File: red.cc

package info (click to toggle)
ns2 2.35%2Bdfsg-2.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 78,780 kB
  • ctags: 27,490
  • sloc: cpp: 172,923; tcl: 107,130; perl: 6,391; sh: 6,143; ansic: 5,846; makefile: 816; awk: 525; csh: 355
file content (989 lines) | stat: -rw-r--r-- 29,475 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
 /* -*-	Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */
/*
 * Copyright (c) 1990-1997 Regents of the University of California.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the Computer Systems
 *	Engineering Group at Lawrence Berkeley Laboratory.
 * 4. Neither the name of the University nor of the Laboratory may be used
 *    to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *
 * Here is one set of parameters from one of Sally's simulations
 * (this is from tcpsim, the older simulator):
 * 
 * ed [ q_weight=0.002 thresh=5 linterm=30 maxthresh=15
 *         mean_pktsize=500 dropmech=random-drop queue-size=60
 *         plot-file=none bytes=false doubleq=false dqthresh=50 
 *	   wait=true ]
 * 
 * 1/"linterm" is the max probability of dropping a packet. 
 * There are different options that make the code
 * more messy that it would otherwise be.  For example,
 * "doubleq" and "dqthresh" are for a queue that gives priority to
 *   small (control) packets, 
 * "bytes" indicates whether the queue should be measured in bytes 
 *   or in packets, 
 * "dropmech" indicates whether the drop function should be random-drop 
 *   or drop-tail when/if the queue overflows, and 
 *   the commented-out Holt-Winters method for computing the average queue 
 *   size can be ignored.
 * "wait" indicates whether the gateway should wait between dropping
 *   packets.
 */

#ifndef lint
static const char rcsid[] =
     "@(#) $Header: /cvsroot/nsnam/ns-2/queue/red.cc,v 1.90 2011/10/02 22:32:34 tom_henderson Exp $ (LBL)";
#endif

#include <math.h>
#include <sys/types.h>
#include "config.h"
#include "template.h"
#include "random.h"
#include "flags.h"
#include "delay.h"
#include "red.h"

static class REDClass : public TclClass {
public:
	REDClass() : TclClass("Queue/RED") {}
	TclObject* create(int argc, const char*const* argv) {
		//printf("creating RED Queue. argc = %d\n", argc);
		
		//mod to enable RED to take arguments
		if (argc==5) 
			return (new REDQueue(argv[4]));
		else
			return (new REDQueue("Drop"));
	}
} class_red;

/* Strangely this didn't work. 
 * Seg faulted for child classes.
REDQueue::REDQueue() { 
	REDQueue("Drop");
}
*/

/*
 * modified to enable instantiation with special Trace objects - ratul
 */
REDQueue::REDQueue(const char * trace) : link_(NULL), de_drop_(NULL), EDTrace(NULL), tchan_(0), idle_(1), idletime_(0.0)
{
	initParams();
	
	//	printf("Making trace type %s\n", trace);
	if (strlen(trace) >=20) {
		printf("trace type too long - allocate more space to traceType in red.h and recompile\n");
		exit(0);
	}
	strcpy(traceType, trace);
	bind_bool("bytes_", &edp_.bytes);	    // boolean: use bytes?
	bind_bool("queue_in_bytes_", &qib_);	    // boolean: q in bytes?
	//	_RENAMED("queue-in-bytes_", "queue_in_bytes_");

	bind("thresh_", &edp_.th_min_pkts);		    // minthresh
	bind("thresh_queue_", &edp_.th_min);
	bind("maxthresh_", &edp_.th_max_pkts);	    // maxthresh
	bind("maxthresh_queue_", &edp_.th_max);
	bind("mean_pktsize_", &edp_.mean_pktsize);  // avg pkt size
	bind("idle_pktsize_", &edp_.idle_pktsize);  // avg pkt size for idles
	bind("q_weight_", &edp_.q_w);		    // for EWMA
	bind("adaptive_", &edp_.adaptive);          // 1 for adaptive red
	bind("cautious_", &edp_.cautious);          // 1 for cautious marking
	bind("alpha_", &edp_.alpha); 	  	    // adaptive red param
	bind("beta_", &edp_.beta);                  // adaptive red param
	bind("interval_", &edp_.interval);	    // adaptive red param
	bind("feng_adaptive_",&edp_.feng_adaptive); // adaptive red variant
	bind("targetdelay_", &edp_.targetdelay);    // target delay
	bind("top_", &edp_.top);		    // maximum for max_p	
	bind("bottom_", &edp_.bottom);		    // minimum for max_p	
	bind_bool("wait_", &edp_.wait);
	bind("linterm_", &edp_.max_p_inv);
	bind("mark_p_", &edp_.mark_p);
	bind_bool("use_mark_p_", &edp_.use_mark_p);
	bind_bool("setbit_", &edp_.setbit);	    // mark instead of drop
	bind_bool("gentle_", &edp_.gentle);         // increase the packet
						    // drop prob. slowly
						    // when ave queue
						    // exceeds maxthresh

