File: ranvar.cc

package info (click to toggle)
ns2 2.35%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 78,756 kB
  • ctags: 27,476
  • sloc: cpp: 172,923; tcl: 107,130; perl: 6,391; sh: 6,143; ansic: 5,846; makefile: 812; awk: 525; csh: 355
file content (560 lines) | stat: -rw-r--r-- 14,846 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
/* -*-	Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */
/*
 * Copyright (c) Xerox Corporation 1997. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linking this file statically or dynamically with other modules is making
 * a combined work based on this file.  Thus, the terms and conditions of
 * the GNU General Public License cover the whole combination.
 *
 * In addition, as a special exception, the copyright holders of this file
 * give you permission to combine this file with free software programs or
 * libraries that are released under the GNU LGPL and with code included in
 * the standard release of ns-2 under the Apache 2.0 license or under
 * otherwise-compatible licenses with advertising requirements (or modified
 * versions of such code, with unchanged license).  You may copy and
 * distribute such a system following the terms of the GNU GPL for this
 * file and the licenses of the other code concerned, provided that you
 * include the source code of that other code when and as the GNU GPL
 * requires distribution of source code.
 *
 * Note that people who make modified versions of this file are not
 * obligated to grant this special exception for their modified versions;
 * it is their choice whether to do so.  The GNU General Public License
 * gives permission to release a modified version without this exception;
 * this exception also makes it possible to release a modified version
 * which carries forward this exception.
 */

#ifndef lint
static const char rcsid[] =
    "@(#) $Header: /cvsroot/nsnam/ns-2/tools/ranvar.cc,v 1.25 2011/05/16 03:49:09 tom_henderson Exp $ (Xerox)";
#endif

#include <stdio.h>
#include "ranvar.h"

RandomVariable::RandomVariable()
{
	rng_ = RNG::defaultrng(); 
}

int RandomVariable::command(int argc, const char*const* argv)
{
	Tcl& tcl = Tcl::instance();

	if (argc == 2) {
		if (strcmp(argv[1], "value") == 0) {
			tcl.resultf("%6e", value());
			return(TCL_OK);
		}
	}
	if (argc == 3) {
		if (strcmp(argv[1], "use-rng") == 0) {
			rng_ = (RNG*)TclObject::lookup(argv[2]);
			if (rng_ == 0) {
				tcl.resultf("no such RNG %s", argv[2]);
				return(TCL_ERROR);
			}
			return(TCL_OK);
		}
	}
	return(TclObject::command(argc, argv));
}

// Added by Debojyoti Dutta 12 October 2000
// This allows us to seed a randomvariable with 
// our own RNG object. This command is called from 
// expoo.cc and pareto.cc 

int  RandomVariable::seed(char *x){
        
        Tcl& tcl = Tcl::instance();

                rng_ = (RNG*)TclObject::lookup(x);
                if (rng_ == 0) {
                        tcl.resultf("no such RNG %s", x);
                        return(TCL_ERROR);
                }
                return(TCL_OK);
 
}


static class UniformRandomVariableClass : public TclClass {
public:
	UniformRandomVariableClass() : TclClass("RandomVariable/Uniform"){}
	TclObject* create(int, const char*const*) {
		 return(new UniformRandomVariable());
	 }
} class_uniformranvar;

UniformRandomVariable::UniformRandomVariable()
{
	bind("min_", &min_);
	bind("max_", &max_); 
}

UniformRandomVariable::UniformRandomVariable(double min, double max)
{
	min_ = min;
	max_ = max;
}

double UniformRandomVariable::value()
{
	return(rng_->uniform(min_, max_));
}


static class ExponentialRandomVariableClass : public TclClass {
public:
	ExponentialRandomVariableClass() : TclClass("RandomVariable/Exponential") {}
	TclObject* create(int, const char*const*) {
		return(new ExponentialRandomVariable());
	}
} class_exponentialranvar;

