_t SPEEDTYPE = 1; // speed type (default = uniform)
u_int32_t PAUSETYPE = 1; // pause type (default = constant)
u_int32_t VERSION = 1; // setdest version (default = original by CMU)
u_int32_t NODES = 0; // number of nodes
u_int32_t RouteChangeCount = 0;
u_int32_t LinkChangeCount = 0;
u_int32_t DestUnreachableCount = 0;
Node *NodeList = 0;
u_int32_t *D1 = 0;
u_int32_t *D2 = 0;
/* ======================================================================
Random Number Generation
====================================================================== */
#define M 2147483647L
#define INVERSE_M ((double)4.656612875e-10)
char random_state[32];
RNG *rng;
double
uniform()
{
count++;
return rng->uniform_double() ;
}
/* ======================================================================
Misc Functions...
====================================================================== */
/* compute the expectation of travel distance E[R] in a rectangle */
void
compute_EXP_R()
{
#define csc(x) (1.0/sin(x)) // csc function
#define sec(x) (1.0/cos(x)) // sec function
#define sin2(x) (sin(x)*sin(x)) // sin^2
#define sin3(x) (sin2(x)*sin(x)) // sin^3
#define cos2(x) (cos(x)*cos(x)) // cos^2
#define cos3(x) (cos2(x)*cos(x)) // cos^3
double x = MAXX, y = MAXY; // max x and max y
double x2 = x*x, x3 = x*x*x; // x^2 and x^3
double y2 = y*y, y3 = y*y*y; // y^2 and y^3
double term1 = sin(atan2(y,x)) / 2.0 / cos2(atan2(y,x));
double term2 = 0.5 * log( sec(atan2(y,x)) + y/x );
double term3 = -1.0 * x3 / y2 / 60.0 / cos3(atan2(y,x)) + 1.0/60.0 * x3 / y2;
double term4 = (term1 + term2) * x2 / 12.0 / y + term3;
double term5 = -1.0 * cos(atan2(y,x)) / 2.0 / sin2(atan2(y,x));
double term6 = 0.5 * log( csc(atan2(y,x)) - x/y );
double term7 = -1.0 * y3 / x2 / 60.0 / sin3(atan2(y,x)) + 1.0/60.0 * y3 / x2;
double term8 = -1.0 * (term5 + term6) * y2 / 12.0 / x + term7;
EXP_R = (4 * (term4 + term8)); // E[R]
}
void
usage(char **argv)
{
fprintf(stderr, "\nusage:\n");
fprintf(stderr,
"\n<original 1999 CMU version (version 1)>\n %s\t-v <1> -n <nodes> -p <pause time> -M <max speed>\n",
argv[0]);
fprintf(stderr,
"\t\t-t <simulation time> -x <max X> -y <max Y>\n");
fprintf(stderr,
"\nOR\n<modified 2003 U.Michigan version (version 2)>\n %s\t-v <2> -n <nodes> -s <speed type> -m <min speed> -M <max speed>\n",
argv[0]);
fprintf(stderr,
"\t\t-t <simulation time> -P <pause type> -p <pause time> -x <max X> -y <max Y>\n");
fprintf(stderr,
"\t\t(Refer to the script files make-scen.csh and make-scen-steadystate.csh for detail.) \n\n");
}
void
init()
{
/*
* Initialized the Random Number Generation
*/
/*
This part of init() is commented out and is replaced by more
portable RNG (random number generator class of ns) functions.