	bind_bool("summarystats_", &summarystats_);
	bind_bool("drop_tail_", &drop_tail_);	    // drop last pkt
	//	_RENAMED("drop-tail_", "drop_tail_");

	bind_bool("drop_front_", &drop_front_);	    // drop first pkt
	//	_RENAMED("drop-front_", "drop_front_");
	
	bind_bool("drop_rand_", &drop_rand_);	    // drop pkt at random
	//	_RENAMED("drop-rand_", "drop_rand_");

	bind_bool("ns1_compat_", &ns1_compat_);	    // ns-1 compatibility
	//	_RENAMED("ns1-compat_", "ns1_compat_");

	bind("ave_", &edv_.v_ave);		    // average queue sie
	bind("prob1_", &edv_.v_prob1);		    // dropping probability
	bind("curq_", &curq_);			    // current queue size
	bind("cur_max_p_", &edv_.cur_max_p);        // current max_p
	

	q_ = new PacketQueue();			    // underlying queue
	pq_ = q_;
	//reset();
#ifdef notdef
	print_edp();
	print_edv();
#endif
	
}


/*
 * Note: if the link bandwidth changes in the course of the
 * simulation, the bandwidth-dependent RED parameters do not change.
 * This should be fixed, but it would require some extra parameters,
 * and didn't seem worth the trouble...
 */
void REDQueue::initialize_params()
{
/*
 * If q_weight=0, set it to a reasonable value of 1-exp(-1/C)
 * This corresponds to choosing q_weight to be of that value for
 * which the packet time constant -1/ln(1-q_weight) per default RTT 
 * of 100ms is an order of magnitude more than the link capacity, C.
 *
 * If q_weight=-1, then the queue weight is set to be a function of
 * the bandwidth and the link propagation delay.  In particular, 
 * the default RTT is assumed to be three times the link delay and 
 * transmission delay, if this gives a default RTT greater than 100 ms. 
 *
 * If q_weight=-2, set it to a reasonable value of 1-exp(-10/C).
 */
	if (edp_.q_w == 0.0) {
		edp_.q_w = 1.0 - exp(-1.0/edp_.ptc);
 	} else if (edp_.q_w == -1.0) {
		double rtt = 3.0*(edp_.delay+1.0/edp_.ptc);
		//printf("delay: %5.4f rtt: %5.4f\n", edp_.delay, rtt);
		if (rtt < 0.1) 
			rtt = 0.1;
		edp_.q_w = 1.0 - exp(-1.0/(10*rtt*edp_.ptc));
	} else if (edp_.q_w == -2.0) {
		edp_.q_w = 1.0 - exp(-10.0/edp_.ptc);
	}

	// printf("ptc: %7.5f bandwidth: %5.3f pktsize: %d\n", edp_.ptc, link_->bandwidth(), edp_.mean_pktsize);
        // printf("th_min_pkts: %7.5f th_max_pkts: %7.5f\n", edp_.th_min_pkts, edp_.th_max);
	if (edp_.th_min_pkts == 0) {
		edp_.th_min_pkts = 5.0;
		// set th_min_pkts to half of targetqueue, if this is greater
		//  than 5 packets.
		double targetqueue = edp_.targetdelay * edp_.ptc;
		if (edp_.th_min_pkts < targetqueue / 2.0 )
			edp_.th_min_pkts = targetqueue / 2.0 ;
        }
	if (edp_.th_max_pkts == 0) 
		edp_.th_max_pkts = 3.0 * edp_.th_min_pkts;
        //printf("th_min_pkts: %7.5f th_max_pkts: %7.5f\n", edp_.th_min_pkts, edp_.th_max);
	//printf("q_w: %7.5f\n", edp_.q_w);
	if (edp_.bottom == 0) {
		edp_.bottom = 0.01;
		// Set bottom to at most 1/W, for W the delay-bandwidth 
		//   product in packets for a connection with this bandwidth,
		//   1000-byte packets, and 100 ms RTTs.
		// So W = 0.1 * link_->bandwidth() / 8000 
		double bottom1 = 80000.0/link_->bandwidth();
		if (bottom1 < edp_.bottom) 
			edp_.bottom = bottom1;
		//printf("bottom: %9.7f\n", edp_.bottom);
	}
}

