1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
|
/*
* ew.cc
* Copyright (C) 1999 by the University of Southern California
* $Id: ew.cc,v 1.8 2010/03/08 05:54:49 tom_henderson Exp $
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
*
*
* The copyright of this module includes the following
* linking-with-specific-other-licenses addition:
*
* In addition, as a special exception, the copyright holders of
* this module give you permission to combine (via static or
* dynamic linking) this module with free software programs or
* libraries that are released under the GNU LGPL and with code
* included in the standard release of ns-2 under the Apache 2.0
* license or under otherwise-compatible licenses with advertising
* requirements (or modified versions of such code, with unchanged
* license). You may copy and distribute such a system following the
* terms of the GNU GPL for this module and the licenses of the
* other code concerned, provided that you include the source code of
* that other code when and as the GNU GPL requires distribution of
* source code.
*
* Note that people who make modified versions of this module
* are not obligated to grant this special exception for their
* modified versions; it is their choice whether to do so. The GNU
* General Public License gives permission to release a modified
* version without this exception; this exception also makes it
* possible to release a modified version which carries forward this
* exception.
*
*/
//
// ew.cc (Early warning system)
// by Xuan Chen (xuanc@isi.edu), USC/ISI
#include "ip.h"
#include "tcp.h"
#include "tcp-full.h"
#include "random.h"
#include "ew.h"
// Definition of High-Low Filter
HLF::HLF() {
alpha = 0;
high = low = 0;
}
void HLF::reset(double value) {
high = low = value;
}
void HLF::reset() {
reset(0);
}
// Set Alpha
void HLF::setAlpha(double value) {
if (value > 1 || value < 0)
return;
if (value >= 0.5)
alpha = value;
else
alpha = 1 - value;
}
// Get outputs from HLF
double HLF::getHigh() {
return(high);
}
double HLF::getLow() {
return(low);
}
// update high-low filter
// high(t) = alpha * high(t-1) + (1 - alpha) * o(t)
// low(t) = (1 - alpha) * low(t-1) + alpha * o(t)
void HLF::update(double input) {
// Set values to the current observation for the first time.
if (high)
high = alpha * high + (1 - alpha) * input;
else
high = input;
if (low)
low = (1 - alpha) * low + alpha * input;
else
low = input;
// printf("HLF %d %.2f, %.2f\n", (int)now, high, low);
}
// Definition for a token-bucket rate limitor
TBrateLimitor::TBrateLimitor() {
TBrateLimitor(DEFAULT_TB_RATE_P);
}
TBrateLimitor::TBrateLimitor(double rate) {
double now = Scheduler::instance().clock();
pkt_mode = 1;
bucket_size = DEFAULT_TB_SIZE;
token_rate = 0;
token_num = bucket_size;
last_time = now;
ini_token_rate = rate;
resetScore();
setRate(rate);
//printf("TB pkt_mode:%d, bucket_size:%g, token_num:%g, last_time:%g\n",
// pkt_mode, bucket_size, token_num, last_time);
// High-low filter
hlf.setAlpha(ALPHA);
hlf.reset(rate);
}
// adjust the rate limit to the default value
void TBrateLimitor::setRate(double rate) {
last_token_rate = token_rate;
if (! token_rate) {
token_rate = rate;
} else if (rate != token_rate) {
// use HLF to change token rate
hlf.update(rate);
// Use low-gain filter for fast response
//token_rate = hlf.getLow();
token_rate = hlf.getHigh();
token_rate = rate;
}
printf("TR %d %.2f %.2f %d %d\n", (int)(Scheduler::instance().clock()),
token_rate, rate, p_score, n_score);
}
// adjust the rate limit to approaching an optimal rate limit
void TBrateLimitor::adjustRate() {
// pay the penalty
adjustScore(-1);
double rate = token_rate;
if (p_score >= n_score)
rate = token_rate * (1 + 0.2);
else
rate = token_rate * (1 - 0.2);
setRate(rate);