struct timeval tp;
int fd, seed, bytes;
if((fd = open("/dev/random", O_RDONLY)) < 0) {
perror("open");
exit(1);
}
if((bytes = read(fd, random_state, sizeof(random_state))) < 0) {
perror("read");
exit(1);
}
close(fd);
fprintf(stderr, "*** read %d bytes from /dev/random\n", bytes);
if(bytes != sizeof(random_state)) {
fprintf(stderr,"Not enough randomness. Reading `.rand_state'\n");
if((fd = open(".rand_state", O_RDONLY)) < 0) {
perror("open .rand_state");
exit(1);
}
if((bytes = read(fd, random_state, sizeof(random_state))) < 0) {
perror("reading .rand_state");
exit(1);
}
close(fd);
}
if(gettimeofday(&tp, 0) < 0) {
perror("gettimeofday");
exit(1);
}
seed = (tp.tv_sec >> 12 ) ^ tp.tv_usec;
(void) initstate(seed, random_state, bytes & 0xf8);*/
/*
* Allocate memory for globals
*/
NodeList = new Node[NODES];
if(NodeList == 0) {
perror("new");
exit(1);
}
D1 = new u_int32_t[NODES * NODES];
if(D1 == 0) {
perror("new");
exit(1);
}
memset(D1, '\xff', sizeof(u_int32_t) * NODES * NODES);
D2 = new u_int32_t[NODES * NODES];
if(D2 == 0) {
perror("new");
exit(1);
}
memset(D2, '\xff', sizeof(u_int32_t) * NODES * NODES);
}
extern "C" char *optarg;
int
main(int argc, char **argv)
{
char ch;
while ((ch = getopt(argc, argv, "v:n:s:m:M:t:P:p:x:y:i:o:")) != EOF) {
switch (ch) {
case 'v':
VERSION = atoi(optarg);
break;
case 'n':
NODES = atoi(optarg);
break;
case 's':
SPEEDTYPE = atoi(optarg);
break;
case 'm':
MINSPEED = atof(optarg);
break;
case 'M':
MAXSPEED = atof(optarg);
break;
case 't':
MAXTIME = atof(optarg);
break;
case 'P':
PAUSETYPE = atoi(optarg);
break;
case 'p':
PAUSE = atof(optarg);
break;
case 'x':
MAXX = atof(optarg);
break;
case 'y':
MAXY = atof(optarg);
break;
default:
usage(argv);
exit(1);
}
}
if(MAXX == 0.0 || MAXY == 0.0 || NODES == 0 || MAXTIME == 0.0) {
usage(argv);
exit(1);
}
/* specify the version */
if (VERSION != 1 && VERSION != 2) {
printf("Please specify the setdest version you want to use. For original 1999 CMU version use 1; For modified 2003 U.Michigan version use 2\n");
exit(1);
}
if (VERSION == 2 && MINSPEED <= 0) {
usage(argv);
exit(1);
} else if (VERSION == 1 && MINSPEED > 0) {
usage(argv);
exit(1);
}
// The more portable solution for random number generation
rng = new RNG;
rng->set_seed(RNG::HEURISTIC_SEED_SOURCE);
/****************************************************************************************
* Steady-state avg speed and distribution depending on the initial distirbutions given
****************************************************************************************/
/* original setdest */
if (VERSION == 1) {
fprintf(stdout, "#\n# nodes: %d, pause: %.2f, max speed: %.2f, max x: %.2f, max y: %.2f\n#\n",
NODES, PAUSE, MAXSPEED, MAXX, MAXY);
}
/* modified version */
else if (VERSION == 2) {
/* compute the expectation of travel distance in a rectangle */
compute_EXP_R();
/* uniform speed from min to max */
if (SPEEDTYPE == 1) {
EXP_1_V = log(MAXSPEED/MINSPEED) / (MAXSPEED - MINSPEED); // E[1/V]
SS_AVGSPEED = EXP_R / (EXP_1_V*EXP_R + PAUSE); // steady-state average speed
PDFMAX = 1/MINSPEED*EXP_R / (EXP_1_V*EXP_R + PAUSE) / (MAXSPEED-MINSPEED); // max of pdf for rejection technique
}
/* normal speed clipped from min to max */
else if (SPEEDTYPE == 2) {
int bin_no = 10000; // the number of bins for summation
double delta = (MAXSPEED - MINSPEED)/bin_no; // width of each bin
int i;
double acc_k, acc_e, square, temp_v;
MEAN = (MAXSPEED + MINSPEED)/2.0; // means for normal dist.
SIGMA = (MAXSPEED - MINSPEED)/4.0; // std for normal dist.