ExponentialRandomVariable::ExponentialRandomVariable()
{
	bind("avg_", &avg_);
}

ExponentialRandomVariable::ExponentialRandomVariable(double avg)
{
	avg_ = avg;
}

double ExponentialRandomVariable::value()
{
	return(rng_->exponential(avg_));
}

/*
	Generates Erlang variables following:
	
	                   x^(k-1)*exp(-x/lambda)
	p(x; lambda, k) = ------------------------
                       (k-1)!*lambda^k
*/
static class ErlangRandomVariableClass : public TclClass {
public:
	ErlangRandomVariableClass() : TclClass("RandomVariable/Erlang") {}
	TclObject* create(int, const char*const*) {
		return(new ErlangRandomVariable());
	}
} class_erlangranvar;
 
ErlangRandomVariable::ErlangRandomVariable()
{
	bind("lambda_", &lambda_);
	bind("k_", &k_);
}


ErlangRandomVariable::ErlangRandomVariable(double lambda, int k)
{
	lambda_ = lambda;
	k_ = k;
}

double ErlangRandomVariable::value()
{
	double result = 0;
	for (int i = 0; i < k_; i++) {
		result += rng_->exponential(lambda_);
	}
	return result;

}


/*
	Generates Erlang variables following:
	
	                     x^(alpha-1)*exp(-x/beta)
	p(x; alpha, beta) = --------------------------
                         Gamma(alpha)*beta^alpha
*/
static class GammaRandomVariableClass : public TclClass {
public:
	GammaRandomVariableClass() : TclClass("RandomVariable/Gamma") {}
	TclObject* create(int, const char*const*) {
		return(new GammaRandomVariable());
	}
} class_gammaranvar;

GammaRandomVariable::GammaRandomVariable()
{
	bind("alpha_", &alpha_);
	bind("beta_", &beta_);
}

GammaRandomVariable::GammaRandomVariable(double alpha, double beta)
{
	alpha_ = alpha;
	beta_ = beta;
}

double GammaRandomVariable::value()
{
	// Proposed by Marsaglia in 2000:
	// G. Marsaglia, W. W. Tsang: A simple method for gereating Gamma variables
	// ACM Transactions on mathematical software, Vol. 26, No. 3, Sept. 2000
	if (alpha_ < 1) {
		double u = rng_->uniform(1.0);
		return GammaRandomVariable(1.0 + alpha_, beta_).value() * pow (u, 1.0 / alpha_);
	}
	
	double x, v, u;
	double d = alpha_ - 1.0 / 3.0;
	double c = (1.0 / 3.0) / sqrt (d);

	while (1) {
		do {
			x = rng_->normal(0.0, 1.0);
			v = 1.0 + c * x;
		} while (v <= 0);

		v = v * v * v;
		u = rng_->uniform(1.0);
		if (u < 1 - 0.0331 * x * x * x * x)
			break;
		if (log (u) < 0.5 * x * x + d * (1 - v + log (v)))
			break;
	}
	return beta_ * d * v;
}



static class ParetoRandomVariableClass : public TclClass {
 public:
	ParetoRandomVariableClass() : TclClass("RandomVariable/Pareto") {}
	TclObject* create(int, const char*const*) {
		return(new ParetoRandomVariable());
	}
} class_paretoranvar;

ParetoRandomVariable::ParetoRandomVariable()
{
	bind("avg_", &avg_);
	bind("shape_", &shape_);
}

ParetoRandomVariable::ParetoRandomVariable(double avg, double shape)
{
	avg_ = avg;
	shape_ = shape;
}

double ParetoRandomVariable::value()
{
	/* yuck, user wants to specify shape and avg, but the
	 * computation here is simpler if we know the 'scale'
	 * parameter.  right thing is to probably do away with
	 * the use of 'bind' and provide an API such that we
	 * can update the scale everytime the user updates shape
	 * or avg.
	 */
	return(rng_->pareto(avg_ * (shape_ -1)/shape_, shape_));
}

/* Pareto distribution of the second kind, aka. Lomax distribution */
static class ParetoIIRandomVariableClass : public TclClass {
 public:
        ParetoIIRandomVariableClass() : TclClass("RandomVariable/ParetoII") {}
        TclObject* create(int, const char*const*) {
                return(new ParetoIIRandomVariable());
        }
} class_paretoIIranvar;

