File: media-app.cc

package info (click to toggle)
ns2 2.35%2Bdfsg-2.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 78,780 kB
  • ctags: 27,490
  • sloc: cpp: 172,923; tcl: 107,130; perl: 6,391; sh: 6,143; ansic: 5,846; makefile: 816; awk: 525; csh: 355
file content (1938 lines) | stat: -rw-r--r-- 53,932 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
/* -*-	Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */

/*
 * media-app.cc
 * Copyright (C) 1997 by the University of Southern California
 * $Id: media-app.cc,v 1.15 2011/10/02 22:32:34 tom_henderson Exp $
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
 *
 *
 * The copyright of this module includes the following
 * linking-with-specific-other-licenses addition:
 *
 * In addition, as a special exception, the copyright holders of
 * this module give you permission to combine (via static or
 * dynamic linking) this module with free software programs or
 * libraries that are released under the GNU LGPL and with code
 * included in the standard release of ns-2 under the Apache 2.0
 * license or under otherwise-compatible licenses with advertising
 * requirements (or modified versions of such code, with unchanged
 * license).  You may copy and distribute such a system following the
 * terms of the GNU GPL for this module and the licenses of the
 * other code concerned, provided that you include the source code of
 * that other code when and as the GNU GPL requires distribution of
 * source code.
 *
 * Note that people who make modified versions of this module
 * are not obligated to grant this special exception for their
 * modified versions; it is their choice whether to do so.  The GNU
 * General Public License gives permission to release a modified
 * version without this exception; this exception also makes it
 * possible to release a modified version which carries forward this
 * exception.
 *
 */

//
// Implementation of media application
//
// $Header: /cvsroot/nsnam/ns-2/rap/media-app.cc,v 1.15 2011/10/02 22:32:34 tom_henderson Exp $

#include <stdarg.h>

#include "template.h"
#include "media-app.h"
#include "utilities.h"


//----------------------------------------------------------------------
// Classes related to a multimedia object
//
// MediaSegment
// MediaSegmentList: segments in a layer
// MediaPage: a stored multimedia object (stream)
//----------------------------------------------------------------------

MediaSegment::MediaSegment(const HttpMediaData& d) : flags_(0)
{
	start_ = d.st();
	end_ = d.et();
	if (d.is_last())
		set_last();
	if (d.is_pref())
		set_pref();
}

void MediaSegmentList::add(const MediaSegment& s) 
{
	MediaSegment* tmp = (MediaSegment *)head_;
	while ((tmp != NULL) && (tmp->before(s))) {
		tmp = tmp->next();
	}

	// Append at the tail, or the first element in list
	if (tmp == NULL) {
		length_ += s.datasize();
		if ((tail_ != NULL) && ((MediaSegment *)tail_)->overlap(s)) 
			// Don't need to merge because it's merged at the end
			((MediaSegment*)tail_)->merge(s);
		else {
			MediaSegment *p = new MediaSegment(s);
			if (head_ == NULL)
				head_ = tail_ = p;
			else 
				append(p, tail_);
		}
		if (getsize() != length_) {
			fprintf(stderr, 
				"MediaSegmentList corrupted: Point 1.\n");
			abort();
		}
		return;
	}

	// Update total stored length ONLY IF s is not in tmp.
	if (tmp->in(s)) {
		fprintf(stderr, 
			"MediaSegmentList: get a seg (%d %d) which is already in cache!\n",
			s.start(), s.end());
		fprintf(stderr, "List contents: ");
		print();
#if 0 
		//Tcl::instance().eval("[Simulator instance] flush-trace");
		//abort();
#endif
		// XXX Don't abort, simply continue
		return;
	}

	// Insert a MediaSegment into list. Note: Don't do merge!
	if (tmp->overlap(s)) {
		length_ += (s.datasize() - tmp->merge(s));
	} else {
		MediaSegment *p = new MediaSegment(s);
		insert(p, tmp);
		tmp = p;
		length_ += s.datasize();
	}

	if (getsize() != length_) {
		fprintf(stderr, "MediaSegmentList corrupted: Point 2.\n");
		abort();
	}

	merge_seg(tmp);

	if (getsize() != length_) {
		fprintf(stderr, "MediaSegmentList corrupted: Point 3.\n");
		abort();
	}
}

void MediaSegmentList::merge_seg(MediaSegment* tmp)
{
	// See if <tmp> can be merged with next segments
	MediaSegment *q = tmp->next();
	while (q && q->overlap(*tmp)) {
#if 1
		if ((tmp->start() == q->start()) && (tmp->end() == q->end())) {
			abort();
		}
#endif
		tmp->merge(*q);
		detach(q);
		delete q;
		q = tmp->next();
	}
	// See if <tmp> can be merged with previous segments
	q = tmp->prev();
	while (q && q->overlap(*tmp)) {
		tmp->merge(*q);
		assert(tail_ != q);
		detach(q);
		delete q;
		q = tmp->prev();
	}
}

int MediaSegmentList::in(const MediaSegment& s)
{
	MediaSegment* tmp = (MediaSegment *)head_;
	while ((tmp != NULL) && (tmp->before(s)))
		tmp = tmp->next();

	// If all segments are before s, or the first segment which isn't 
	// before s doesn't overlap with s, s isn't in this list.
	if ((tmp == NULL) || !s.in(*tmp))
		return 0;
	else 
		return 1;
}

// Get the next segment which is not before 's', but with the same size
// as the given 's'. This segment may not overlap with s. 
MediaSegment MediaSegmentList::get_nextseg(const MediaSegment& s) 
{
	MediaSegment res(0, 0); // If unsuccessful, return start() = 0

	MediaSegment* tmp = (MediaSegment *)head_;
	while ((tmp != NULL) && (tmp->before(s))) 
		tmp = tmp->next();
	if (tmp == NULL) {
		res.set_last();
		return res;
	}
	assert(tmp->end() > s.start());
// 	// Don't return a segment which do not *OVERLAP* with s 
// 	// (boundary overlap is excluded).
// 	if ((tmp->end() <= s.start()) || (tmp->start() >= s.end())) 
// 	    return res;

	// XXX How to flag that no more data is available in the future??
	res = s;
	int orig_size = s.datasize();
	if (res.start() < tmp->start()) {
		// |-------| (s)    ---> time axis
		//    |--------| (tmp)
		//
		// The start time of s is invalid, we need to adjust both 
		// the start time (and size if necessary)
		res.set_start(tmp->start());
		if (tmp->datasize() < orig_size) 
			// Not enough data available??
			res.set_datasize(tmp->datasize());
		else
			res.set_datasize(orig_size);
	} else if (res.end() > tmp->end()) {
		//    |---------| (s)    ---> time axis
		// |-------| (tmp)
		// 
		// The start time in s is valid, but we may need to adjust the 
		// end time (i.e., size) of s.
		res.set_datasize(tmp->end()-res.start());
	}
	// Falling through means that the requested segment is available 
	// and can be returned as it is.

	assert(res.datasize() <= tmp->datasize());
	if ((res.end() == tmp->end()) && (tmp->next() == NULL))
		// This is the last data segment of the layer
		res.set_last();
	return res;
}

// Note that evicting all segments in this layer may not leave enough 
// space, so we return the number of bytes evicted from this layer
int MediaSegmentList::evict_tail(int size)
{
	int sz = size, tz;
	MediaSegment *tmp = (MediaSegment *)tail_;
	while ((tmp != NULL) && (sz > 0)) {
		// Reduce the last segment's size and adjust its playout time
		tz = tmp->evict_tail(sz);
		length_ -= tz;
		sz -= tz; 
		if (tmp->datasize() == 0) {
			// This segment is empty now
			detach(tmp);
			delete tmp;
			tmp = (MediaSegment *)tail_;
		}
	}
	return size - sz;
}

// Evicting <size> from the head of the list
int MediaSegmentList::evict_head(int size)
{
	int sz = size, tz;
	MediaSegment *tmp = (MediaSegment *)head_;
	while ((tmp != NULL) && (sz > 0)) {
		// Reduce the last segment's size and adjust its playout time
		tz = tmp->evict_head(sz);
		sz -= tz; 
		length_ -= tz;
		if (tmp->datasize() == 0) {
			// This segment is empty now
			detach(tmp);
			delete tmp;
			tmp = (MediaSegment *)head_;
		}
	}
	return size - sz;
}

