1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */
/*
* threshold.cc
* Copyright (C) 2000 by the University of Southern California
* $Id: threshold.cc,v 1.3 2005/08/25 18:58:06 johnh Exp $
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
*
*
* The copyright of this module includes the following
* linking-with-specific-other-licenses addition:
*
* In addition, as a special exception, the copyright holders of
* this module give you permission to combine (via static or
* dynamic linking) this module with free software programs or
* libraries that are released under the GNU LGPL and with code
* included in the standard release of ns-2 under the Apache 2.0
* license or under otherwise-compatible licenses with advertising
* requirements (or modified versions of such code, with unchanged
* license). You may copy and distribute such a system following the
* terms of the GNU GPL for this module and the licenses of the
* other code concerned, provided that you include the source code of
* that other code when and as the GNU GPL requires distribution of
* source code.
*
* Note that people who make modified versions of this module
* are not obligated to grant this special exception for their
* modified versions; it is their choice whether to do so. The GNU
* General Public License gives permission to release a modified
* version without this exception; this exception also makes it
* possible to release a modified version which carries forward this
* exception.
*
*/
/*
* Calculating the receiving threshold (RXThresh_ for Phy/Wireless)
* Wei Ye, weiye@isi.edu, 2000
*/
#include <math.h>
#include <stdlib.h>
#include <iostream.h>
#ifndef M_PI
#define M_PI 3.14159265359
#endif
double Friis(double Pt, double Gt, double Gr, double lambda, double L, double d)
{
/*
* Friis free space propagation equation:
*
* Pt * Gt * Gr * (lambda^2)
* P = --------------------------
* (4 *pi * d)^2 * L
*/
double M = lambda / (4 * M_PI * d);
return (Pt * Gt * Gr * (M * M)) / L;
}
double TwoRay(double Pt, double Gt, double Gr, double ht, double hr, double L, double d, double lambda)
{
/*
* if d < crossover_dist, use Friis free space model
* if d >= crossover_dist, use two ray model
*
* Two-ray ground reflection model.
*
* Pt * Gt * Gr * (ht^2 * hr^2)
* Pr = ----------------------------
* d^4 * L
*
* The original equation in Rappaport's book assumes L = 1.
* To be consistant with the free space equation, L is added here.
*/
double Pr; // received power
double crossover_dist = (4 * M_PI * ht * hr) / lambda;
if (d < crossover_dist)
Pr = Friis(Pt, Gt, Gr, lambda, L, d);
else
Pr = Pt * Gt * Gr * (hr * hr * ht * ht) / (d * d * d * d * L);
return Pr;
}
// inverse of complementary error function
// y = erfc(x) --> x = inv_erfc(y)
double inv_erfc(double y)
{
double s, t, u, w, x, z;
z = y;
if (y > 1) {
z = 2 - y;
}
w = 0.916461398268964 - log(z);
u = sqrt(w);
s = (log(u) + 0.488826640273108) / w;
t = 1 / (u + 0.231729200323405);
x = u * (1 - s * (s * 0.124610454613712 + 0.5)) -
((((-0.0728846765585675 * t + 0.269999308670029) * t +
0.150689047360223) * t + 0.116065025341614) * t +
0.499999303439796) * t;
t = 3.97886080735226 / (x + 3.97886080735226);
u = t - 0.5;
s = (((((((((0.00112648096188977922 * u +
1.05739299623423047e-4) * u - 0.00351287146129100025) * u -
7.71708358954120939e-4) * u + 0.00685649426074558612) * u +
0.00339721910367775861) * u - 0.011274916933250487) * u -
0.0118598117047771104) * u + 0.0142961988697898018) * u +
0.0346494207789099922) * u + 0.00220995927012179067;
s = ((((((((((((s * u - 0.0743424357241784861) * u -
0.105872177941595488) * u + 0.0147297938331485121) * u +
0.316847638520135944) * u + 0.713657635868730364) * u +
1.05375024970847138) * u + 1.21448730779995237) * u +
1.16374581931560831) * u + 0.956464974744799006) * u +
0.686265948274097816) * u + 0.434397492331430115) * u +
0.244044510593190935) * t -
z * exp(x * x - 0.120782237635245222);
x += s * (x * s + 1);
if (y > 1) {
x = -x;
}
return x;
}
// Inverse of Q-function
// y = Q(x) --> x = inv_Q(y)
double inv_Q(double y)
{
double x;
x = sqrt(2.0) * inv_erfc(2.0 * y);
return x;
}
int main(int argc, char** argv)
{
// specify default values
char** propModel = NULL; // propagation model
double Pt = 0.28183815; // transmit power
double Gt = 1.0; // transmit antenna gain
double Gr = 1.0; // receive antenna
double freq = 914.0e6; // frequency
double sysLoss = 1.0; // system loss
// for two-ray model
double ht = 1.5; // transmit antenna height
double hr = 1.5; // receive antenna height
// for shadowing model
double pathlossExp_ = 2.0; // path loss exponent
double std_db_ = 4.0; // shadowing deviation
double dist0_ = 1.0; // reference distance