ParetoIIRandomVariable::ParetoIIRandomVariable()
{
        bind("avg_", &avg_);
        bind("shape_", &shape_);
}

ParetoIIRandomVariable::ParetoIIRandomVariable(double avg, double shape)
{
        avg_ = avg;
        shape_ = shape;
}

double ParetoIIRandomVariable::value()
{
        return(rng_->paretoII(avg_ * (shape_ - 1), shape_));
}

static class NormalRandomVariableClass : public TclClass {
 public:
        NormalRandomVariableClass() : TclClass("RandomVariable/Normal") {}
        TclObject* create(int, const char*const*) {
                return(new NormalRandomVariable());
        }
} class_normalranvar;
 
NormalRandomVariable::NormalRandomVariable()
{ 
        bind("avg_", &avg_);
        bind("std_", &std_);
}
 
double NormalRandomVariable::value()
{
        return(rng_->normal(avg_, std_));
}

static class LogNormalRandomVariableClass : public TclClass {
 public:
        LogNormalRandomVariableClass() : TclClass("RandomVariable/LogNormal") {}
        TclObject* create(int, const char*const*) {
                return(new LogNormalRandomVariable());
        }
} class_lognormalranvar;
 
LogNormalRandomVariable::LogNormalRandomVariable()
{ 
        bind("avg_", &avg_);
        bind("std_", &std_);
}
 
double LogNormalRandomVariable::value()
{
        return(rng_->lognormal(avg_, std_));
}

static class ConstantRandomVariableClass : public TclClass {
 public:
	ConstantRandomVariableClass() : TclClass("RandomVariable/Constant"){}
	TclObject* create(int, const char*const*) {
		return(new ConstantRandomVariable());
	}
} class_constantranvar;

ConstantRandomVariable::ConstantRandomVariable()
{
	bind("val_", &val_);
}

ConstantRandomVariable::ConstantRandomVariable(double val)
{
	val_ = val;
}

double ConstantRandomVariable::value()
{
	return(val_);
}


/* Hyperexponential distribution code adapted from code provided
 * by Ion Stoica.
 */

static class HyperExponentialRandomVariableClass : public TclClass {
public:
	HyperExponentialRandomVariableClass() : 
	TclClass("RandomVariable/HyperExponential") {}
	TclObject* create(int, const char*const*) {
		return(new HyperExponentialRandomVariable());
	}
} class_hyperexponentialranvar;

HyperExponentialRandomVariable::HyperExponentialRandomVariable()
{
	bind("avg_", &avg_);
	bind("cov_", &cov_);
	alpha_ = .95;
}

HyperExponentialRandomVariable::HyperExponentialRandomVariable(double avg, double cov)
{
	alpha_ = .95;
	avg_ = avg;
	cov_ = cov;
}

double HyperExponentialRandomVariable::value()
{
	double temp, res;
	double u = Random::uniform();

	temp = sqrt((cov_ * cov_ - 1.0)/(2.0 * alpha_ * (1.0 - alpha_)));
	if (u < alpha_)
		res = Random::exponential(avg_ - temp * (1.0 - alpha_) * avg_);
	else
		res = Random::exponential(avg_ + temp * (alpha_) * avg_);
	return(res);
}

static class WeibullRandomVariableClass : public TclClass {
 public:
        WeibullRandomVariableClass() : TclClass("RandomVariable/Weibull") {}
        TclObject* create(int argc, const char*const* argv) {
                if (argc == 6) {
                        return (new WeibullRandomVariable ((double) atof(argv[4]),
                                                           (double) atof(argv[5])));
                }
                else if (argc == 7) {
                        // shape, scale, RNG
                        RNG* rng = (RNG*)TclObject::lookup(argv[6]);
                        return (new WeibullRandomVariable ((double) atof(argv[4]),
                                                           (double) atof(argv[5]),
                                                           rng));
                }
                else {
                        return(new WeibullRandomVariable());
                }
        }                                           
} class_weibullranvar;