// Evict all segments before <offset> from head and returns the size of 
// evicted segments.
int MediaSegmentList::evict_head_offset(int offset)
{
	int sz = 0;
	MediaSegment *tmp = (MediaSegment *)head_;
	while ((tmp != NULL) && (tmp->start() < offset)) {
		if (tmp->end() <= offset) {
			// delete whole segment
			sz += tmp->datasize();
			length_ -= tmp->datasize();
			detach(tmp);
			delete tmp;
			tmp = (MediaSegment *)head_;
		} else {
			// remove part of the segment
			sz += offset - tmp->start();
			length_ -= offset - tmp->start();
			tmp->set_start(offset);
		}
	}
	if (head_ == NULL)
		tail_ = NULL;
	return sz;
}

// Return a list of "holes" between the given offsets
MediaSegmentList MediaSegmentList::check_holes(const MediaSegment& s)
{
	MediaSegmentList res;  // empty list
	MediaSegment* tmp = (MediaSegment *)head_;
	while ((tmp != NULL) && (tmp->before(s)))
		tmp = tmp->next();
	// If all segments are before s, s is a hole
	if (tmp == NULL) {
		res.add(s);
		return res;
	}
	// If s is within *tmp, there is no hole
	if (s.in(*tmp))
		return res;

	// Otherwise return a list of holes
	int soff, eoff;
	soff = s.start();
	eoff = s.end();
	while ((tmp != NULL) && (tmp->overlap(s))) {
		if (soff < tmp->start()) {
			// Only refetches the missing part
			res.add(MediaSegment(soff, min(eoff, tmp->start())));
#if 1
			// DEBUG ONLY
			// Check if these holes are really holes!
			if (in(MediaSegment(soff, min(eoff, tmp->start())))) {
				fprintf(stderr, "Wrong hole: (%d %d) ", 
					soff, min(eoff, tmp->start()));
				fprintf(stderr, "tmp(%d %d), s(%d %d)\n",
					tmp->start(), tmp->end(),
					soff, eoff);
				fprintf(stderr, "List content: ");
				print();
			}
#endif
		}
		soff = tmp->end();
		tmp = tmp->next();
	}
	if (soff < eoff) {
		res.add(MediaSegment(soff, eoff));
#if 1		
		// DEBUG ONLY
		// Check if these holes are really holes!
		if (in(MediaSegment(soff, eoff))) {
			fprintf(stderr, "Wrong hole #2: (%d %d)\n", 
				soff, eoff);
			fprintf(stderr, "List content: ");
			print();
		}
#endif
	}
#if 0
	check_integrity();
#endif
	return res;
}

void MediaSegmentList::check_integrity()
{
	MediaSegment *p, *q;
	p = (MediaSegment*)head_;
	while (p != NULL) {
		q = p; 
		p = p->next();
		if (p == NULL)
			break;
		if (!q->before(*p)) {
			fprintf(stderr, 
				"Invalid segment added: (%d %d), (%d %d)\n", 
				q->start(), q->end(), p->start(), p->end());
			abort();
		}
	}
}

// Return the portion in s that is overlap with any segments in this list
// Sort of complementary to check_holes(), but it does not return a list, 
// hence smaller overhead. 
int MediaSegmentList::overlap_size(const MediaSegment& s) const
{
	int res = 0;
	MediaSegment* tmp = (MediaSegment *)head_;
	while ((tmp != NULL) && (tmp->before(s)))
		tmp = tmp->next();
	// If all segments are before s, there's no overlap
	if (tmp == NULL)
		return 0;
	// If s is within *tmp, entire s overlaps with the list
	if (s.in(*tmp))
		return s.datasize();
	// Otherwise adds all overlapping parts together.
	int soff, eoff;
	soff = s.start();
	eoff = s.end();
	while ((tmp != NULL) && (tmp->overlap(s))) {
		res += min(eoff, tmp->end()) - max(soff, tmp->start());
		soff = tmp->end();
		tmp = tmp->next();
	}
	return res;
}

// Debug only
void MediaSegmentList::print() 
{
	MediaSegment *p = (MediaSegment *)head_;
	int i = 0, sz = 0;
	while (p != NULL) {
		printf("(%d, %d)  ", p->start(), p->end());
		sz += p->datasize();
		p = p->next();
		if (++i % 8 == 0)
			printf("\n");
	}
	printf("\nTotal = %d\n", sz);
}

// Debug only
int MediaSegmentList::getsize()
{
	MediaSegment *p = (MediaSegment *)head_;
	int sz = 0;
	while (p != NULL) {
		sz += p->datasize();
		p = p->next();
	}
	return sz;
}

// Print into a char array with a given size. Abort if the size is exceeded.
char* MediaSegmentList::dump2buf()
{
	char *buf = new char[1024];
	char *b = buf;
	MediaSegment *p = (MediaSegment *)head_;
	int i = 0, sz = 1024;
	buf[0] = 0;
	while (p != NULL) {
		// XXX snprintf() should either be in libc or implemented
		// by TclCL (see Tcl2.cc there).
		i = snprintf(b, sz, "{%d %d} ", p->start(), p->end());
		sz -= i;
		// Boundary check: if less than 50 bytes, allocate new buf
		if (sz < 50) {
			char *tmp = new char[strlen(buf)+1024];
			strcpy(tmp, buf);
			delete []buf;
			buf = tmp;
			b = buf + strlen(buf);
			sz += 1024;
		} else 
			b += i;
		p = p->next();
	}
	return buf;
}



HttpMediaData::HttpMediaData(const char* sender, const char* page, int layer, 
			     int st, int et) :
	HttpData(MEDIA_DATA, 0), layer_(layer), st_(st), et_(et), flags_(0)
{
	assert(strlen(page)+1 <= (size_t)HTTP_MAXURLLEN);
	strcpy(page_, page);
	assert(strlen(sender)+1 <= (size_t)HTTP_MAXURLLEN);
	strcpy(sender_, sender);
}



static class MappClass : public TclClass {
public:
	MappClass() : TclClass("Application/MediaApp") {}
	TclObject* create(int argc, const char*const* argv) {
		if (argc > 4) 
			return (new MediaApp(argv[4]));
		return NULL;
	}
} class_mapp;

MediaApp::MediaApp(const char* page) : 
	log_(0), num_layer_(0), last_layer_(0)
{
	strcpy(page_, page);

	// Initialize all layer data pointers
	for (int i = 0; i < MAX_LAYER; i++)
		data_[i].set_start(0); 

	bind("segmentSize_", &seg_size_);
}

void MediaApp::start()
{
 	fprintf(stderr, "MediaApp::start() not supported\n");
 	abort();
}

void MediaApp::stop()
{
	// Called when we want to stop the RAP agent
	rap()->stop();
}

AppData* MediaApp::get_data(int& nbytes, AppData* req) 
{
	AppData *res;
	if (req == NULL) {
		MediaRequest p(MEDIAREQ_GETSEG);
		p.set_name(page_);
		// We simply rotating the layers from which to send data
		if (num_layer_ > 0) {
			p.set_layer(last_layer_++);
			last_layer_ = last_layer_ % num_layer_;
		} else 
			p.set_layer(0); 
		p.set_st(data_[0].start());
		p.set_datasize(seg_size_);
		p.set_app(this);
		res = target()->get_data(nbytes, &p);
	} else 
		res = target()->get_data(nbytes, req);

	// Update the current data pointer
	assert(res != NULL);
	HttpMediaData *p = (HttpMediaData *)res;