/* computing a normalizing constant KAPPA, E[1/V], and pdf max */
KAPPA = 0.0;
EXP_1_V = 0.0;
PDFMAX = 0.0;
/* numerical integrals */
for (i=0; i<bin_no; ++i) {
temp_v = MINSPEED + i*delta; // ith v from min speed
square = (temp_v - MEAN)*(temp_v - MEAN)/SIGMA/SIGMA;
acc_k = 1.0/sqrt(2.0*PI*SIGMA*SIGMA)*exp(-0.5*square);
KAPPA += (acc_k*delta); // summing up the area of rectangle
acc_e = 1.0/temp_v/sqrt(2.0*PI*SIGMA*SIGMA)*exp(-0.5*square);
EXP_1_V += (acc_e*delta); // summing up for the denominator of pdf
/* find a max of pdf */
if (PDFMAX < acc_e) PDFMAX = acc_e;
}
EXP_1_V /= KAPPA; // normalizing
SS_AVGSPEED = EXP_R / (EXP_1_V*EXP_R + PAUSE); // steady-state average speed
PDFMAX = EXP_R*PDFMAX/KAPPA / (EXP_1_V*EXP_R + PAUSE); // max of pdf for rejection technique
}
/* other types of speed for future use */
else
;
fprintf(stdout, "#\n# nodes: %d, speed type: %d, min speed: %.2f, max speed: %.2f\n# avg speed: %.2f, pause type: %d, pause: %.2f, max x: %.2f, max y: %.2f\n#\n",
NODES , SPEEDTYPE, MINSPEED, MAXSPEED, SS_AVGSPEED, PAUSETYPE, PAUSE, MAXX, MAXY);
}
init();
while(TIME <= MAXTIME) {
double nexttime = 0.0;
u_int32_t i;
for(i = 0; i < NODES; i++) {
NodeList[i].Update();
}
for(i = 0; i < NODES; i++) {
NodeList[i].UpdateNeighbors();
}
for(i = 0; i < NODES; i++) {
Node *n = &NodeList[i];
if(n->time_transition > 0.0) {
if(nexttime == 0.0)
nexttime = n->time_transition;
else
nexttime = min(nexttime, n->time_transition);
}
if(n->time_arrival > 0.0) {
if(nexttime == 0.0)
nexttime = n->time_arrival;
else
nexttime = min(nexttime, n->time_arrival);
}
}
floyd_warshall();
#ifdef DEBUG
show_routes();
#endif
show_diffs();
#ifdef DEBUG
dumpall();
#endif
assert(nexttime > TIME + ROUND_ERROR);
TIME = nexttime;
}
show_counters();
int of;
if ((of = open(".rand_state",O_WRONLY | O_TRUNC | O_CREAT, 0777)) < 0) {
fprintf(stderr, "open rand state\n");
exit(-1);
}
for (unsigned int i = 0; i < sizeof(random_state); i++)
random_state[i] = 0xff & (int) (uniform() * 256);
if (write(of,random_state, sizeof(random_state)) < 0) {
fprintf(stderr, "writing rand state\n");
exit(-1);
}
close(of);
}
/* ======================================================================
Node Class Functions
====================================================================== */
u_int32_t Node::NodeIndex = 0;
Node::Node()
{
u_int32_t i;
index = NodeIndex++;
//if(index == 0)
// return;
route_changes = 0;
link_changes = 0;
/*******************************************************************************
* Determine if the first trip is a pause or a move with the steady-state pdf
*******************************************************************************/
/* original version */
if (VERSION == 1) {
time_arrival = TIME + PAUSE; // constant pause
}
/* modified version */
else if (VERSION == 2) {
/* probability that the first trip would be a pause */
double prob_pause = PAUSE / (EXP_1_V*EXP_R + PAUSE);
/* the first trip is a pause */
if (prob_pause > uniform()) {
/* constant pause */
if (PAUSETYPE == 1) {
time_arrival = TIME + PAUSE; // constant pause
}
/* uniform pause */
else if (PAUSETYPE == 2) {
time_arrival = TIME + 2*PAUSE*uniform(); // uniform pause [0, 2*PAUSE]
}
first_trip = 0; // indicating the first trip is a pause
}
/* the first trip is a move based on the steady-state pdf */
else {
time_arrival = TIME;
first_trip = 1; // indicating the first trip is a move
}
}
time_update = TIME;
time_transition = 0.0;
position.X = position.Y = position.Z = 0.0;
destination.X = destination.Y = destination.Z = 0.0;
direction.X = direction.Y = direction.Z = 0.0;
speed = 0.0;
RandomPosition();