void REDQueue::initParams() 
{
	edp_.mean_pktsize = 0;
	edp_.idle_pktsize = 0;
	edp_.bytes = 0;
	edp_.wait = 0;
	edp_.setbit = 0;
	edp_.gentle = 0;
	edp_.th_min = 0.0;
	edp_.th_min_pkts = 0.0;
	edp_.th_max = 0.0;
	edp_.th_max_pkts = 0.0;
	edp_.max_p_inv = 0.0;
	edp_.q_w = 0.0;
	edp_.adaptive = 0;
	edp_.cautious = 0;
	edp_.alpha = 0.0;
	edp_.beta = 0.0;
	edp_.interval = 0.0;
	edp_.targetdelay = 0.0;
	edp_.top = 0.0;
	edp_.bottom = 0.0;
	edp_.feng_adaptive = 0;
	edp_.ptc = 0.0;
	edp_.delay = 0.0;
	
	edv_.v_ave = 0.0;
	edv_.v_prob1 = 0.0;
	edv_.v_slope = 0.0;
	edv_.v_prob = 0.0;
	edv_.v_a = 0.0;
	edv_.v_b = 0.0;
	edv_.v_c = 0.0;
	edv_.v_d = 0.0;
	edv_.count = 0;
	edv_.count_bytes = 0;
	edv_.old = 0;
	edv_.cur_max_p = 1.0;
	edv_.lastset = 0;
}


void REDQueue::reset()
{
	
        //printf("3: th_min_pkts: %5.2f\n", edp_.th_min_pkts); 
	/*
	 * Compute the "packet time constant" if we know the
	 * link bandwidth.  The ptc is the max number of (avg sized)
	 * pkts per second which can be placed on the link.
	 * The link bw is given in bits/sec, so scale mean psize
	 * accordingly.
	 */
        if (link_) {
		edp_.ptc = link_->bandwidth() / (8.0 * edp_.mean_pktsize);
		initialize_params();
	}
	if (edp_.th_max_pkts == 0) 
		edp_.th_max_pkts = 3.0 * edp_.th_min_pkts;
	/*
	 * If queue is measured in bytes, scale min/max thresh
	 * by the size of an average packet (which is specified by user).
	 */
        if (qib_) {
		//printf("1: th_min in pkts: %5.2f mean_pktsize: %d \n", edp_.th_min_pkts, edp_.mean_pktsize); 
                edp_.th_min = edp_.th_min_pkts * edp_.mean_pktsize;  
                edp_.th_max = edp_.th_max_pkts * edp_.mean_pktsize;
		//printf("2: th_min in bytes (if qib): %5.2f mean_pktsize: %d \n", edp_.th_min, edp_.mean_pktsize); 
        } else {
		edp_.th_min = edp_.th_min_pkts;
		edp_.th_max = edp_.th_max_pkts;
	}
	 
	edv_.v_ave = 0.0;
	edv_.v_slope = 0.0;
	edv_.count = 0;
	edv_.count_bytes = 0;
	edv_.old = 0;
	double th_diff = (edp_.th_max - edp_.th_min);
	if (th_diff == 0) { 
		//XXX this last check was added by a person who knows
		//nothing of this code just to stop FP div by zero.
		//Values for thresholds were equal at time 0.  If you
		//know what should be here, please cleanup and remove
		//this comment.
		th_diff = 1.0; 
	}
	edv_.v_a = 1.0 / th_diff;
	edv_.cur_max_p = 1.0 / edp_.max_p_inv;
	edv_.v_b = - edp_.th_min / th_diff;
	edv_.lastset = 0.0;
	if (edp_.gentle) {
		edv_.v_c = ( 1.0 - edv_.cur_max_p ) / edp_.th_max;
		edv_.v_d = 2.0 * edv_.cur_max_p - 1.0;
	}

	idle_ = 1;
	if (&Scheduler::instance() != NULL)
		idletime_ = Scheduler::instance().clock();
	else
		idletime_ = 0.0; /* sched not instantiated yet */
	
	if (debug_) 
		printf("Doing a queue reset\n");
	Queue::reset();
	if (debug_) 
		printf("Done queue reset\n");
}