	// XXX For now, if the return size is 0, we assume that the 
	// transmission stops. Otherwise there is no way to tell the 
	// RAP agent that there's no more data to send
	if (p->datasize() <= 0) {
		// Should NOT advance sending data pointer because 
		// if this is a cache which is downloading from a slow
		// link, it is possible that the requested data will
		// become available in the near future!!
		delete p;
		return NULL;
	} else {
		// Set current data pointer to the right ones
		// If available data is more than seg_size_, only advance data
		// pointer by seg_size_. If less data is available, only 
		// advance data by the amount of available data.
		//
		// XXX Currently the cache above does NOT pack data from 
		// discontinugous blocks into one packet. May need to do 
		// that later. 
		assert((p->datasize() > 0) && (p->datasize() <= seg_size_));
		data_[p->layer()].set_start(p->et());
		data_[p->layer()].set_datasize(seg_size_);
	}
	return res;
}

int MediaApp::command(int argc, const char*const* argv)
{
	Tcl& tcl = Tcl::instance();
	if (strcmp(argv[1], "log") == 0) {
		int mode;
		log_ = Tcl_GetChannel(tcl.interp(), 
				      (char*)argv[2], &mode);
		if (log_ == 0) {
			tcl.resultf("%s: invalid log file handle %s\n",
				    name(), argv[2]);
			return TCL_ERROR;
		}
		return TCL_OK;
	} else if (strcmp(argv[1], "evTrace") == 0) { 
		char buf[1024], *p;
		if (log_ != 0) {
			sprintf(buf, "%.17g ", 
				Scheduler::instance().clock());
			p = &(buf[strlen(buf)]);
			for (int i = 2; i < argc; i++) {
				strcpy(p, argv[i]);
				p += strlen(argv[i]);
				*(p++) = ' ';
			}
				// Stick in a newline.
			*(p++) = '\n', *p = 0;
			Tcl_Write(log_, buf, p-buf);
		}
		return TCL_OK;
	} else if (strcmp(argv[1], "set-layer") == 0) {
		int n = atoi(argv[2]);
		if (n >= MAX_LAYER) {
			fprintf(stderr, 
				"Too many layers than maximum allowed.\n");
			return TCL_ERROR;
		}
		num_layer_ = n;
		return TCL_OK;
	}
	return Application::command(argc, argv);
}

void MediaApp::log(const char* fmt, ...)
{
	char buf[1024], *p;
	char *src = Address::instance().print_nodeaddr(rap()->addr());
	sprintf(buf, "%.17g i %s ", Scheduler::instance().clock(), src);
	delete []src;
	p = &(buf[strlen(buf)]);
	va_list ap;
	va_start(ap, fmt);
	vsprintf(p, fmt, ap);
	if (log_ != 0)
		Tcl_Write(log_, buf, strlen(buf));
}


//----------------------------------------------------------------------
// MediaApp enhanced with quality adaptation
//----------------------------------------------------------------------
void QATimer::expire(Event *)
{
	a_->UpdateState();
	resched(a_->UpdateInterval());
}

static class QAClass : public TclClass {
public:
	QAClass() : TclClass("Application/MediaApp/QA") {}
	TclObject* create(int argc, const char*const* argv) {
		if (argc > 4) 
			return (new QA((const char *)(argv[4])));
		return NULL;
	}
} class_qa_app;

//#define CHECK 1
//#define DBG 1

QA::QA(const char *page) : MediaApp(page)
{
	updTimer_ = new QATimer(this);

	bind("LAYERBW_", &LAYERBW_);
	bind("MAXACTIVELAYERS_", &MAXACTIVELAYERS_);
	bind("SRTTWEIGHT_", &SRTTWEIGHT_);
	bind("SMOOTHFACTOR_", &SMOOTHFACTOR_);
	bind("MAXBKOFF_", &MAXBKOFF_);
	bind("debug_output_", &debug_);
	bind("pref_srtt_", &pref_srtt_);

	for(int j = 0; j < MAX_LAYER; j++) {
		buffer_[j] = 0.0;
		sending_[j] = 0;
		playing_[j] = 0;
		drained_[j] = 0.0;
		bw_[j] = 0.0;
		pref_[j] = 0;
	}
	poffset_ = 0; 
	playTime_ = 0;   // Should initialize it
	startTime_ = -1; // Used to tell the first packet

	// Moving average weight for transmission rate average
	rate_weight_ = 0.01;
	avgrate_ = 0.0;
}

QA::~QA()
{
	if (updTimer_) {
		if (updTimer_->status() != TIMER_IDLE)
			updTimer_->cancel();
		delete updTimer_;
	}
}

void QA::debug(const char* fmt, ...)
{
	if (!debug_) 
		return;

	char buf[1024], *p;
	char *src = Address::instance().print_nodeaddr(rap()->addr());
	char *port = Address::instance().print_portaddr(rap()->addr());
	sprintf(buf, "# t %.17g i %s.%s QA ", 
		Scheduler::instance().clock(), src, port);
	delete []port;
	delete []src;
	p = &(buf[strlen(buf)]);
	va_list ap;
	va_start(ap, fmt);
	vsprintf(p, fmt, ap);
	fprintf(stderr, "%s", buf);
}

void QA::panic(const char* fmt, ...) 
{
	char buf[1024], *p;
	char *src = Address::instance().print_nodeaddr(rap()->addr());
	char *port = Address::instance().print_portaddr(rap()->addr());
	sprintf(buf, "# t %.17g i %s.%s QA PANIC ", 
		Scheduler::instance().clock(), src, port);
	delete []port;
	delete []src;
	p = &(buf[strlen(buf)]);
	va_list ap;
	va_start(ap, fmt);
	vsprintf(p, fmt, ap);
	fprintf(stderr, "%s", buf);

#if 0
	// XXX This is specific to OUR test. Remove it in release!!
	Tcl::instance().eval("[Simulator instance] flush-trace");
	abort();
#endif
}

// Stop all timers
void QA::stop()
{
	rap()->stop();
	if (updTimer_->status() != TIMER_IDLE)
		updTimer_->cancel();
}

// Empty for now
int QA::command(int argc, const char*const* argv)
{
	return MediaApp::command(argc, argv);
}

// When called by RAP, req is NULL. We fill in the next data segment and 
// return its real size in 'size' and return the app data. 
AppData* QA::get_data(int& size, AppData*)
{
	int layers, dropped, i, l, idx, bs1, bs2,scenario, done, cnt;
	double slope, bufavail, bufneeded, totbufs1, totbufs2, 
		optbufs1[MAX_LAYER], optbufs2[MAX_LAYER], bufToDrain;
  
	static double last_rate = 0.0, nextAdjPoint = -1,
		FinalDrainArray[MAX_LAYER],
		tosend[MAX_LAYER], FinalBuffer[MAX_LAYER];
	
	static int flag,  /* flag keeps the state of the last phase */
		tosendPtr = 0;
  
	// Get RAP info
	double rate = seg_size_ / rap()->ipg();
	double srtt =  rap()->srtt();
	Scheduler& s = Scheduler::instance();
	double now = s.clock();
	int anyAck = rap()->anyack();

	assert((num_layer_ > 0) && (num_layer_ < MAX_LAYER));
  
	// this part is added for the startup
	// to send data for the base layer until the first ACK arrives.
	// This is because we don't have an estimate for SRTT and slope of inc
	// Make sure that SRTT is updated properly when ACK arrives
	if (anyAck == 0) {
		sending_[0] = 1;
		return output(size, 0);
		debug("INIT Phase, send packet: layer 0 in send_pkt, \
rate: %.3f, avgrate: %.3f, srtt:%.3f\n", rate, avgrate_, srtt);
	}
  
	layers = 0;
	// we can only calc slope when srttt has a right value
	// i.e. RAP has received an ACK
	slope = seg_size_/srtt;
	bufavail = 0.0;

	// XXX Is this a correct initial value????
	bufneeded = 0.0; 
  
	// calculate layers & bufavail
	for (i = 0; i < MAX_LAYER; i++) {
		layers += sending_[i];
		if (sending_[i] == 1) 
			bufavail += buffer_[i];
		else
			/* debug only */
			if ((i < MAX_LAYER - 1) && (sending_[i+1] == 1))
				panic("ERROR L%d is not sent but L%d is.\n",
				      i, i+1);
	}
	
