File: threshold.cc

package info (click to toggle)
ns2 2.35%2Bdfsg-2.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 78,780 kB
  • ctags: 27,490
  • sloc: cpp: 172,923; tcl: 107,130; perl: 6,391; sh: 6,143; ansic: 5,846; makefile: 816; awk: 525; csh: 355
file content (314 lines) | stat: -rw-r--r-- 11,373 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/* -*-	Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */

/*
 * threshold.cc
 * Copyright (C) 2000 by the University of Southern California
 * $Id: threshold.cc,v 1.3 2005/08/25 18:58:06 johnh Exp $
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
 *
 *
 * The copyright of this module includes the following
 * linking-with-specific-other-licenses addition:
 *
 * In addition, as a special exception, the copyright holders of
 * this module give you permission to combine (via static or
 * dynamic linking) this module with free software programs or
 * libraries that are released under the GNU LGPL and with code
 * included in the standard release of ns-2 under the Apache 2.0
 * license or under otherwise-compatible licenses with advertising
 * requirements (or modified versions of such code, with unchanged
 * license).  You may copy and distribute such a system following the
 * terms of the GNU GPL for this module and the licenses of the
 * other code concerned, provided that you include the source code of
 * that other code when and as the GNU GPL requires distribution of
 * source code.
 *
 * Note that people who make modified versions of this module
 * are not obligated to grant this special exception for their
 * modified versions; it is their choice whether to do so.  The GNU
 * General Public License gives permission to release a modified
 * version without this exception; this exception also makes it
 * possible to release a modified version which carries forward this
 * exception.
 *
 */

/*
 * Calculating the receiving threshold (RXThresh_ for Phy/Wireless)
 * Wei Ye, weiye@isi.edu, 2000
 */


#include <math.h>
#include <stdlib.h>
#include <iostream.h>

#ifndef M_PI
#define M_PI 3.14159265359
#endif

double Friis(double Pt, double Gt, double Gr, double lambda, double L, double d)
{
        /*
         * Friis free space propagation equation:
         *
         *       Pt * Gt * Gr * (lambda^2)
         *   P = --------------------------
         *       (4 *pi * d)^2 * L
         */
  double M = lambda / (4 * M_PI * d);
  return (Pt * Gt * Gr * (M * M)) / L;
}

double TwoRay(double Pt, double Gt, double Gr, double ht, double hr, double L, double d, double lambda)
{
        /*
         *  if d < crossover_dist, use Friis free space model
         *  if d >= crossover_dist, use two ray model
         *
         *  Two-ray ground reflection model.
         *
         *	     Pt * Gt * Gr * (ht^2 * hr^2)
         *  Pr = ----------------------------
         *           d^4 * L
         *
         * The original equation in Rappaport's book assumes L = 1.
         * To be consistant with the free space equation, L is added here.
         */

	double Pr;  // received power
	double crossover_dist = (4 * M_PI * ht * hr) / lambda;

	if (d < crossover_dist)
		Pr = Friis(Pt, Gt, Gr, lambda, L, d);
	else
		Pr = Pt * Gt * Gr * (hr * hr * ht * ht) / (d * d * d * d * L);
		
	return Pr;
}

// inverse of complementary error function
// y = erfc(x) --> x = inv_erfc(y)

double inv_erfc(double y)
{
    double s, t, u, w, x, z;