fprintf(stdout, NODE_FORMAT3, index, 'X', position.X);
fprintf(stdout, NODE_FORMAT3, index, 'Y', position.Y);
fprintf(stdout, NODE_FORMAT3, index, 'Z', position.Z);
neighbor = new Neighbor[NODES];
if(neighbor == 0) {
perror("new");
exit(1);
}
for(i = 0; i < NODES; i++) {
neighbor[i].index = i;
neighbor[i].reachable = (index == i) ? 1 : 0;
neighbor[i].time_transition = 0.0;
}
}
void
Node::RandomPosition()
{
position.X = uniform() * MAXX;
position.Y = uniform() * MAXY;
position.Z = 0.0;
}
void
Node::RandomDestination()
{
destination.X = uniform() * MAXX;
destination.Y = uniform() * MAXY;
destination.Z = 0.0;
assert(destination != position);
}
/******************************************************************************************
* Speeds are chosen based on the given type and distribution
******************************************************************************************/
void
Node::RandomSpeed()
{
/* original version */
if (VERSION == 1) {
speed = uniform() * MAXSPEED;
assert(speed != 0.0);
}
/* modified version */
else if (VERSION == 2) {
/* uniform speed */
if (SPEEDTYPE == 1) {
/* using steady-state distribution for the first trip */
if (first_trip == 1) {
/* pick a speed by rejection technique */
double temp_v, temp_fv;
do {
temp_v = uniform() * (MAXSPEED - MINSPEED) + MINSPEED;
temp_fv = uniform() * PDFMAX;
} while (temp_fv > 1/temp_v*EXP_R / (EXP_1_V*EXP_R + PAUSE) / (MAXSPEED-MINSPEED));
speed = temp_v;
first_trip = 0; // reset first_trip flag
}
/* using the original distribution from the second trip on */
else {
speed = uniform() * (MAXSPEED - MINSPEED) + MINSPEED;
assert(speed != 0.0);
}
}
/* normal speed */
else if (SPEEDTYPE == 2) {
/* using steady-state distribution for the first trip */
if (first_trip == 1) {
double temp_v, temp_fv, square, fv;
/* rejection technique */
do {
temp_v = uniform() * (MAXSPEED - MINSPEED) + MINSPEED;
temp_fv = uniform() * PDFMAX;
square = (temp_v - MEAN)*(temp_v - MEAN)/SIGMA/SIGMA;
fv = 1/KAPPA/sqrt(2.0*PI*SIGMA*SIGMA) * exp(-0.5*square);
} while (temp_fv > 1.0/temp_v*fv*EXP_R / (EXP_1_V*EXP_R + PAUSE));
speed = temp_v;
first_trip = 0;
}
/* using the original distribution from the second trip on */
else {
double temp_v, temp_fv, square;
double max_normal = 1.0/KAPPA/sqrt(2.0*PI*SIGMA*SIGMA); // max of normal distribution
/* rejection technique */
do {
temp_v = uniform() * (MAXSPEED - MINSPEED) + MINSPEED;
temp_fv = uniform() * max_normal;
square = (temp_v - MEAN)*(temp_v - MEAN)/SIGMA/SIGMA;
} while (temp_fv > max_normal * exp(-0.5*square));
speed = temp_v;
assert(speed != 0.0);
}
}
/* other types of speed for future use */
else
;
}
}
void
Node::Update()
{
position += (speed * (TIME - time_update)) * direction;
if(TIME == time_arrival) {
vector v;
if(speed == 0.0 || PAUSE == 0.0) {
RandomDestination();
RandomSpeed();
v = destination - position;
direction = v / v.length();
time_arrival = TIME + v.length() / speed;
}
else {
destination = position;
speed = 0.0;
/* original version */
if (VERSION == 1) {
time_arrival = TIME + PAUSE;
}
/* modified version */
else if (VERSION == 2) {
/* constant pause */
if (PAUSETYPE == 1) {
time_arrival = TIME + PAUSE;
}
/* uniform pause */
else if (PAUSETYPE == 2) {
time_arrival = TIME + 2*PAUSE*uniform();
}
}
}
fprintf(stdout, NODE_FORMAT,
TIME, index, destination.X, destination.Y, speed);
}
time_update = TIME;
time_transition = 0.0;
}
void
Node::UpdateNeighbors()
{
static Node *n2;
static Neighbor *m1, *m2;
static vector D, B, v1, v2;
static double a, b, c, t1, t2, Q;
static u_int32_t i, reachable;
v1 = speed * direction;
/*
* Only need to go from INDEX --> N for each one since links
* are symmetric.