	// check for startup phase
	if((layers == 1) && (playing_[0] != 1)){
		// L0 still buffers data, we are in startup phase
		// let's check
		if (sending_[0] == 0) {
			panic("ERROR sending[0]=0 !!!");
		}
		AppData *res = output(size, 0);
		debug("STARTUP, send packet: layer 0\n");
		
		// Start playout if we have enough data for L0
		// The amount of buffered data for startup can be diff
		bufneeded = max(4*BufNeed((LAYERBW_-rate/2.0), slope), 
				2*MWM(srtt));

		if (buffer_[0] >= bufneeded) {
			playing_[0] = 1;
			sending_[0] = 1;  
			drained_[0] = 0;  /* srtt*LAYERBW; */
			startTime_ = now; // start the playback at the client
			playTime_ = now;  // playout time of the receiver. 
			debug("... START Playing_ layer 0, buffer[0] = %f!\n",
			      buffer_[0]);
			// start emulating clients consumption
			if (updTimer_->status() == TIMER_IDLE)
				updTimer_->sched(srtt);
		}
		return(res);
	}
  
	// Store enough buffer before playing a layer. 
	// XXX, NOTE: it is hard to do this, when we add a new layer
	// the server sets the playout time of the first segment
	// to get to the client in time, It is hard to make sure
	// that a layer has MRM worth if data before stasting its
	// playback because it adds more delay
	// the base layer starts when it has enough buffering
	// the higher layers are played out when their data is available
	// so this is not needed 
	//for (i = 0; i < MAX_LAYER; i++) {
	// if ((sending_[i] == 1) && (playing_[i] == 0) &&
	//    (buffer_[i] > MWM(srtt))) {
	//  debug("Resume PLAYING Layer %d, play: %d send: %d\n",
	//	  i, playing_[i], sending_[i]);
	//  playing_[i]=1;
	//  drained_[i] = 0; /* XXX, not sure about this yet 
	//		      * but if we set this to max it causes
	//	      * a spike at the adding time
	//		      */
	//  /* drained_[i]=LAYERBW*SRTT; */
	//}
	//}
  
	// perform the primary drop if we are in drain phase 
	if (rate < layers*LAYERBW_) {
		bufneeded = (MWM(srtt)*layers) + 
			BufNeed((layers*LAYERBW_-rate), slope);
		//   debug("tot_bufavail: %7.1f bufneeded: %7.1f, layers: %d",
		// 			bufavail, bufneeded, layers);
		dropped = 0;
		// XXX Never ever do primary drop layer 0!!!!
		while ((bufneeded > TotalBuf(layers, buffer_)) && 
		       (layers > 1)) {
			debug("** Primary DROPPED L%d, TotBuf(avail:%.1f \
needed:%.1f), buf[%d]: %.2f\n", 
			      layers-1, TotalBuf(layers, buffer_), bufneeded,
			      layers-1,buffer_[layers-1]);
			layers--;
			dropped++;
			sending_[layers] = 0;
			bufneeded = (MWM(srtt)*layers)+ 
				BufNeed(((layers)*LAYERBW_-rate),slope); 
		}
	} 
    
	// just for debugging
	// here is the case when even the base layer can not be kept
	if ((bufneeded > TotalBuf(layers, buffer_)) && (layers == 1)) {
		// XXX We should still continue, shouldn't we????
		debug("** Not enough buf to keep the base layer, \
TotBuf(avail:%.1f, needed:%.1f), \n",
		      TotalBuf(layers, buffer_), bufneeded);
	}

	if (layers == 0) {
		//		panic("** layers =0 !!");
		sending_[0] = 1;
		playing_[0] = 0;
		if (updTimer_->status() != TIMER_IDLE)
			updTimer_->cancel();
		debug("** RESTART Phase, set playing_[0] to 0 to rebuffer data\n");
		return output(size, 0);
	}

	// now check to see which phase we are in
	if (rate >= layers*LAYERBW_) {

		/******************
		 ** filling phase **
		 *******************/
/*      
debug("-->> FILLING, layers: %d now: %.2f, rate: %.3f, avgrate: %.3f, \
 srtt:%.3f, slope: %.3f\n",
 	  layers, now, rate, avgrate_, srtt, slope);
*/
      
		last_rate = rate; /* this is used for the next drain phase */
		flag = 1;
		/* 
		 * 1) send for any layer that its buffer is below MWM
		 * MWM is the min amount of buffering required to absorbe 
		 * jitter
		 * each active layer must have atleast MWM data at all time
		 * this also ensures proper bw share, we do NOT explicitly 
		 * alloc BW share during filling
		 * Note: since we update state of the buffers on a per-packet 
		 * basis, we don't need to ensure that each layer gets a share 
		 * of bandwidth equal to its consumption rate. 
		 */
		for (i=0;i<layers;i++) {
			if (buffer_[i] < MWM(srtt)) {
				if ((buffer_[i-1] <= buffer_[i]+seg_size_) &&
				    (i > 0))
					idx = i-1;
				else 
					idx = i;
// 	  debug("A:sending layer %d, less than MWM, t: %.2f\n", 
// 		i,now);
				return output(size, idx);
			}
		}

		/* 
		 * Main filling algorithm based on the pesudo code 
		 * find the next optimal state to reach 
		 */
		/* init param */
		bs1 = 0;
		bs2 = 0;
		totbufs1 = 0;
		totbufs2 = 0;
		for (l=0; l<MAX_LAYER; l++) {
			optbufs1[l] = 0.0;
			optbufs2[l] = 0.0;
		}
		
		// XXX Note: when per-layer BW is low, and srtt is very small 
		// (e.g., in a LAN), the following code will result in that 
		// one buffered 
		// segment will produce a abort() of "maximum backoff reached".

		/* next scenario 1 state */
		while ((totbufs1 <= TotalBuf(layers, buffer_)) && 
		       (bs1 <= MAXBKOFF_)) {
			totbufs1 = 0.0;
			bs1++;
			for (l=0; l<layers;l++) {
				optbufs1[l] = bufOptScen1(l,layers,rate,slope,
							  bs1)+MWM(srtt);
				totbufs1 += optbufs1[l];
			}
		}

		// bs1 is the min no of back off that we can not handle for 
		// s1 now
		/* next secenario 2 state */
		while ((totbufs2 <= TotalBuf(layers, buffer_)) && 
		       (bs2 <= MAXBKOFF_)) {
			totbufs2 = 0.0;
			bs2++;
			for (l=0; l<layers;l++) {
				optbufs2[l] = bufOptScen2(l,layers,rate,slope,
							  bs2)+MWM(srtt);
				totbufs2 += optbufs2[l];
			}
		}
		
		/* 
		 * NOTE: at this point, totbufs1 could be less than total 
		 * buffering
		 * when it is enough for recovery from rate = 0;
		 * so totbufs1 <= TotalBuf(layers, buffer) is OK
		 * HOWEVER, in this case, we MUST shoot for scenario 2
		 */

		/* debug */
/*
       if ((totbufs2 <= TotalBuf(layers, buffer_)) && (bs2 <= MAXBKOFF_)) {
 	panic("# ERROR: totbufs1: %.2f,tot bufs2: %.2f, \
 totbuf: %.2f, bs1: %d, bs2: %d, totneededbuf1: %.2f, totneededbuf2: %2f\n",
 	      totbufs1, totbufs2, TotalBuf(layers, buffer_), bs1, bs2,
 	      TotalBuf(layers, optbufs1), TotalBuf(layers, optbufs2));
       }
*/
		/* debug */
		if (bs2 >= MAXBKOFF_)
			debug("WARNING: MAX No of backoff Reached, bs1: %d, \
bs2: %d\n", bs1, bs2);

		/* Check for adding condition */
		//if ((bs1 > SMOOTHFACTOR_) && (bs2 > SMOOTHFACTOR_) && 
		//  (layers < MAX_LAYER)) {
		if ((bs1 > SMOOTHFACTOR_) && (bs2 > SMOOTHFACTOR_)){
			// Check if all layers are already playing
			// Assume all streams have the same # of layer: 
			// MAX_LAYER
			assert(layers <= num_layer_);

			// XXX Only limit the rate when we have all layers 
			// playing. There should be a better way to limit the 
			// transmission rate earlier! Note that we need RAP to
			// fix its IPG as soon as we fix the rate here. Thus, 
			// RAP should do that in its IpgTimeout()
			// instead of DecreaseIpg(). See rap.cc.
			if (layers == num_layer_){
#if 0
				if (rate < num_layer_*LAYERBW_)
					panic("ERROR: rate: %.2f is less than \
MAX BW for all %d layers!\n", rate, layers);
#endif
				// Ask RAP to fix the rate at MAX_LAYER*LAYERBW
				rap()->FixIpg((double)seg_size_/
					      (double)(num_layer_*LAYERBW_));
				// Mux the bandwidth evenly among layers  
				return output(size, layers - 1);	  
			}

			// Calculate the first packet offset in this new layer
			int off_start = (int)floor((poffset_ + MWM(srtt)) / 
						   seg_size_) * seg_size_;
			// XXX Does the application have data between 
			// off_start_ and off_start_+MWM(srtt)??
	  