    z = y;
    if (y > 1) {
        z = 2 - y;
    }
    w = 0.916461398268964 - log(z);
    u = sqrt(w);
    s = (log(u) + 0.488826640273108) / w;
    t = 1 / (u + 0.231729200323405);
    x = u * (1 - s * (s * 0.124610454613712 + 0.5)) -
        ((((-0.0728846765585675 * t + 0.269999308670029) * t +
        0.150689047360223) * t + 0.116065025341614) * t +
        0.499999303439796) * t;
    t = 3.97886080735226 / (x + 3.97886080735226);
    u = t - 0.5;
    s = (((((((((0.00112648096188977922 * u +
        1.05739299623423047e-4) * u - 0.00351287146129100025) * u -
        7.71708358954120939e-4) * u + 0.00685649426074558612) * u +
        0.00339721910367775861) * u - 0.011274916933250487) * u -
        0.0118598117047771104) * u + 0.0142961988697898018) * u +
        0.0346494207789099922) * u + 0.00220995927012179067;
    s = ((((((((((((s * u - 0.0743424357241784861) * u -
        0.105872177941595488) * u + 0.0147297938331485121) * u +
        0.316847638520135944) * u + 0.713657635868730364) * u +
        1.05375024970847138) * u + 1.21448730779995237) * u +
        1.16374581931560831) * u + 0.956464974744799006) * u +
        0.686265948274097816) * u + 0.434397492331430115) * u +
        0.244044510593190935) * t -
        z * exp(x * x - 0.120782237635245222);
    x += s * (x * s + 1);
    if (y > 1) {
        x = -x;
    }
    return x;
}


// Inverse of Q-function
// y = Q(x) --> x = inv_Q(y)

double inv_Q(double y)
{
	double x;
	x = sqrt(2.0) * inv_erfc(2.0 * y);
	return x;
}


int main(int argc, char** argv)
{
	
	// specify default values
	char** propModel = NULL;       // propagation model
	double Pt = 0.28183815;            // transmit power
	double Gt = 1.0;               // transmit antenna gain
	double Gr = 1.0;               // receive antenna
	double freq = 914.0e6;         // frequency
	double sysLoss = 1.0;          // system loss
	
	// for two-ray model
	double ht = 1.5;               // transmit antenna height
	double hr = 1.5;               // receive antenna height
	
	// for shadowing model
	double pathlossExp_ = 2.0;     // path loss exponent
	double std_db_ = 4.0;          // shadowing deviation
	double dist0_ = 1.0;           // reference distance
	double prob = 0.95;            // correct reception rate
	
	double rxThresh_;              // receiving threshold

	// check arguments	
	if (argc < 4) {
		cout << "USAGE: find receiving threshold for certain communication range (distance)" << endl;
		cout << endl;
		cout << "SYNOPSIS: threshold -m <propagation-model> [other-options] distance" << endl;
		cout << endl;
		cout << "<propagation-model>: FreeSpace, TwoRayGround or Shadowing" << endl;
		cout << "[other-options]: set parameters other than default values:" << endl;
		cout << endl << "Common parameters:" << endl;
		cout << "-Pt <transmit-power>" << endl;
		cout << "-fr <frequency>" << endl;
		cout << "-Gt <transmit-antenna-gain>" << endl;
		cout << "-Gr <receive-antenna-gain>" << endl;
		cout << "-L <system-loss>" << endl;
		cout << endl << "For two-ray ground model:" << endl;
		cout << "-ht <transmit-antenna-height>" << endl;
		cout << "-hr <receive-antenna-height>" << endl;
		cout << endl << "For shadowing model:" << endl;
		cout << "-pl <path-loss-exponent>" << endl;
		cout << "-std <shadowing-deviation>" << endl;
		cout << "-d0 <reference-distance>" << endl;
		cout << "-r <receiving-rate>" << endl;
		return 0;
	}

	// parse arguments	
	double dist = atof(argv[argc-1]);
	cout << "distance = " << dist << endl;