WeibullRandomVariable::WeibullRandomVariable()
{        
	bind("shape_", &shape_);
        bind("scale_", &scale_);
}

WeibullRandomVariable::WeibullRandomVariable(double scale, double shape)
{
        shape_ = shape;
        scale_ = scale;
}

WeibullRandomVariable::WeibullRandomVariable(double scale, double shape, 
					     RNG* rng) 
{
        shape_ = shape;
        scale_ = scale;
        rng_ = rng;
}

double WeibullRandomVariable::avg(void)         
{
        return 0;
}

double WeibullRandomVariable::value()
{
        return(rng_->rweibull(scale_, shape_));
}
                                                                               
/*
// Empirical Random Variable:
//  CDF input from file with the following column
//   1.  Possible values in a distrubutions
//   2.  Number of occurances for those values
//   3.  The CDF for those value
//  code provided by Giao Nguyen
*/

static class EmpiricalRandomVariableClass : public TclClass {
public:
	EmpiricalRandomVariableClass() : TclClass("RandomVariable/Empirical"){}
	TclObject* create(int, const char*const*) {
		return(new EmpiricalRandomVariable());
	}
} class_empiricalranvar;

EmpiricalRandomVariable::EmpiricalRandomVariable() : minCDF_(0), maxCDF_(1), maxEntry_(32), table_(0)
{
	bind("minCDF_", &minCDF_);
	bind("maxCDF_", &maxCDF_);
	bind("interpolation_", &interpolation_);
	bind("maxEntry_", &maxEntry_);
}

int EmpiricalRandomVariable::command(int argc, const char*const* argv)
{
	Tcl& tcl = Tcl::instance();
	if (argc == 3) {
		if (strcmp(argv[1], "loadCDF") == 0) {
			if (loadCDF(argv[2]) == 0) {
				tcl.resultf("%s loadCDF %s: invalid file",
					    name(), argv[2]);
				return (TCL_ERROR);
			}
			return (TCL_OK);
		}
	}
	return RandomVariable::command(argc, argv);
}

int EmpiricalRandomVariable::loadCDF(const char* filename)
{
	FILE* fp;
	char line[256];
	CDFentry* e;

	fp = fopen(filename, "r");
	if (fp == 0) 
		return 0;


	if (table_ == 0)
		table_ = new CDFentry[maxEntry_];
	for (numEntry_=0;  fgets(line, 256, fp);  numEntry_++) {
		if (numEntry_ >= maxEntry_) {	// resize the CDF table
			maxEntry_ *= 2;
			e = new CDFentry[maxEntry_];
			for (int i=numEntry_-1; i >= 0; i--)
				e[i] = table_[i];
			delete table_;
			table_ = e;
		}
		e = &table_[numEntry_];
		// Use * and l together raises a warning
		sscanf(line, "%lf %*f %lf", &e->val_, &e->cdf_);
	}
        fclose(fp);
	return numEntry_;
}

double EmpiricalRandomVariable::value()
{
	if (numEntry_ <= 0)
		return 0;
	double u = rng_->uniform(minCDF_, maxCDF_);
	int mid = lookup(u);
	if (mid && interpolation_ && u < table_[mid].cdf_)
		return interpolate(u, table_[mid-1].cdf_, table_[mid-1].val_,
				   table_[mid].cdf_, table_[mid].val_);
	return table_[mid].val_;
}

double EmpiricalRandomVariable::interpolate(double x, double x1, double y1, double x2, double y2)
{
	double value = y1 + (x - x1) * (y2 - y1) / (x2 - x1);
	if (interpolation_ == INTER_INTEGRAL)	// round up
		return ceil(value);
	return value;
}

int EmpiricalRandomVariable::lookup(double u)
{
	// always return an index whose value is >= u
	int lo, hi, mid;
	if (u <= table_[0].cdf_)
		return 0;
	for (lo=1, hi=numEntry_-1;  lo < hi; ) {
		mid = (lo + hi) / 2;
		if (u > table_[mid].cdf_)
			lo = mid + 1;
		else
			hi = mid;
	}
	return lo;
}