}
// Reset negative / positive score
void TBrateLimitor::resetScore() {
n_score = p_score = 0;
}
// adjust the score for increasing or decreasing scores
void TBrateLimitor::adjustScore(int score) {
// pay the penalty
if (last_token_rate > token_rate)
n_score += score;
else
p_score += score;
}
int TBrateLimitor::run(double incoming, double t_rate) {
double now = Scheduler::instance().clock();
double interval = now - last_time;
//printf("TB: now:%g last_time:%g interval:%g; ", now, last_time, interval);
token_num += interval * t_rate;
last_time = now;
// more tokens are overflowed
if (token_num > bucket_size)
token_num = bucket_size;
//printf("token #:%g; ", token_num);
// through (0 dropping probability)
if (token_num >= incoming) {
token_num -= incoming;
//printf("...through\n");
return 0;
}
// dropped
//printf("...dropped\n");
return 1;
}
int TBrateLimitor::run(double incoming) {
return (run(incoming, token_rate));
}
// EW detector
// Constructor
EWdetector::EWdetector() {
ew_src = ew_dst = -1;
// reset measurement
cur_rate = avg_rate = 0;
// reset timers
db_timer = dt_timer = 0;
// reset alarm
resetAlarm();
resetChange();
// High-low filter
hlf.setAlpha(ALPHA);
}
//EWdetector::~EWdetector() {
//};
// Enable detecting and debugging
void EWdetector::setDt(int inv) {
dt_inv = inv;
//printf("DT: %d\n", dt_inv);
}
void EWdetector::setDb(int inv) {
db_inv = inv;
//printf("DB: %d\n", db_inv);
}
void EWdetector::setLink(int src, int dst) {
ew_src = src;
ew_dst = dst;
//printf("EW: (%d:%d)\n", ew_src, ew_dst);
}
void EWdetector::setAlarm() {
alarm = 1;
// Reset low and high gain filters' input values to the long-term avg
// Actually, there is no change to high gain filter
hlf.reset(avg_rate);
}
void EWdetector::resetAlarm() {
alarm = 0;
// Reset low and high gain filters' input values to the long-term avg
// Actually, there is no change to low gain filter
hlf.reset(avg_rate);
}
// Set and reset change flag
void EWdetector::setChange() {
change = 1;
}
void EWdetector::resetChange() {
change = 0;
}
// Test if the alarm has been triggered
int EWdetector::testAlarm() {
if (!change)
return(EW_UNCHANGE);
else
return(alarm);
}
// Update long term average
void EWdetector::updateAvg() {
// update the request rate
// update the aggregated response rate
// Update flip-flop filter
hlf.update(cur_rate);
// Update SWIN, not used any more.
//updateSWin(cur_rate);
//ravgSWin();
//printSWin();
// Update the long term average value with the output from different filters
if (!alarm) {
// Use low-gain filter for fast response
//avg_rate = hlf.getLow();
avg_rate = hlf.getHigh();
} else {
// Use high-gain filter to keep the long term average stable
avg_rate = hlf.getHigh();
}
}
// the detector's engine
void EWdetector::run(Packet *pkt) {
// get the time
now = Scheduler::instance().clock();
//printf("EW[%d:%d] run ", ew_src, ew_dst);
// update the measurement
measure(pkt);
// There is a timeout!
if (now >= dt_timer) {
// Start detection
//printf("Detection timeout(%d)\n", (int)now);
// 1. Update the current rate from measurement
updateCur();
// 2. Detect change and Trigger alarm if necessary
// Compare the current rate with the long term average
detect();
// 3. Update the long term averages
updateAvg();
// setup the sleeping timer
dt_timer = (int)now + dt_inv;
//printf("%d\n", dt_inv);
change = 1;
}
// Schedule debug
if (db_inv && now >= db_timer) {
//printf("debugB ");
trace();
db_timer = (int)now + db_inv;
}
}
// end of EW detector
// EW bit rate detector
//Constructor.
EWdetectorB::EWdetectorB() : EWdetector() {
drop_p = 0;
arr_count = 0;
adjustor = 1.0;
// Initialize ALIST
alist.head = alist.tail = NULL;
alist.count = 0;
swin.head = swin.tail = NULL;
swin.count = swin.ravg = 0;
}
//Deconstructor.