/*
 *  Updating max_p, following code from Feng et al. 
 *  This is only called for Adaptive RED.
 *  From "A Self-Configuring RED Gateway", from Feng et al.
 *  They recommend alpha = 3, and beta = 2.
 */
void REDQueue::updateMaxPFeng(double new_ave)
{
	if ( edp_.th_min < new_ave && new_ave < edp_.th_max) {
		edv_.status = edv_.Between;
	}
	if (new_ave < edp_.th_min && edv_.status != edv_.Below) {
		edv_.status = edv_.Below;
		edv_.cur_max_p = edv_.cur_max_p / edp_.alpha;
		//double max = edv_.cur_max_p; double param = edp_.alpha;
		//printf("max: %5.2f alpha: %5.2f\n", max, param);
	}
	if (new_ave > edp_.th_max && edv_.status != edv_.Above) {
		edv_.status = edv_.Above;
		edv_.cur_max_p = edv_.cur_max_p * edp_.beta;
		//double max = edv_.cur_max_p; double param = edp_.alpha;
		//printf("max: %5.2f beta: %5.2f\n", max, param);
	}
}

/*
 *  Updating max_p to keep the average queue size within the target range.
 *  This is only called for Adaptive RED.
 */
void REDQueue::updateMaxP(double new_ave, double now)
{
	double part = 0.4*(edp_.th_max - edp_.th_min);
	// AIMD rule to keep target Q~1/2(th_min+th_max)
	if ( new_ave < edp_.th_min + part && edv_.cur_max_p > edp_.bottom) {
		// we increase the average queue size, so decrease max_p
		edv_.cur_max_p = edv_.cur_max_p * edp_.beta;
		edv_.lastset = now;
	} else if (new_ave > edp_.th_max - part && edp_.top > edv_.cur_max_p ) {
		// we decrease the average queue size, so increase max_p
		double alpha = edp_.alpha;
                        if ( alpha > 0.25*edv_.cur_max_p )
			alpha = 0.25*edv_.cur_max_p;
		edv_.cur_max_p = edv_.cur_max_p + alpha;
		edv_.lastset = now;
	} 
}

/*
 * Compute the average queue size.
 * Nqueued can be bytes or packets.
 */
double REDQueue::estimator(int nqueued, int m, double ave, double q_w)
{
	double new_ave;

	new_ave = ave;
	while (--m >= 1) {
		new_ave *= 1.0 - q_w;
	}
	new_ave *= 1.0 - q_w;
	new_ave += q_w * nqueued;
	
	double now = Scheduler::instance().clock();
	if (edp_.adaptive == 1) {
		if (edp_.feng_adaptive == 1)
			updateMaxPFeng(new_ave);
		else if (now > edv_.lastset + edp_.interval)
			updateMaxP(new_ave, now);
	}
	return new_ave;
}

/*
 * Return the next packet in the queue for transmission.
 */
Packet* REDQueue::deque()
{
	Packet *p;
	if (summarystats_ && &Scheduler::instance() != NULL) {
		Queue::updateStats(qib_?q_->byteLength():q_->length());
	}
	p = q_->deque();
	if (p != 0) {
		idle_ = 0;
	} else {
		idle_ = 1;
		// deque() may invoked by Queue::reset at init
		// time (before the scheduler is instantiated).
		// deal with this case
		if (&Scheduler::instance() != NULL)
			idletime_ = Scheduler::instance().clock();
		else
			idletime_ = 0.0;
	}
	return (p);
}

/*
 * Calculate the drop probability.
 */
double
REDQueue::calculate_p_new(double v_ave, double th_max, int gentle, double v_a, 
	double v_b, double v_c, double v_d, double max_p)
{
	double p;
	if (gentle && v_ave >= th_max) {
		// p ranges from max_p to 1 as the average queue
		// size ranges from th_max to twice th_max 
		p = v_c * v_ave + v_d;
        } else if (!gentle && v_ave >= th_max) { 
                // OLD: p continues to range linearly above max_p as
                // the average queue size ranges above th_max.
                // NEW: p is set to 1.0 
                p = 1.0;
        } else {
                // p ranges from 0 to max_p as the average queue
                // size ranges from th_min to th_max 
                p = v_a * v_ave + v_b;
                // p = (v_ave - th_min) / (th_max - th_min)
                p *= max_p; 
        }
	if (p > 1.0)
		p = 1.0;
	return p;
}