			// XXX If the computed offset falls behind, we just 
			// continue to send.
			if (data_[layers].start() <= off_start) {
				// Set LayerOffset[newlayer] = 
				//     poffset_ + MWM(srtt) * n: 
				// - n times roundtrip time of data, LET n BE 1
				// Round this offset to whole segment
				data_[layers].set_start(off_start);
				data_[layers].set_datasize(seg_size_);
			}
			// Make sure that all corresponding data in lower 
			// layers have been sent out, i.e., the last byte of 
			// current segment of the new layer should be less 
			// than the last byte of all lower layers
			if (data_[layers].end() > data_[layers-1].start()) 
				// XXX Do not send anything if we don't have
				// data!! Otherwise we'll dramatically increase
				// the sending rate of lower laters. 
				return NULL;
				//  return output(size, layers-1);

			sending_[layers] = 1;
			AppData *res = output(size, layers);
			if (res == NULL) {
				// Drop the newly added layer because we 
				// don't have data 
				sending_[layers] = 0;
				// However, do prefetching in case we'll add 
				// it again later
				int st = (int)floor((data_[layers].start()+
						pref_srtt_*LAYERBW_)
					       /seg_size_+0.5)*seg_size_;
				int et = (int)floor((data_[layers].end()+
						pref_srtt_*LAYERBW_)
					       /seg_size_+0.5)*seg_size_;
				if (et > pref_[layers]) {
					pref_[i] = et;
					MediaSegment s(st, et);
					check_availability(i, s);
				}
				for (i = 0; i < layers; i++) 
					if (buffer_[i] < MWM(srtt)) {
						res = output(size, i);
						if (res != NULL)
							break;
					}
			} else {
				/* LAYERBW_*srtt;should we drain this */
				drained_[layers]= 0; 
				debug("sending Just ADDED layer %d, t: %.2f\n",
				      i, now);
			}
			return res;
		}

		/* 
		 * Find out which next step is closer
		 * Second cond is for the cases where totbufs2 becomes 
		 * saturated
		 */
		scenario = 0; // Initial value
		if((totbufs1 <= totbufs2) && 
		   (totbufs1 > TotalBuf(layers, buffer_))) {
			/* go for next scenario 1 with sb1 backoff */
			scenario = 1;
		} else {
			/* go for next scenario 2 with sb2 backoffs */
			scenario = 2;
		}

		/* decide which layer needs more data */
		if (scenario == 1) {
			for (l=0; l<layers; l++) {
				if (buffer_[l] >= optbufs1[l]) 
					continue;
				//if (buffer_[l] < optbufs1[l]) {
				if ((buffer_[l-1] <= buffer_[l]+seg_size_) && 
				    (l > 0))
					idx = l-1;
				else 
					idx = l;
				// debug("Cs1:sending layer %d to fill buffer, t: %.2f\n", 
				// idx,now);
				return output(size, idx);
			}
		} else if (scenario == 2) {
			l=0;
			done = 0;
			while ((l<layers) && (!done)){
				if (TotalBuf(layers, buffer_) >= totbufs2) {
					done ++;
				} else {
					if (buffer_[l]<min(optbufs2[l],
							   optbufs1[l])) {
						if((buffer_[l-1] <= buffer_[l]+
						    seg_size_) && (l>0))
							idx = l-1;
						else 
							idx = l;
//  		debug("Cs2:sending layer %d to fill buffer, t: %.2f\n", 
// 			idx,now);
						return output(size, idx);
					}
					l++;
				}
			} /* while */
		} else 
			panic("# ERROR: Unknown scenario: %d !!\n", scenario);

		/* special cases when we get out of this for loop */
		if(scenario == 1){
			panic("# Should not reach here, totbuf: %.2f, \
totbufs1: %.2f, layers: %d\n",
			      TotalBuf(layers, buffer_), totbufs1, layers);
		}

		if (scenario == 2) {
			/* 
			 * this is the point where we have satisfied buffer 
			 * requirement for the next scenario 1 already, 
			 * i.e. the MIN() value.
			 * so we relax that and shoot for bufs2[l]
			 */

			/* 
			 * if scenario 2, repeat the while loop without min 
			 * cond we have alreddy satisfied the condition for 
			 * the next scenario 1
			 */
			l=0;
			while (l < layers) {
				if (buffer_[l] < optbufs2[l]) {
					if ((buffer_[l-1] <= buffer_[l]+
					     seg_size_) && (l>0))
						idx = l-1;
					else 
						idx = l;
// 	    debug("Cs22:sending layer %d to fill buffer, t: %.2f\n", idx,now);
					return output(size, idx);
				}
				l++;
			}/* while */
		}

		panic("# Opps, should not reach here, bs1: %d, bs2: %d, \
scen: %d, totbufs1: %.2f, totbufs2: %.2f, totbufavail: %.2f\n", 
		      bs1, bs2, scenario, totbufs1,
		      totbufs2, TotalBuf(layers, buffer_));
    
		/* NEVER REACH HERE */
    
	} else { /* rate < layers*LAYERBW_ */
		/*******************
		 ** Draining phase **
		 *******************/
/*
    debug("-->> DRAINING, layers: %d rate: %.3f, avgrate: %.3f, srtt:%.3f, \
 slope: %.3f\n", 
 	 layers, rate, avgrate_, srtt, seg_size_/srtt);
*/

		/*
		 * At the beginning of a new drain phase OR 
		 * another drop in rate during a draining phase OR
		 * dec of slope during a draining phase that results in 
		 * a new drop 
		 */

		/*
		 * 1) the highest priority action at this point is to ensure 
		 * all surviving layers have min amount of buffering, if not, 
		 * try to fill that layer
		 */
		double lowest=buffer_[0];
		int lowix=0;
		for(i=0;i<layers;i++) {
			if (lowest>buffer_[i]) {
				lowest=buffer_[i];
				lowix=i;
			}
		}
		if (lowest<MWM(srtt)) {
//       debug("A':sending layer %d, below MWM in Drain t: %.2f\n",
// 	    lowix, now);
			return output(size, lowix);
		}

		if((nextAdjPoint < 0) || /* first draining phase */
		   (flag >= 0) || /* after a filling phase */
		   (now >= nextAdjPoint) || /* end of the curr interval */
		   ((rate < last_rate) && (flag < 0)) || /* new backoff */
		   (AllZero(tosend, layers))) /* all pkt are sent */ {

			/* start of a new interval */
			/* 
			 * XXX, should update the nextAdjPoint diff for 
			 * diff cases 
			 */
			nextAdjPoint = now + srtt;
			bufToDrain = LAYERBW_*layers - rate;
			/*
			 * calculate optimal dist. of bufToDrain across all 
			 * layers. FinalDrainArray[] is the output
			 * FinalBuffer[] is the final state
			 */
			if (bufToDrain <= 0)
				panic("# ERROR: bufToDrain: %.2f\n", 
				      bufToDrain);

			DrainPacket(bufToDrain, FinalDrainArray, layers, rate, 
				    srtt, FinalBuffer);

			for(l=0; l<MAX_LAYER; l++){
				tosend[l] = 0;
			}

			for(l=0; l<layers; l++){
				tosend[l] = srtt*LAYERBW_ - FinalDrainArray[l];
				// Correct for numerical error
				if (fabs(tosend[l]) < QA_EPSILON)
					tosend[l] = 0.0;
			}