EWdetectorB::~EWdetectorB(){
resetAList();
resetSWin();
}
// Initialize the EW parameters
void EWdetectorB::init(int ew_adj) {
// EW adjustor (g = resp rate / request rate)
adjustor = ew_adj;
}
// Update current measurement
void EWdetectorB::measure(Packet *pkt) {
//printf(" before UA");
// Conduct detection continously
updateAList(pkt);
//printf(" after UA");
}
// Update current measurement
void EWdetectorB::updateCur() {
//printAList();
// Record current aggregated response rate
cur_rate = computeARR();
}
// Check if the packet belongs to existing flow
int EWdetectorB::exFlow(Packet *) {
// Should check SYN packets to protect existing connections
// need to use FullTCP
return(0);
}
// Conduct the measurement
void EWdetectorB::updateAList(Packet *pkt) {
hdr_cmn* hdr = hdr_cmn::access(pkt);
hdr_ip* iph = hdr_ip::access(pkt);
int dst_id = iph->daddr();
int src_id = iph->saddr();
int f_id = iph->flowid();
// Get the corresponding id.
//printf("EW[%d:%d] in detector\n", ew_src, ew_dst);
AListEntry *p;
p = searchAList(src_id, dst_id, f_id);
// Add new entry to AList
// keep the bytes sent by each aggregate in AList
if (!p) {
p = newAListEntry(src_id, dst_id, f_id);
}
// update the existing (or just created) entry in AList
assert(p && p->f_id == f_id && p->src_id == src_id && p->dst_id == dst_id);
// update the flow's arrival rate using TSW
double bytesInTSW, newBytes;
bytesInTSW = p->avg_rate * p->win_length;
newBytes = bytesInTSW + (double) hdr->size();
p->avg_rate = newBytes / (now - p->t_front + p->win_length);
p->t_front = now;
//printAListEntry(p, 0);
}
// Get the median for a part of AList
// starting from index with count entries
int EWdetectorB::getMedianAList(int index, int count) {
int m;
if (!count)
return 0;
sortAList();
//printAList();
// Pick the entry with median avg_rate
m = (int) (count / 2);
if (2 * m == count) {
return((getRateAList(index + m - 1) + getRateAList(index + m)) / 2);
} else {
return(getRateAList(index + m));
}
}
// Get the rate given the index in the list
int EWdetectorB::getRateAList(int index) {
struct AListEntry *p;
//printf("%d\n", index);
p = alist.head;
for (int i = 0; i < index; i++) {
if (p)
p = p->next;
}
if (p)
return ((int)p->avg_rate);
printf("Error in AList!\n");
return(0);
}
// Calculate the aggragated response rate for high-bandwidth flows
int EWdetectorB::computeARR() {
int i, agg_rate;
// Explicit garbage collection first
// before both choosing HBFs and searching AList
//printf("before timeout ");
timeoutAList();
//printf("after timeout ");
// do nothing if no entry exists
if (!alist.count)
return 0;
// Pick the 10% highest bandwidth flows
arr_count = (int) (alist.count * 0.1 + 1);
// Sort AList first
sortAList();
// Calculate the ARR for HBFs
// Use mean
agg_rate = 0;
for (i = 0; i < arr_count; i++) {
agg_rate += getRateAList(i);
}
if (i)
agg_rate = (int) (agg_rate / i);
else {
printf("No MAX returned from ALIST!!!\n");
}
// Use median (the median for the list or median for HBFs?)
//agg_rate = getMedianAList(0, k);
//printf("%f %d %d %d\n", now, k, agg_rate, getMedianAList(0, k));
return(agg_rate);
}
// Find the matched AList entry
struct AListEntry * EWdetectorB::searchAList(int src_id, int dst_id, int f_id){
AListEntry *p;
// Explicit garbage collection first.
//printf("before timeout ");
timeoutAList();
//printf("after timeout ");
// Use src and dest pair and flow id:
// aggregate flows within the same request-response exchange
// Timeout need to be set to a very small value in order to
// seperate different exchanges.
p = alist.head;
while (p &&
(p->f_id != f_id || p->src_id != src_id || p->dst_id != dst_id)) {
p = p->next;
}
return(p);
}
// Add new entry to AList
struct AListEntry * EWdetectorB::newAListEntry(int src_id, int dst_id, int f_id) {
AListEntry *p;
p = new AListEntry;
p->src_id = src_id;
p->dst_id = dst_id;
p->f_id = f_id;
p->last_update = now;
p->avg_rate = 0;
// Since we are doing random sampling,
// the t_front should set to the beginning of this period instead of 0.