/*
 * Calculate the drop probability.
 * This is being kept for backwards compatibility.
 */
double
REDQueue::calculate_p(double v_ave, double th_max, int gentle, double v_a, 
	double v_b, double v_c, double v_d, double max_p_inv)
{
	double p = calculate_p_new(v_ave, th_max, gentle, v_a,
		v_b, v_c, v_d, 1.0 / max_p_inv);
	return p;
}

/*
 * Make uniform instead of geometric interdrop periods.
 */
double
REDQueue::modify_p(double p, int count, int count_bytes, int bytes, 
   int mean_pktsize, int wait, int size)
{
	double count1 = (double) count;
	if (bytes)
		count1 = (double) (count_bytes/mean_pktsize);
	if (wait) {
		if (count1 * p < 1.0)
			p = 0.0;
		else if (count1 * p < 2.0)
			p /= (2.0 - count1 * p);
		else
			p = 1.0;
	} else {
		if (count1 * p < 1.0)
			p /= (1.0 - count1 * p);
		else
			p = 1.0;
	}
	if (bytes && p < 1.0) {
		p = (p * size) / mean_pktsize;
		//p = p * (size / mean_pktsize);

	}
	if (p > 1.0)
		p = 1.0;
 	return p;
}

/*
 * 
 */

/*
 * should the packet be dropped/marked due to a probabilistic drop?
 */
int
REDQueue::drop_early(Packet* pkt)
{
	hdr_cmn* ch = hdr_cmn::access(pkt);

	edv_.v_prob1 = calculate_p_new(edv_.v_ave, edp_.th_max, edp_.gentle, 
  	  edv_.v_a, edv_.v_b, edv_.v_c, edv_.v_d, edv_.cur_max_p);
	edv_.v_prob = modify_p(edv_.v_prob1, edv_.count, edv_.count_bytes,
	  edp_.bytes, edp_.mean_pktsize, edp_.wait, ch->size());

	// drop probability is computed, pick random number and act
	if (edp_.cautious == 1) {
		 // Don't drop/mark if the instantaneous queue is much
		 //  below the average.
		 // For experimental purposes only.
		int qsize = qib_?q_->byteLength():q_->length();
		// pkts: the number of packets arriving in 50 ms
		double pkts = edp_.ptc * 0.05;
		double fraction = pow( (1-edp_.q_w), pkts);
		// double fraction = 0.9;
		if ((double) qsize < fraction * edv_.v_ave) {
			// queue could have been empty for 0.05 seconds
			// printf("fraction: %5.2f\n", fraction);
			return (0);
		}
	}
	double u = Random::uniform();
	if (edp_.cautious == 2) {
                // Decrease the drop probability if the instantaneous
		//   queue is much below the average.
		// For experimental purposes only.
		int qsize = qib_?q_->byteLength():q_->length();
		// pkts: the number of packets arriving in 50 ms
		double pkts = edp_.ptc * 0.05;
		double fraction = pow( (1-edp_.q_w), pkts);
		// double fraction = 0.9;
		double ratio = qsize / (fraction * edv_.v_ave);
		if (ratio < 1.0) {
			// printf("ratio: %5.2f\n", ratio);
			u *= 1.0 / ratio;
		}
	}
	if (u <= edv_.v_prob) {
		// DROP or MARK
		edv_.count = 0;
		edv_.count_bytes = 0;
		hdr_flags* hf = hdr_flags::access(pickPacketForECN(pkt));
		if (edp_.setbit && hf->ect() && 
                     (!edp_.use_mark_p || edv_.v_prob1 < edp_.mark_p)) { 
			hf->ce() = 1; 	// mark Congestion Experienced bit
			// Tell the queue monitor here - call emark(pkt)
			return (0);	// no drop
		} else {
			return (1);	// drop
		}
	}
	return (0);			// no DROP/mark
}

/*
 * Pick packet for early congestion notification (ECN). This packet is then
 * marked or dropped. Having a separate function do this is convenient for
 * supporting derived classes that use the standard RED algorithm to compute
 * average queue size but use a different algorithm for choosing the packet for 
 * ECN notification.
 */
Packet*
REDQueue::pickPacketForECN(Packet* pkt)
{
	return pkt; /* pick the packet that just arrived */
}