double prob = 0.95; // correct reception rate
double rxThresh_; // receiving threshold
// check arguments
if (argc < 4) {
cout << "USAGE: find receiving threshold for certain communication range (distance)" << endl;
cout << endl;
cout << "SYNOPSIS: threshold -m <propagation-model> [other-options] distance" << endl;
cout << endl;
cout << "<propagation-model>: FreeSpace, TwoRayGround or Shadowing" << endl;
cout << "[other-options]: set parameters other than default values:" << endl;
cout << endl << "Common parameters:" << endl;
cout << "-Pt <transmit-power>" << endl;
cout << "-fr <frequency>" << endl;
cout << "-Gt <transmit-antenna-gain>" << endl;
cout << "-Gr <receive-antenna-gain>" << endl;
cout << "-L <system-loss>" << endl;
cout << endl << "For two-ray ground model:" << endl;
cout << "-ht <transmit-antenna-height>" << endl;
cout << "-hr <receive-antenna-height>" << endl;
cout << endl << "For shadowing model:" << endl;
cout << "-pl <path-loss-exponent>" << endl;
cout << "-std <shadowing-deviation>" << endl;
cout << "-d0 <reference-distance>" << endl;
cout << "-r <receiving-rate>" << endl;
return 0;
}
// parse arguments
double dist = atof(argv[argc-1]);
cout << "distance = " << dist << endl;
int argCount = (argc - 2) / 2; // number of parameters
argv++;
for (int i = 0; i < argCount; i++) {
if(!strcmp(*argv,"-m")) { // propagation model
propModel = argv + 1;
cout << "propagation model: " << *propModel << endl;
}
if(!strcmp(*argv,"-Pt")) { // transmit power
Pt = atof(*(argv + 1));
}
if(!strcmp(*argv,"-fr")) { // frequency
freq = atof(*(argv + 1));
}
if(!strcmp(*argv,"-Gt")) { // transmit antenna gain
Gt = atof(*(argv + 1));
}
if(!strcmp(*argv,"-Gr")) { // receive antenna gain
Gr = atof(*(argv + 1));
}
if(!strcmp(*argv,"-L")) { // system loss
sysLoss = atof(*(argv + 1));
}
if(!strcmp(*argv,"-ht")) { // transmit antenna height (Two ray model)
ht = atof(*(argv + 1));
}
if(!strcmp(*argv,"-hr")) { // receive antenna height (Two ray model)
hr = atof(*(argv + 1));
}
if(!strcmp(*argv,"-pl")) { // path loss exponent (Shadowing model)
pathlossExp_ = atof(*(argv + 1));
}
if(!strcmp(*argv,"-std")) { // shadowing deviation (Shadowing model)
std_db_ = atof(*(argv + 1));
}
if(!strcmp(*argv,"-d0")) { // close-in reference distance (Shadowing model)
dist0_ = atof(*(argv + 1));
}
if(!strcmp(*argv,"-r")) { // rate of correct reception (Shadowing model)
prob = atof(*(argv + 1));
}
argv += 2;
}
if (propModel == NULL) {
cout << "Must specify propagation model: -m <propagation model>" << endl;
return 0;
}
double lambda = 3.0e8/freq;
// compute threshold
if (!strcmp(*propModel, "FreeSpace")) {
rxThresh_ = Friis(Pt, Gt, Gr, lambda, sysLoss, dist);
cout << endl << "Selected parameters:" << endl;
cout << "transmit power: " << Pt << endl;
cout << "frequency: " << freq << endl;
cout << "transmit antenna gain: " << Gt << endl;
cout << "receive antenna gain: " << Gr << endl;
cout << "system loss: " << sysLoss << endl;
} else if (!strcmp(*propModel, "TwoRayGround")) {
rxThresh_ = TwoRay(Pt, Gt, Gr, ht, hr, sysLoss, dist, lambda);
cout << endl << "Selected parameters:" << endl;
cout << "transmit power: " << Pt << endl;
cout << "frequency: " << freq << endl;
cout << "transmit antenna gain: " << Gt << endl;
cout << "receive antenna gain: " << Gr << endl;
cout << "system loss: " << sysLoss << endl;
cout << "transmit antenna height: " << ht << endl;
cout << "receive antenna height: " << hr << endl;
} else if (!strcmp(*propModel, "Shadowing")) {
// calculate receiving power at reference distance
double Pr0 = Friis(Pt, Gt, Gr, lambda, sysLoss, dist0_);
// calculate average power loss predicted by path loss model
double avg_db = -10.0 * pathlossExp_ * log10(dist/dist0_);
// calculate the the threshold
double invq = inv_Q(prob);
double threshdb = invq * std_db_ + avg_db;
rxThresh_ = Pr0 * pow(10.0, threshdb/10.0);
#ifdef DEBUG
cout << "Pr0 = " << Pr0 << endl;
cout << "avg_db = " << avg_db << endl;
cout << "invq = " << invq << endl;
cout << "threshdb = " << threshdb << endl;
#endif
cout << endl << "Selected parameters:" << endl;
cout << "transmit power: " << Pt << endl;
cout << "frequency: " << freq << endl;
cout << "transmit antenna gain: " << Gt << endl;
cout << "receive antenna gain: " << Gr << endl;
cout << "system loss: " << sysLoss << endl;
cout << "path loss exp.: " << pathlossExp_ << endl;
cout << "shadowing deviation: " << std_db_ << endl;
cout << "close-in reference distance: " << dist0_ << endl;
cout << "receiving rate: " << prob << endl;
} else {
cout << "Error: unknown propagation model." << endl;
cout << "Available model: FreeSpace, TwoRayGround, Shadowing" << endl;
return 0;
}
cout << endl << "Receiving threshold RXThresh_ is: " << rxThresh_ << endl;
}
|