p->t_front = now;
p->win_length = 1;
p->next = NULL;
// Add new entry to AList
if (alist.tail)
alist.tail->next = p;
alist.tail = p;
if (!alist.head)
alist.head = p;
alist.count++;
return(p);
}
// Find the entry with max avg_rate in AList
struct AListEntry * EWdetectorB::getMaxAList() {
struct AListEntry *p, *pp, *max, *pm;
//printAList();
// find the max entry and remove
p = pp = alist.head;
max = pm = p;
while (p) {
if (p->avg_rate > max->avg_rate) {
pm = pp;
max = p;
}
pp = p;
p = p->next;
}
// remove max from AList
if (alist.head == max)
alist.head = max->next;
if (pm != max)
pm->next = max->next;
max->next = NULL;
//printAList();
return(max);
}
// Sort AList based on the avg_rate
void EWdetectorB::sortAList() {
struct AListEntry *max, *head, *tail;
if (!alist.head)
return;
//printAList();
head = tail = NULL;
while (alist.head) {
// Get the entry with the max avg_rate
max = getMaxAList();
//printAListEntry(max, i);
if (max) {
// Add max to the tail of the new list
if (tail)
tail->next = max;
tail = max;
if (!head)
head = max;
}
}
alist.head = head;
alist.tail = tail;
//printAList();
}
// Timeout AList entries
void EWdetectorB::timeoutAList() {
AListEntry *p, *q;
float to;
to = EW_FLOW_TIME_OUT;
if (dt_inv)
to = dt_inv;
// Expire the old entries in AList
p = q = alist.head;
while (p) {
// Garbage collection
if (p->last_update + to < now){
// The coresponding flow is expired.
if (p == alist.head){
if (p == alist.tail) {
alist.head = alist.tail = NULL;
free(p);
p = q = NULL;
} else {
alist.head = p->next;
free(p);
p = q = alist.head;
}
} else {
q->next = p->next;
if (p == alist.tail)
alist.tail = q;
free(p);
p = q->next;
}
alist.count--;
} else {
q = p;
p = q->next;
}
}
}
// Reset AList
void EWdetectorB::resetAList() {
struct AListEntry *ap, *aq;
ap = aq = alist.head;
while (ap) {
aq = ap;
ap = ap->next;
free(aq);
}
ap = aq = NULL;
alist.head = alist.tail = NULL;
alist.count = 0;
}
// Reset SWin
void EWdetectorB::resetSWin() {
struct SWinEntry *p, *q;
p = q = swin.head;
while (p) {
q = p;
p = p->next;
free(q);
}
p = q = NULL;
swin.head = swin.tail = NULL;
swin.count = swin.ravg = 0;
}
// update swin with the latest measurement of aggregated response rate
void EWdetectorB::updateSWin(int rate) {
struct SWinEntry *p, *new_entry;
new_entry = new SWinEntry;
new_entry->rate = rate;
new_entry->weight = 1;
new_entry->next = NULL;
if (swin.tail)
swin.tail->next = new_entry;
swin.tail = new_entry;
if (!swin.head)
swin.head = new_entry;
// Reset current rate.
if (swin.count < EW_SWIN_SIZE) {
swin.count++;
} else {
p = swin.head;
swin.head = p->next;
free(p);
}
}
// Calculate the running average over the sliding window
void EWdetectorB::ravgSWin() {
struct SWinEntry *p;
float sum = 0;
float t_weight = 0;
//printf("Calculate running average over the sliding window:\n");
p = swin.head;
//printf("after p\n");
while (p) {
//printSWinEntry(p, i++);
sum += p->rate * p->weight;
t_weight += p->weight;
p = p->next;
}
p = NULL;
//printf("\n");
swin.ravg = (int)(sum / t_weight);
// printf("Ravg: %d\n", swin.ravg);
}
// detect the traffic change by
// comparing the current measurement with the long-term average
// trigger alarm if necessary.
void EWdetectorB::detect() {
// When ALARM:
// detect if it is the time to release the alarm
// When NO ALARM:
// detect if it is the time to trigger the alarm
if (alarm) {
// Determine if an alarm should be released
if (cur_rate > avg_rate * (1 + EW_RELEASE_RANGE)) {
// reset alarm
resetAlarm();
}
} else {
// Determine if an alarm should be triggered
// need to be conservative!