/*
 * Pick packet to drop. Having a separate function do this is convenient for
 * supporting derived classes that use the standard RED algorithm to compute
 * average queue size but use a different algorithm for choosing the victim.
 */
Packet*
REDQueue::pickPacketToDrop() 
{
	int victim;

	if (drop_front_)
		victim = min(1, q_->length()-1);
	else if (drop_rand_)
		victim = Random::integer(q_->length());
	else			/* default is drop_tail_ */
		victim = q_->length() - 1;

	return(q_->lookup(victim)); 
}

/*
 * Receive a new packet arriving at the queue.
 * The average queue size is computed.  If the average size
 * exceeds the threshold, then the dropping probability is computed,
 * and the newly-arriving packet is dropped with that probability.
 * The packet is also dropped if the maximum queue size is exceeded.
 *
 * "Forced" drops mean a packet arrived when the underlying queue was
 * full, or when the average queue size exceeded some threshold and no
 * randomization was used in selecting the packet to be dropped.
 * "Unforced" means a RED random drop.
 *
 * For forced drops, either the arriving packet is dropped or one in the
 * queue is dropped, depending on the setting of drop_tail_.
 * For unforced drops, the arriving packet is always the victim.
 */

#define	DTYPE_NONE	0	/* ok, no drop */
#define	DTYPE_FORCED	1	/* a "forced" drop */
#define	DTYPE_UNFORCED	2	/* an "unforced" (random) drop */

void REDQueue::enque(Packet* pkt)
{

	/*
	 * if we were idle, we pretend that m packets arrived during
	 * the idle period.  m is set to be the ptc times the amount
	 * of time we've been idle for
	 */

	/*  print_edp(); */
	int m = 0;
	if (idle_) {
		// A packet that arrives to an idle queue will never
		//  be dropped.
		double now = Scheduler::instance().clock();
		/* To account for the period when the queue was empty. */
		idle_ = 0;
		// Use idle_pktsize instead of mean_pktsize, for
		//  a faster response to idle times.
		if (edp_.cautious == 3) {
			double ptc = edp_.ptc * 
			   edp_.mean_pktsize / edp_.idle_pktsize;
			m = int(ptc * (now - idletime_));
		} else
                	m = int(edp_.ptc * (now - idletime_));
	}

	/*
	 * Run the estimator with either 1 new packet arrival, or with
	 * the scaled version above [scaled by m due to idle time]
	 */
	edv_.v_ave = estimator(qib_ ? q_->byteLength() : q_->length(), m + 1, edv_.v_ave, edp_.q_w);
	//printf("v_ave: %6.4f (%13.12f) q: %d)\n", 
	//	double(edv_.v_ave), double(edv_.v_ave), q_->length());
	if (summarystats_) {
		/* compute true average queue size for summary stats */
		Queue::updateStats(qib_?q_->byteLength():q_->length());
	}

	/*
	 * count and count_bytes keeps a tally of arriving traffic
	 * that has not been dropped (i.e. how long, in terms of traffic,
	 * it has been since the last early drop)
	 */

	hdr_cmn* ch = hdr_cmn::access(pkt);
	++edv_.count;
	edv_.count_bytes += ch->size();

	/*
	 * DROP LOGIC:
	 *	q = current q size, ~q = averaged q size
	 *	1> if ~q > maxthresh, this is a FORCED drop
	 *	2> if minthresh < ~q < maxthresh, this may be an UNFORCED drop
	 *	3> if (q+1) > hard q limit, this is a FORCED drop
	 */

	register double qavg = edv_.v_ave;
	int droptype = DTYPE_NONE;
	int qlen = qib_ ? q_->byteLength() : q_->length();
	int qlim = qib_ ? (qlim_ * edp_.mean_pktsize) : qlim_;

	curq_ = qlen;	// helps to trace queue during arrival, if enabled

	if (qavg >= edp_.th_min && qlen > 1) {
		if (!edp_.use_mark_p && 
			((!edp_.gentle && qavg >= edp_.th_max) ||
			(edp_.gentle && qavg >= 2 * edp_.th_max))) {
			droptype = DTYPE_FORCED;
		} else if (edv_.old == 0) {
			/* 
			 * The average queue size has just crossed the
			 * threshold from below to above "minthresh", or
			 * from above "minthresh" with an empty queue to
			 * above "minthresh" with a nonempty queue.
			 */
			edv_.count = 1;
			edv_.count_bytes = ch->size();
			edv_.old = 1;
		} else if (drop_early(pkt)) {
			droptype = DTYPE_UNFORCED;
		}
	} else {
		/* No packets are being dropped.  */
		edv_.v_prob = 0.0;
		edv_.old = 0;		
	}
	if (qlen >= qlim) {
		// see if we've exceeded the queue size
		droptype = DTYPE_FORCED;
	}

	if (droptype == DTYPE_UNFORCED) {
		/* pick packet for ECN, which is dropping in this case */
		Packet *pkt_to_drop = pickPacketForECN(pkt);
		/* 
		 * If the packet picked is different that the one that just arrived,
		 * add it to the queue and remove the chosen packet.
		 */
		if (pkt_to_drop != pkt) {
			q_->enque(pkt);
			q_->remove(pkt_to_drop);
			pkt = pkt_to_drop; /* XXX okay because pkt is not needed anymore */
		}