			/* 
			 * XXX, not sure if this is the best thing 
			 * we might only increase it
			 */
			tosendPtr = 0;

			/* debug only */
			if ((bufToDrain <= 0) || 
			    AllZero(FinalDrainArray, layers) ||
			    AllZero(tosend, layers)) {
				debug("# Error: bufToDrain: %.2f, %d layers, "
				      "srtt: %.2f\n", 
				      bufToDrain, layers, srtt);
				for (l=0; l<layers; l++)
					debug("# FinalDrainArray[%d]: %.2f, "
					      "tosend[%d]: %.2f\n", l, 
					      FinalDrainArray[l],l, tosend[l]);
			}
			/*******/
		}

		flag = -1;
		last_rate = rate;
		done = 0;
		cnt = 1;  
		while ((!done) && (cnt <= layers)) {
			if (tosend[tosendPtr] > 0) {
				if ((buffer_[tosendPtr-1] <= buffer_[tosendPtr]
				     + seg_size_) && (tosendPtr > 0))
					idx = tosendPtr-1;
				else 
					idx = tosendPtr;
				tosend[tosendPtr] -= seg_size_;
				if (tosend[tosendPtr] < 0)
					tosend[tosendPtr] = 0;
				return output(size, idx);
			}
			cnt++;
			tosendPtr = (tosendPtr+1) % layers;
		}

		// XXX End of Drain Phase
		// For now, send a chunk from the base layer. Modify it later!!
		return output(size, 0);
	} /* if (rate >= layers*LAYERBW_) */

	panic("# QA::get_data() reached the end. \n");
	/*NOTREACHED*/
	return NULL;
}

//-----------------------------------------
//-------------- misc routine
//------------------------------------------

// return 1 is all first "len" element of "arr" are zero
// and 0 otherwise
int QA::AllZero(double *arr, int len)
{
	int i;
  
	for (i=0; i<len; i++)
		if (arr[i] != 0.0)
			// debug("-- arr[%d}: %f\n", i, arr[i]);
			return 0;
	return 1;
}


//
// Calculate accumulative amount of buffering for the lowest "n" layers
//
double QA::TotalBuf(int n, double *buffer)
{
	double totbuf = 0.0;
	int i;

	for(i=0; i<n; i++)
		totbuf += buffer[i]; 
	return totbuf;
}

// Update buffer_ information for a given layer
// Get an output data packet from applications above
AppData* QA::output(int& size, int layer)
{
	int i;
	assert((sending_[layer] == 1) || (startTime_ == -1));

	// In order to send out a segment, all corresponding segments of 
	// the lower layers must have been sent out
	if (layer > 0)
		if (data_[layer-1].start() <= data_[layer].start())
			return output(size, layer-1);

	// Get and output the data at the current data pointer
	MediaRequest q(MEDIAREQ_GETSEG);
	q.set_name(page_);
	q.set_layer(layer);
	q.set_st(data_[layer].start());
	q.set_datasize(seg_size_);
	q.set_app(this);
	AppData* res = target()->get_data(size, &q);

	assert(res != NULL);
	HttpMediaData *p = (HttpMediaData *)res; 

	if (p->datasize() <= 0) {
		// When the data is not available:
		// Should NOT advance sending data pointer because 
		// if this is a cache which is downloading from a slow
		// link, it is possible that the requested data will
		// become available in the near future!!

		// We have already sent out the last segment of the base layer,
		// now we are requested for the segment beyond the last one
		// in the base layer. In this case, consider the transmission
		// is complete and tear down the connection.
		if (p->is_finished()) {
			rap()->stop();
			// XXX Shouldn't this be done inside mcache/mserver??
			Tcl::instance().evalf("%s finish-stream %s", 
					      target()->name(), name());
		} else if (!p->is_last()) {
			// If we coulnd't find anything within q, move data 
			// pointer forward to skip holes.
			MediaSegment tmp(q.et(), q.et()+seg_size_);
			check_layers(p->layer(), tmp);
			// If we can, advance. Otherwise wait for
			// lower layers to advance first.
			if (tmp.datasize() > 0) {
				assert(tmp.datasize() <= seg_size_);
				data_[p->layer()].set_start(tmp.start());
				data_[p->layer()].set_end(tmp.end());
			}
		}
		delete p;
		return NULL;
	}

	// Set current data pointer to the right ones
	// If available data is more than seg_size_, only 
	// advance data pointer by seg_size_. If less data 
	// is available, only advance data by the amount 
	// of available data.
	//
	// XXX Currently the cache above does NOT pack data 
	// from discontinugous blocks into one packet. May 
	// need to do that later. 
// 		if (p->is_last())
// 			data_[p->layer()].set_last();
	assert((p->datasize() > 0) && (p->datasize() <= seg_size_));
	// XXX Before we move data pointer forward, make sure we don't violate
	// layer ordering rules. Note we only need to check end_ because 
	// start_ is p->et() which is guaranteed to be valid
	MediaSegment tmp(p->et(), p->et()+seg_size_);
	check_layers(p->layer(), tmp);
	if (tmp.datasize() > 0) {
		assert(tmp.datasize() <= seg_size_);
		data_[p->layer()].set_start(tmp.start());
		data_[p->layer()].set_end(tmp.end());
	} else {
		// Print error messages, do not send anything and wait for 
		// next time so that hopefully lower layers will already 
		// have advanced.
		fprintf(stderr, "# ERROR We cannot advance pointers for "
			"segment (%d %d)\n", tmp.start(), tmp.end());
		for (i = 0; i < layer; i++) 
			fprintf(stderr, "Layer %d, data ptr (%d %d) \n",
				i, data_[i].start(), data_[i].end());
		delete p;
		return NULL;
	}

	// Let me know that we've sent out this segment. This is used
	// later to drain data (DrainBuffers())
	outlist_[p->layer()].add(MediaSegment(p->st(), p->et()));

	buffer_[layer] += p->datasize();
	bw_[layer] += p->datasize();
	drained_[layer] -= p->datasize();
  
	//offset_[layer] += seg_size_;
	avgrate_ = rate_weight_*rate() + (1-rate_weight_)*avgrate_;

	// DEBUG check
	for (i = 0; i < layer-1; i++)
		if (data_[i].end() < data_[i+1].end()) {
			for (int j = 0; j < layer; j++)
				fprintf(stderr, "layer i: (%d %d)\n", 
					data_[i].start(), data_[i].end());
			panic("# ERROR Wrong layer sending order!!\n");
		}

	return res;
}

void QA::check_layers(int layer, MediaSegment& tmp) {
	// XXX While we are moving pointer forward, make sure
	// that we are not violating layer boundary constraint
	for (int i = layer-1; i >= 0; i--) 
		// We cannot go faster than a lower layer!!
		if (tmp.end() > data_[i].end())
			tmp.set_end(data_[i].end());
}

//
// This is optimal buffer distribution for scenario 1.
// NOTE: rate is the current rate before the backoff
// Jan 28, 99
//
// This routines performs buffer sharing by giveing max share
// to the lowest layer, i.e. it fills the triangle in a bottom-up
// starting from the base layer. We use this routine instead of bufOpt,
// for all cases during filling phase. Allocation based on diagonal strips
//
double QA::bufOptScen1(int layer, int layers, double currrate, 
		       double slope, int backoffs)
{
	double smallt, larget, side, rate;
  
	if (backoffs < 0) {
		panic("# ERROR: backoff: %d in bufOptScen1\n", 
		      backoffs);
	}
	rate = currrate/pow(2,backoffs);
	side = LAYERBW_*layers - (rate + layer*LAYERBW_);
	if (side <= 0.0) 
		return(0.0);
	larget = BufNeed(side, slope);
	side = LAYERBW_*layers - (rate + (layer+1)*LAYERBW_);
	if (side < 0.0) 
		side = 0.0;
	smallt = BufNeed(side, slope);

	return (larget-smallt);
}

//
// This routine calculate optimal buffer distribution for a layer
// in scenario 2 based on the 
// 1) current rate, 2) no of layers, 3) no of backoffs
//
// Jan 28, 99bufOptScen1(layer, layers, currrate, slope, backoffs)
//
double QA::bufOptScen2(int layer, int layers, double currrate, 
		       double slope, int backoffs)
{
	double bufopt = 0.0;
	int bmin, done;

	if(backoffs < 0) {
		panic("# ERROR: backoff: %d in bufOptScen2\n", 
			backoffs);
	}
	if ((currrate/pow(2,backoffs)) >= layers*LAYERBW_)
		return(0.0);

	bmin = 0;
	done = 0;
	while ((!done) && bmin<=backoffs) {
		if(currrate/pow(2,bmin) >= LAYERBW_*layers)
			bmin++;
		else 
			done++;
	}
	// buf required for the first triangle
	// we could have dec bmin and go for 1 backoff as well
	bufopt = bufOptScen1(layer, layers, currrate/pow(2,bmin), slope, 0);
  