*/
for(i = index+1; i < NODES; i++) {
m1 = &neighbor[i];
n2 = &NodeList[i];
m2 = &n2->neighbor[index];
assert(i == m1->index);
assert(m1->index == n2->index);
assert(index == m2->index);
assert(m1->reachable == m2->reachable);
reachable = m1->reachable;
/* ==================================================
Determine Reachability
================================================== */
{ vector d = position - n2->position;
if(d.length() < RANGE) {
#ifdef SANITY_CHECKS
if(TIME > 0.0 && m1->reachable == 0)
assert(RANGE - d.length() < ROUND_ERROR);
#endif
m1->reachable = m2->reachable = 1;
}
// Boundary condition handled below.
else {
#ifdef SANITY_CHECKS
if(TIME > 0.0 && m1->reachable == 1)
assert(d.length() - RANGE < ROUND_ERROR);
#endif
m1->reachable = m2->reachable = 0;
}
#ifdef DEBUG
fprintf(stdout, "# %.6f (%d, %d) %.2fm\n",
TIME, index, m1->index, d.length());
#endif
}
/* ==================================================
Determine Next Event Time
================================================== */
v2 = n2->speed * n2->direction;
D = v2 - v1;
B = n2->position - position;
a = (D.X * D.X) + (D.Y * D.Y) + (D.Z * D.Z);
b = 2 * ((D.X * B.X) + (D.Y * B.Y) + (D.Z * B.Z));
c = (B.X * B.X) + (B.Y * B.Y) + (B.Z * B.Z) - (RANGE * RANGE);
if(a == 0.0) {
/*
* No Finite Solution
*/
m1->time_transition= 0.0;
m2->time_transition= 0.0;
goto next;
}
Q = b * b - 4 * a * c;
if(Q < 0.0) {
/*
* No real roots.
*/
m1->time_transition = 0.0;
m2->time_transition = 0.0;
goto next;
}
Q = sqrt(Q);
t1 = (-b + Q) / (2 * a);
t2 = (-b - Q) / (2 * a);
// Stupid Rounding/Boundary Cases
if(t1 > 0.0 && t1 < ROUND_ERROR) t1 = 0.0;
if(t1 < 0.0 && -t1 < ROUND_ERROR) t1 = 0.0;
if(t2 > 0.0 && t2 < ROUND_ERROR) t2 = 0.0;
if(t2 < 0.0 && -t2 < ROUND_ERROR) t2 = 0.0;
if(t1 < 0.0 && t2 < 0.0) {
/*
* No "future" time solution.
*/
m1->time_transition = 0.0;
m2->time_transition = 0.0;
goto next;
}
/*
* Boundary conditions.
*/
if((t1 == 0.0 && t2 > 0.0) || (t2 == 0.0 && t1 > 0.0)) {
m1->reachable = m2->reachable = 1;
m1->time_transition = m2->time_transition = TIME + max(t1, t2);
}
else if((t1 == 0.0 && t2 < 0.0) || (t2 == 0.0 && t1 < 0.0)) {
m1->reachable = m2->reachable = 0;
m1->time_transition = m2->time_transition = 0.0;
}
/*
* Non-boundary conditions.
*/
else if(t1 > 0.0 && t2 > 0.0) {
m1->time_transition = TIME + min(t1, t2);
m2->time_transition = TIME + min(t1, t2);
}
else if(t1 > 0.0) {
m1->time_transition = TIME + t1;
m2->time_transition = TIME + t1;
}
else {
m1->time_transition = TIME + t2;
m2->time_transition = TIME + t2;
}
/* ==================================================
Update the transition times for both NODEs.