		// deliver to special "edrop" target, if defined
		if (de_drop_ != NULL) {
	
		//trace first if asked 
		// if no snoop object (de_drop_) is defined, 
		// this packet will not be traced as a special case.
			if (EDTrace != NULL) 
				((Trace *)EDTrace)->recvOnly(pkt);

			reportDrop(pkt);
			de_drop_->recv(pkt);
		}
		else {
			reportDrop(pkt);
			drop(pkt);
		}
	} else {
		/* forced drop, or not a drop: first enqueue pkt */
		q_->enque(pkt);

		/* drop a packet if we were told to */
		if (droptype == DTYPE_FORCED) {
			/* drop random victim or last one */
			pkt = pickPacketToDrop();
			q_->remove(pkt);
			reportDrop(pkt);
			drop(pkt);
			if (!ns1_compat_) {
				// bug-fix from Philip Liu, <phill@ece.ubc.ca>
				edv_.count = 0;
				edv_.count_bytes = 0;
			}
		}
	}
	return;
}

int REDQueue::command(int argc, const char*const* argv)
{
	Tcl& tcl = Tcl::instance();
	if (argc == 2) {
		if (strcmp(argv[1], "reset") == 0) {
			reset();
			return (TCL_OK);
		}
		if (strcmp(argv[1], "early-drop-target") == 0) {
			if (de_drop_ != NULL)
				tcl.resultf("%s", de_drop_->name());
			return (TCL_OK);
		}
		if (strcmp(argv[1], "edrop-trace") == 0) {
			if (EDTrace != NULL) {
				tcl.resultf("%s", EDTrace->name());
				if (debug_) 
					printf("edrop trace exists according to RED\n");
			}
			else {
				if (debug_)
					printf("edrop trace doesn't exist according to RED\n");
				tcl.resultf("0");
			}
			return (TCL_OK);
		}
		if (strcmp(argv[1], "trace-type") == 0) {
			tcl.resultf("%s", traceType);
			return (TCL_OK);
		}
		if (strcmp(argv[1], "printstats") == 0) {
			print_summarystats();
			return (TCL_OK);
		}
	} 
	else if (argc == 3) {
		// attach a file for variable tracing
		if (strcmp(argv[1], "attach") == 0) {
			int mode;
			const char* id = argv[2];
			tchan_ = Tcl_GetChannel(tcl.interp(), (char*)id, &mode);
			if (tchan_ == 0) {
				tcl.resultf("RED: trace: can't attach %s for writing", id);
				return (TCL_ERROR);
			}
			return (TCL_OK);
		}
		// tell RED about link stats
		if (strcmp(argv[1], "link") == 0) {
			LinkDelay* del = (LinkDelay*)TclObject::lookup(argv[2]);
			if (del == 0) {
				tcl.resultf("RED: no LinkDelay object %s",
					argv[2]);
				return(TCL_ERROR);
			}
			// set ptc now
			link_ = del;
			edp_.ptc = link_->bandwidth() /
				(8.0 * edp_.mean_pktsize);
			edp_.delay = link_->delay();
			if (
			  (edp_.q_w <= 0.0 || edp_.th_min_pkts == 0 ||
					edp_.th_max_pkts == 0))
                        	initialize_params();
			return (TCL_OK);
		}
		if (strcmp(argv[1], "early-drop-target") == 0) {
			NsObject* p = (NsObject*)TclObject::lookup(argv[2]);
			if (p == 0) {
				tcl.resultf("no object %s", argv[2]);
				return (TCL_ERROR);
			}
			de_drop_ = p;
			return (TCL_OK);
		}
		if (strcmp(argv[1], "edrop-trace") == 0) {
			if (debug_) 
				printf("Ok, Here\n");
			NsObject * t  = (NsObject *)TclObject::lookup(argv[2]);
			if (debug_)  
				printf("Ok, Here too\n");
			if (t == 0) {
				tcl.resultf("no object %s", argv[2]);
				return (TCL_ERROR);
			}
			EDTrace = t;
			if (debug_)  
				printf("Ok, Here too too too %d\n", ((Trace *)EDTrace)->type_);
			return (TCL_OK);
		}
		if (!strcmp(argv[1], "packetqueue-attach")) {
			delete q_;
			if (!(q_ = (PacketQueue*) TclObject::lookup(argv[2])))
				return (TCL_ERROR);
			else {
				pq_ = q_;
				return (TCL_OK);
			}
		}
	}
	return (Queue::command(argc, argv));
}