	// remaining sequential backoffs
	bufopt += (backoffs - bmin)*BufNeed(layers*LAYERBW_/2, slope);
	return(bufopt);
}


//
// This routine returns the optimal distribution of requested-to-drained
// buffer across active layers based on:
// 1) curr rate, 2) curr drain distr(FinalDrainArry), etc
// NOTE, the caller must update FinalDrainArray from 
// 
// Jan 29, 99
//
// DrainArr: return value, used as an incremental chaneg for 
//   FinalDrainArray
// bufAvail:  current buffer_ state
void QA::drain_buf(double* DrainArr, double bufToDrain, 
		   double* FinalDrainArray, double* bufAvail, 
		   int layers, double rate, double srtt)
{
	double bufReq1, bufReq2, bufs1[MAX_LAYER], bufs2[MAX_LAYER], slope, 
		extra, targetArr[MAX_LAYER], maxDrainRemain;
	int bs1, bs2, l;

	slope = seg_size_/srtt;
	bs1 = MAXBKOFF_ + 1;
	bs2 = MAXBKOFF_ + 1;
	bufReq1 = bufReq2 = 0;
	for(l=0; l<layers; l++){
		bufReq1 += bufOptScen1(l, layers, rate, slope, bs1);
		bufReq2 += bufOptScen2(l, layers, rate, slope, bs2);
	} 

	for(l=0; l<MAX_LAYER; l++){
		bufs1[l] = 0;
		bufs2[l] = 0;
		DrainArr[l] = 0.0;
	}

	while(bufReq1 > TotalBuf(layers, bufAvail)){
		bufReq1 = 0;
		bs1--;
		for(l=0; l<layers; l++){
			bufs1[l] = bufOptScen1(l, layers, rate, slope, bs1);
			bufReq1 += bufs1[l];
		} 
	}
  
	while(bufReq2 > TotalBuf(layers, bufAvail)){
		bufReq2 = 0;
		bs2--;
		for(l=0; l<layers; l++){
			bufs2[l] =  bufOptScen2(l, layers, rate, slope, bs2);
			bufReq2 += bufs2[l];
		} 
	}

	if (bufReq1 >= bufReq2) {
		// drain toward last optimal scenario 1
		for (l=layers-1; l>=0; l--){
			// we try to drain the maximum amount from
			// min no of highest layers
			// note that there is a limit on total draining
			// from a layer
			maxDrainRemain = srtt*LAYERBW_ - FinalDrainArray[l];
			if ((bufAvail[l] > bufs1[l] + maxDrainRemain) &&
			    (bufToDrain >= maxDrainRemain)) {
				DrainArr[l] = maxDrainRemain;
				bufToDrain -= maxDrainRemain;
			} else {
				if(bufAvail[l] > bufs1[l] + maxDrainRemain){
					DrainArr[l] = bufToDrain;
					bufToDrain = 0.0;
				} else {
					DrainArr[l] = bufAvail[l] - bufs1[l];
					bufToDrain -= bufAvail[l] - bufs1[l];

					/* for debug */
					if(DrainArr[l] < 0.0){
// 	    panic("# ERROR, DrainArr[%d]: %.2f, bufAvail: %.2f, bufs1: %.2f\n",
// 		  l, DrainArr[l], bufAvail[l], bufs1[l]);
						DrainArr[l] = 0.0;
					}
				}
			}
			if(bufToDrain == 0.0)
				return;
		}
		return;
	} else {   /* if (bufReq1 >= bufReq2) */

		// Drain towards he last optima scenario 2 
		// We're draining - don't care about the upper bound on 
		// scenario 2.
		// Have to calculate all the layers together to get this max 
		// thing to work
		extra = 0.0;
		// Calculate the extra buffering 
		for (l=0; l<layers; l++) {
			if(bufs1[l] > bufs2[l])
				extra += bufs1[l] - bufs2[l];
		}

		for (l=layers-1; l>=0; l--)
			if(bufs1[l] >= bufs2[l])
				targetArr[l] = bufs1[l];
			else
				if (bufs2[l] - bufs1[l] >= extra) {
					targetArr[l] = bufs2[l] - extra;
					extra = 0;
				} else {
					// there is enough extra to compenstae the dif
					if (extra > 0) {
						targetArr[l] = bufs2[l];
						extra -= bufs2[l] - bufs1[l];
					} else 
						panic("# ERROR Should not \
reach here, extra: %.2f, bufs2: %.2f, bufs1: %.2f, L%d\n", 
						extra, bufs2[l], bufs1[l], l);
				}
	} /* end of if (bufReq1 >= bufReq2) */
   
	// drain toward last optimal scenario 2
	for (l=layers-1; l>=0; l--) {
		// we try to drain the maximum amount from
		// min no of highest layers
		// note that there is a limit on total draining
		// from a layer
		maxDrainRemain = srtt*LAYERBW_ - FinalDrainArray[l];
		if ((bufAvail[l] > targetArr[l] + maxDrainRemain) &&
		    (bufToDrain >= maxDrainRemain)) {
			DrainArr[l] = maxDrainRemain;
			bufToDrain -= maxDrainRemain;
		} else {
			if(bufAvail[l] > targetArr[l] + maxDrainRemain){
				DrainArr[l] = bufToDrain;
				bufToDrain = 0.0;
			} else {
				DrainArr[l] = bufAvail[l] - targetArr[l];
				bufToDrain -= bufAvail[l] - targetArr[l];
	
				// for debug 
				if (DrainArr[l] < 0.0) {
// 	  panic("# ERROR, DrainArr[%d]: %.2f, bufAvail: %.2f, bufs1: %.2f\n",
// 		l, DrainArr[l], bufAvail[l], bufs1[l]);
					DrainArr[l] = 0;
				}
			}
		}
		if (bufToDrain == 0.0)
			return;
	} /* end of for */
	return;
}


//
// This routine calculate an optimal distribution of a given 
// amount of buffered data to drain.
// the main algorithm is in drain_buf() and this one mainly init
// the input and calls that routine ad then update FinalDrainArray,
// based on its old value and return value for DrainArr.
//
// FinalDrainArray: output
// FinalBuffer: output, expected buf state at the end of the interval
void QA::DrainPacket(double bufToDrain, double* FinalDrainArray, int layers,
		     double rate, double srtt, double* FinalBuffer)
{
	double DrainArr[MAX_LAYER],  bufAvail[MAX_LAYER], TotBufAvail;
	int l,cnt;
  
	for(l=0; l<MAX_LAYER; l++){
		FinalDrainArray[l] = 0.0;
		bufAvail[l] = buffer_[l];
	}