================================================== */
if(time_transition == 0.0 || (m1->time_transition &&
time_transition > m1->time_transition)) {
time_transition = m1->time_transition;
}
if(n2->time_transition == 0.0 || (m2->time_transition &&
n2->time_transition > m2->time_transition)) {
n2->time_transition = m2->time_transition;
}
next:
if(reachable != m1->reachable && TIME > 0.0) {
LinkChangeCount++;
link_changes++;
n2->link_changes++;
}
}
}
void
Node::Dump()
{
Neighbor *m;
u_int32_t i;
fprintf(stdout,
"Node: %d\tpos: (%.2f, %.2f, %.2f) dst: (%.2f, %.2f, %.2f)\n",
index, position.X, position.Y, position.Z,
destination.X, destination.Y, destination.Z);
fprintf(stdout, "\tdir: (%.2f, %.2f, %.2f) speed: %.2f\n",
direction.X, direction.Y, direction.Z, speed);
fprintf(stdout, "\tArrival: %.2f, Update: %.2f, Transition: %.2f\n",
time_arrival, time_update, time_transition);
for(i = 0; i < NODES; i++) {
m = &neighbor[i];
fprintf(stdout, "\tNeighbor: %d (%lx), Reachable: %d, Transition Time: %.2f\n",
m->index, (long) m, m->reachable, m->time_transition);
}
}
/* ======================================================================
Dijkstra's Shortest Path Algoritm
====================================================================== */
void dumpall()
{
u_int32_t i;
fprintf(stdout, "\nTime: %.2f\n", TIME);
for(i = 0; i < NODES; i++) {
NodeList[i].Dump();
}
}
void
ComputeW()
{
u_int32_t i, j;
u_int32_t *W = D2;
memset(W, '\xff', sizeof(int) * NODES * NODES);
for(i = 0; i < NODES; i++) {
for(j = i; j < NODES; j++) {
Neighbor *m = &NodeList[i].neighbor[j];
if(i == j)
W[i*NODES + j] = W[j*NODES + i] = 0;
else
W[i*NODES + j] = W[j*NODES + i] = m->reachable ? 1 : RTG_INFINITY;
}
}
}
void
floyd_warshall()
{
u_int32_t i, j, k;
ComputeW(); // the connectivity matrix
for(i = 0; i < NODES; i++) {
for(j = 0; j < NODES; j++) {
for(k = 0; k < NODES; k++) {
D2[j*NODES + k] = min(D2[j*NODES + k], D2[j*NODES + i] + D2[i*NODES + k]);
}
}
}
#ifdef SANITY_CHECKS
for(i = 0; i < NODES; i++)
for(j = 0; j < NODES; j++) {
assert(D2[i*NODES + j] == D2[j*NODES + i]);
assert(D2[i*NODES + j] <= RTG_INFINITY);
}
#endif
}
/*
* Write the actual GOD entries to a TCL script.
*/
void
show_diffs()
{
u_int32_t i, j;
for(i = 0; i < NODES; i++) {
for(j = i + 1; j < NODES; j++) {
if(D1[i*NODES + j] != D2[i*NODES + j]) {
if(D2[i*NODES + j] == RTG_INFINITY)
DestUnreachableCount++;
if(TIME > 0.0) {
RouteChangeCount++;
NodeList[i].route_changes++;
NodeList[j].route_changes++;
}
if(TIME == 0.0) {
fprintf(stdout, GOD_FORMAT2,
i, j, D2[i*NODES + j]);
#ifdef SHOW_SYMMETRIC_PAIRS
fprintf(stdout, GOD_FORMAT2,
j, i, D2[j*NODES + i]);
#endif
}
else {
fprintf(stdout, GOD_FORMAT,
TIME, i, j, D2[i*NODES + j]);
#ifdef SHOW_SYMMETRIC_PAIRS
fprintf(stdout, GOD_FORMAT,
TIME, j, i, D2[j*NODES + i]);
#endif
}
}
}
}
memcpy(D1, D2, sizeof(int) * NODES * NODES);
}
void
show_routes()
{
u_int32_t i, j;
fprintf(stdout, "#\n# TIME: %.12f\n#\n", TIME);
for(i = 0; i < NODES; i++) {
fprintf(stdout, "# %2d) ", i);
for(j = 0; j < NODES; j++)
fprintf(stdout, "%3d ", D2[i*NODES + j] & 0xff);
fprintf(stdout, "\n");
}
fprintf(stdout, "#\n");
}
void
show_counters()
{
u_int32_t i;
fprintf(stdout, "#\n# Destination Unreachables: %d\n#\n",
DestUnreachableCount);
fprintf(stdout, "# Route Changes: %d\n#\n", RouteChangeCount);
fprintf(stdout, "# Link Changes: %d\n#\n", LinkChangeCount);
fprintf(stdout, "# Node | Route Changes | Link Changes\n");
for(i = 0; i < NODES; i++)
fprintf(stdout, "# %4d | %4d | %4d\n",
i, NodeList[i].route_changes,
NodeList[i].link_changes);
fprintf(stdout, "#\n");
}
|