/*
 * Routine called by TracedVar facility when variables change values.
 * Currently used to trace values of avg queue size, drop probability,
 * and the instantaneous queue size seen by arriving packets.
 * Note that the tracing of each var must be enabled in tcl to work.
 */

void
REDQueue::trace(TracedVar* v)
{
	char wrk[500];
	const char *p;

	if (((p = strstr(v->name(), "ave")) == NULL) &&
	    ((p = strstr(v->name(), "prob")) == NULL) &&
	    ((p = strstr(v->name(), "curq")) == NULL) &&
	    ((p = strstr(v->name(), "cur_max_p"))==NULL) ) {
		fprintf(stderr, "RED:unknown trace var %s\n",
			v->name());
		return;
	}

	if (tchan_) {
		int n;
		double t = Scheduler::instance().clock();
		// XXX: be compatible with nsv1 RED trace entries
		if (strstr(v->name(), "curq") != NULL) {
			sprintf(wrk, "Q %g %d", t, int(*((TracedInt*) v)));
		} else {
			sprintf(wrk, "%c %g %g", *p, t,
				double(*((TracedDouble*) v)));
		}
		n = strlen(wrk);
		wrk[n] = '\n'; 
		wrk[n+1] = 0;
		(void)Tcl_Write(tchan_, wrk, n+1);
	}
	return; 
}

/* for debugging help */
void REDQueue::print_edp()
{
	printf("mean_pktsz: %d\n", edp_.mean_pktsize); 
	printf("bytes: %d, wait: %d, setbit: %d\n",
		edp_.bytes, edp_.wait, edp_.setbit);
	printf("minth: %f, maxth: %f\n", edp_.th_min, edp_.th_max);
	printf("max_p: %f, qw: %f, ptc: %f\n",
		(double) edv_.cur_max_p, edp_.q_w, edp_.ptc);
	printf("qlim: %d, idletime: %f\n", qlim_, idletime_);
	printf("mark_p: %f, use_mark_p: %d\n", edp_.mark_p, edp_.use_mark_p);
	printf("=========\n");
}

void REDQueue::print_edv()
{
	printf("v_a: %f, v_b: %f\n", edv_.v_a, edv_.v_b);
}

void REDQueue::print_summarystats()
{
	//double now = Scheduler::instance().clock();
	printf("True average queue: %5.3f", true_ave_);
	if (qib_) 
		printf(" (in bytes)");
        printf(" time: %5.3f\n", total_time_);
}

/************************************************************/
/*
 * This procedure is obsolete, and only included for backward compatibility.
 * The new procedure is REDQueue::estimator
 */ 
/*
 * Compute the average queue size.
 * The code contains two alternate methods for this, the plain EWMA
 * and the Holt-Winters method.
 * nqueued can be bytes or packets
 */
void REDQueue::run_estimator(int nqueued, int m)
{
	double f, f_sl;

	f = edv_.v_ave;
	f_sl = edv_.v_slope;
#define RED_EWMA
#ifdef RED_EWMA
	while (--m >= 1) {
		f *= 1.0 - edp_.q_w;
	}
#ifdef RED_HOLT_WINTERS
	double f_old;
	f_old = f;
#endif
	f *= 1.0 - edp_.q_w;
	f += edp_.q_w * nqueued;
#endif
#ifdef RED_HOLT_WINTERS
	while (--m >= 1) {
		f_old = f;
		f += f_sl;
		f *= 1.0 - edp_.q_w;
		f_sl *= 1.0 - 0.5 * edp_.q_w;
		f_sl += 0.5 * edp_.q_w * (f - f_old);
	}
	f_old = f;
	f += f_sl;
	f *= 1.0 - edp_.q_w;
	f += edp_.q_w * nqueued;
	f_sl *= 1.0 - 0.5 * edp_.q_w;
	f_sl += 0.5 * edp_.q_w * (f - f_old);
#endif
	edv_.v_ave = f;
	edv_.v_slope = f_sl;
}

void REDQueue::reportDrop(Packet *)
{}