	int argCount = (argc - 2) / 2;   // number of parameters
	argv++;
	for (int i = 0; i < argCount; i++) {
        if(!strcmp(*argv,"-m")) {          // propagation model
	    	propModel = argv + 1;
	    	cout << "propagation model: " << *propModel << endl;
	    }
        if(!strcmp(*argv,"-Pt")) {        // transmit power
            Pt = atof(*(argv + 1));
        }
        if(!strcmp(*argv,"-fr")) {        // frequency
            freq = atof(*(argv + 1));
        }
        if(!strcmp(*argv,"-Gt")) {        // transmit antenna gain
            Gt = atof(*(argv + 1));
        }
        if(!strcmp(*argv,"-Gr")) {        // receive antenna gain
            Gr = atof(*(argv + 1));
        }
        if(!strcmp(*argv,"-L")) {        // system loss
            sysLoss = atof(*(argv + 1));
	    }
        if(!strcmp(*argv,"-ht")) {        // transmit antenna height (Two ray model)
            ht = atof(*(argv + 1));
	    }
        if(!strcmp(*argv,"-hr")) {        // receive antenna height (Two ray model)
            hr = atof(*(argv + 1));
	    }
        if(!strcmp(*argv,"-pl")) {        // path loss exponent (Shadowing model)
            pathlossExp_ = atof(*(argv + 1));
        }
        if(!strcmp(*argv,"-std")) {        // shadowing deviation (Shadowing model)
            std_db_ = atof(*(argv + 1));
        }
        if(!strcmp(*argv,"-d0")) {        // close-in reference distance (Shadowing model)
            dist0_ = atof(*(argv + 1));
	    }
        if(!strcmp(*argv,"-r")) {        // rate of correct reception (Shadowing model)
            prob = atof(*(argv + 1));
        }
	    argv += 2;
	}
	
	if (propModel == NULL) {
		cout << "Must specify propagation model: -m <propagation model>" << endl;
		return 0;
	}
	
	double lambda = 3.0e8/freq;
	
	// compute threshold	
	if (!strcmp(*propModel, "FreeSpace")) {
		rxThresh_ = Friis(Pt, Gt, Gr, lambda, sysLoss, dist);
		cout << endl << "Selected parameters:" << endl;
        cout << "transmit power: " << Pt << endl;
        cout << "frequency: " << freq << endl;
        cout << "transmit antenna gain: " << Gt << endl;
        cout << "receive antenna gain: " << Gr << endl;
        cout << "system loss: " << sysLoss << endl;
	} else if (!strcmp(*propModel, "TwoRayGround")) {
		rxThresh_ = TwoRay(Pt, Gt, Gr, ht, hr, sysLoss, dist, lambda);
		cout << endl << "Selected parameters:" << endl;
        cout << "transmit power: " << Pt << endl;
        cout << "frequency: " << freq << endl;
        cout << "transmit antenna gain: " << Gt << endl;
        cout << "receive antenna gain: " << Gr << endl;
        cout << "system loss: " << sysLoss << endl;
        cout << "transmit antenna height: " << ht << endl;
        cout << "receive antenna height: " << hr << endl;
	} else if (!strcmp(*propModel, "Shadowing")) {
		// calculate receiving power at reference distance
		double Pr0 = Friis(Pt, Gt, Gr, lambda, sysLoss, dist0_);

		// calculate average power loss predicted by path loss model
		double avg_db = -10.0 * pathlossExp_ * log10(dist/dist0_);

		// calculate the the threshold
		double invq = inv_Q(prob);
		double threshdb = invq * std_db_ + avg_db;
		rxThresh_ = Pr0 * pow(10.0, threshdb/10.0);
	
#ifdef DEBUG
		cout << "Pr0 = " << Pr0 << endl;
		cout << "avg_db = " << avg_db << endl;
		cout << "invq = " << invq << endl;
		cout << "threshdb = " << threshdb << endl;
#endif
		
		cout << endl << "Selected parameters:" << endl;
        cout << "transmit power: " << Pt << endl;
        cout << "frequency: " << freq << endl;
        cout << "transmit antenna gain: " << Gt << endl;
        cout << "receive antenna gain: " << Gr << endl;
        cout << "system loss: " << sysLoss << endl;
        cout << "path loss exp.: " << pathlossExp_ << endl;
        cout << "shadowing deviation: " << std_db_ << endl;
        cout << "close-in reference distance: " << dist0_ << endl;
        cout << "receiving rate: " << prob << endl;
    } else {
    	cout << "Error: unknown propagation model." << endl;
    	cout << "Available model: FreeSpace, TwoRayGround, Shadowing" << endl;
    	return 0;
    }

	cout << endl << "Receiving threshold RXThresh_ is: " << rxThresh_ << endl;

}