	TotBufAvail = TotalBuf(layers, bufAvail);
	cnt = 0;
	while ((bufToDrain > 0) && (cnt < 10)) {
		// debug("bufToDrain%d: %.2f\n", cnt, bufToDrain);
		drain_buf(DrainArr, bufToDrain, FinalDrainArray, bufAvail, 
			  layers, rate, srtt);
		
		for(l=0; l<layers; l++){
			bufToDrain -= DrainArr[l];
			TotBufAvail -= DrainArr[l];
			FinalDrainArray[l] += DrainArr[l];
			bufAvail[l] -= DrainArr[l];
			FinalBuffer[l] = buffer_[l] - FinalDrainArray[l];
		}
		cnt++;
	}
}

void QA::check_availability(int layer, const MediaSegment& s) 
{
	int dummy; 
	MediaRequest p(MEDIAREQ_CHECKSEG);
	p.set_name(page_);
	p.set_layer(layer);
	p.set_st(s.start());
	p.set_et(s.end());
	p.set_app(this);
	// Ask cache/server to do prefetching if necessary.
	target()->get_data(dummy, &p);
}

/* 
 * This routine is called once every SRTT to drain some data from
 * recv's buffer and src's image from recv's buf.
 */
void QA::DrainBuffers()
{
	int i, j, layers = 0;
	Scheduler& s = Scheduler::instance();
	double now = s.clock();
	// interval since last drain
	double interval = now - playTime_;
	playTime_ = now;  // update playTime

	if ((layers > 1) && (playing_[0] != 1)) {
		panic("ERROR in DrainBuffer: layers>0 but L0 isn't playing\n");
	}

	// Updating playout offset, but do nothing if we are in the initial
	// startup filling phase! This offset measures the playing progress
	// of the client side. It is actually the playing offset of the lowest
	// layer.

	// This is the real amount of data to be drained from layers
	int todrain[MAX_LAYER]; 
	// Expected offset of base layer after draining, without considering 
	// holes in data. This has to be satisfied, otherwise base layer will
	// be dropped and an error condition will be raised.
	poffset_ += (int)floor(interval*LAYERBW_+0.5);

	// Started from MAX_LAYER to make debugging easier
	for (i = MAX_LAYER-1; i >= 0; i--) {
		// If this layer is not being played, don't drain anything
		if (sending_[i] == 0) {
			todrain[i] = 0;
			drained_[i] = 0.0;
			continue; 
		}
		todrain[i] = outlist_[i].evict_head_offset(poffset_);
		assert(todrain[i] >= 0);
		buffer_[i] -= todrain[i];
		// A buffer must have more than one byte
		if ((int)buffer_[i] <= 0) {
			debug("Buffer %d ran dry: %.2f after draining, DROP\n",
			      i, buffer_[i]);
			playing_[i] = 0;
			sending_[i] = 0;
			buffer_[i] = 0;
	    
			/* Drop all higher layers if they still have data */
			for (j = i+1; j < MAX_LAYER; j++)
				if (sending_[j] == 1) {
/*
 					panic("# ERROR: layer %d \
is playing with %.2f buf but layer %d ran dry with %.2f buf\n",
 					      j, buffer_[j], i, buffer_[i]);
*/
 					debug("# DROP layer %d: it \
is playing with %.2f buf but layer %d ran dry with %.2f buf\n",
 					      j, buffer_[j], i, buffer_[i]);
					sending_[j] = 0;
					playing_[j] = 0;
					buffer_[j] = 0;
				}
			// We don't need to set it to -1. The old address 
			// will be used to see if we are sending old data if 
			// that later is added again
			//
			// XXX Where is this -1 mark ever used????
			// data_[i].set_start(-1); // drop layer i
		} else {
			// Prefetch for this layer. Round to whole segment
			int st = (int)floor((poffset_+pref_srtt_*LAYERBW_)
					    /seg_size_+0.5)*seg_size_;
			int et = (int)floor((poffset_+(pref_srtt_+interval)*
					   LAYERBW_)/seg_size_+0.5)*seg_size_;
			if (et > pref_[i]) {
				pref_[i] = et;
				MediaSegment s(st, et);
				check_availability(i, s);
			}
		}
	} /* end of for */
}

// This routine dumps info into a file
// format of each line is as follows:
//  time tot-rate avg-rate per-layer-bw[MAXLAYER] tot-bw drain-rate[MAXLAYER] 
//  & cumulative-buffer[MAXLAYER] & no-of-layers 
// ADDED: use the old value of SRTT for bw/etc estimation !!! Jan 26
// XXX: need to be more compressed add more hooks to for ctrling from  
// tcl level
void QA::DumpInfo(double t, double last_t, double rate, 
		  double avgrate, double srtt)
{
#define MAXLEN 2000
	int i,j;
	char s1[MAXLEN], s2[MAXLEN], tmp[MAXLEN];
	static double last_srtt = 0, t2 = 0;
/*
        static double t1 = 0;
*/
#undef MAXLEN

	double  tot_bw = 0.0, interval, diff;
// 	if(rate > 1000000.0){
// 		debug("WARNING rate: %f is too large\n", rate);
// 	}
	
	interval = t - last_t ;
  
	if((t2 != last_t) && (t2 > 0)){
		diff = interval - last_srtt;
		if ((diff > 0.001) || (diff < -0.001)) {
			if (last_t == 0) 
				// Startup phase
				return;
/*
 			debug("WARNING: last_srtt: %.4f != \
interval: %.4f, diff: %f t1: %f, t2: %f, last_t: %f, t: %f\n",
 				last_srtt, interval, diff, t1, t2, last_t, t);
*/
			//abort();
		}
	} else 
		/* for the first call to init */
		last_srtt = srtt;

/*
	t1 = last_t;
*/
	t2 = t;

	if (interval <= 0.0) {
		panic("# ERROR interval is negative\n");
	}

	sprintf(s1, " %.2f %.2f %.2f X", last_t, rate, avgrate); 
	sprintf(s2, " %.2f %.2f %.2f X", t, rate, avgrate);
	
	j = 0;
	for (i = 0; i < MAX_LAYER; i++) 
	  //if (playing_[i] == 1)
	  if (sending_[i] == 1)
	    j++;
	//no of layers being playback
	sprintf(tmp, " %d", j*LAYERBW_);
	strcat(s1, tmp);
	strcat(s2, tmp);

	for (i = 0; i < MAX_LAYER; i++) {
		sprintf(tmp, " %.2g ", (bw_[i]/interval)+i*10000.0);
		strcat(s1,tmp);
		strcat(s2,tmp);

		tot_bw += bw_[i]/interval;
		bw_[i] = 0;
	}

	sprintf(tmp, " %.2f X", tot_bw );
	strcat(s1,tmp);
	strcat(s2,tmp);
  
	j = 0;
	for (i = 0; i < MAX_LAYER; i++) {
	  //if (playing_[i] == 1) {
	  if(sending_[i] ==1){
	    j++;
	    // drained_[] can be neg when allocated buf for this 
	    // layer is more than consumed data
	    if (drained_[i] < 0.0) {
	      // this means that this layer was drained 
	      // with max rate
	      drained_[i] = 0.0;
	    } 
	    // XXX, we could have used interval*LAYERBW_ - bw_[i]
	    // that was certainly better
	    sprintf(tmp, " %.2f ", 
		    (drained_[i]/interval)+i*10000.0);
	    strcat(s1,tmp);
	    strcat(s2,tmp);
	    // Note that drained[] shows the amount of data that 
	    // is used from buffered data, i.e. rd[i]
	    // This must be srtt instead of interval because this 
	    // is for next dumping.
	    drained_[i]=srtt*LAYERBW_;
	  } else {
	    sprintf(tmp, " %.2f ", i*10000.0);
	    strcat(s1,tmp);
	    strcat(s2,tmp);
	    drained_[i] = 0.0;
	  }
	}

	for (i=0;i<MAX_LAYER;i++) {
		sprintf(tmp, " %.2f", buffer_[i]+i*10000);
		strcat(s1,tmp);
		strcat(s2,tmp);
	}
	
	log("QA %s \n", s1);
	log("QA %s \n", s2);
	fflush(stdout);
}

// This routine models draining of buffers at the recv
// it periodically updates state of buffers
// Ir must be called once and then it reschedules itself
// it is first called after playout is started!
void QA::UpdateState()
{
	double last_ptime = playTime_; // Last time to drain buffer
	DrainBuffers();
	DumpInfo(Scheduler::instance().clock(), last_ptime, 
		 rate(), avgrate_, rap()->srtt());
}