if (cur_rate < avg_rate * (1 - EW_DETECT_RANGE)) {
setAlarm();
// Initial drop_p to the MAX value whenever alarm triggered
if (drop_p < EW_MAX_DROP_P)
drop_p = EW_MAX_DROP_P;
} else {
}
}
// Determine the dropping probability
//computeDropP();
}
// Determine the dropping probability based on current measurement
void EWdetectorB::computeDropP() {
double p = 0;
if (alarm) {
// Compute the dropping probability as a linear function of current rate
// p is computed towards the current measurement.
p = 1;
if (cur_rate)
p = (avg_rate - cur_rate) * adjustor / cur_rate;
// p could be greater than 1
if (p > 1)
p = 1;
// p could also be negative
if (p < 0)
p = 0;
// Compute the actual drop probability
drop_p = ALPHA * drop_p + (1 - ALPHA) * p;
// adjust drop_p
if (drop_p < EW_MIN_DROP_P)
drop_p = EW_MIN_DROP_P;
if (drop_p > EW_MAX_DROP_P)
drop_p = EW_MAX_DROP_P;
} else {
// Fade out the drop_p when no alarm
if (drop_p > 0) {
if (drop_p <= EW_MIN_DROP_P)
drop_p = 0;
else {
drop_p = ALPHA * drop_p;
}
}
}
}
// Decreas the sample interval
void EWdetectorB::decSInv() {
// Need some investigation for the min allowed detection interval
// if (s_inv / 2 > EW_MIN_SAMPLE_INTERVAL) {
// s_inv = s_inv / 2;
//printf("SINV decreased by 2.\n");
//}
}
// Increase the sample interval
void EWdetectorB::incSInv() {
//if(s_inv * 2 <= init_s_inv) {
// s_inv = s_inv * 2;
//printf("SINV increased by 2.\n");
// }
}
// Prints one entry in SWin
void EWdetectorB::printSWin() {
struct SWinEntry *p;
printf("%f SWIN[%d, %d]", now, swin.ravg, swin.count);
p = swin.head;
int i = 0;
while (p) {
printSWinEntry(p, i++);
p = p->next;
}
p = NULL;
printf("\n");
}
// Print the contents in SWin
void EWdetectorB::printSWinEntry(struct SWinEntry *p, int i) {
if (p)
printf("[%d: %d %.2f] ", i, p->rate, p->weight);
}
// Print one entry in AList
void EWdetectorB::printAListEntry(struct AListEntry *p, int i) {
if (!p)
return;
printf("[%d] %d (%d %d) %.2f %.2f\n", i, p->f_id, p->src_id, p->dst_id,
p->avg_rate, p->last_update);
}
// Print the entries in AList
void EWdetectorB::printAList() {
struct AListEntry *p;
printf("%f AList(%d):\n", now, alist.count);
p = alist.head;
int i = 0;
while (p) {
printAListEntry(p, i);
i++;
p = p->next;
}
p = NULL;
printf("\n");
}
// Trace bit rate (resp rate)
void EWdetectorB::trace() {
double db_rate = 0;
double m_rate = 0;
timeoutAList();
m_rate = getMedianAList(0, alist.count);
//printf("B ");
db_rate = computeARR();
if (!m_rate || !db_rate)
{
;//printAList();
}
printf("B %d %.2f %.2f %d %d %.2f %.2f\n",
(int)now, cur_rate, avg_rate, arr_count, alarm, db_rate, m_rate);
}
// EW packet detector
EWdetectorP::EWdetectorP() : EWdetector() {
// Packet stats
cur_p.arrival = cur_p.dept = cur_p.drop = 0;
last_p.arrival = last_p.dept = last_p.drop = 0;
last_p_db.arrival = last_p_db.dept = last_p_db.drop = 0;
}
EWdetectorP::~EWdetectorP(){
// Packet stats
cur_p.arrival = cur_p.dept = cur_p.drop = 0;
last_p.arrival = last_p.dept = last_p.drop = 0;
}
// get the current request rate
double EWdetectorP::getRate() {
return(cur_rate);
}
// update packet stats
void EWdetectorP::updateStats(int flag) {
// Packet arrival
if (flag == PKT_ARRIVAL) {
cur_p.arrival++;
return;
}
// Packet departure
if (flag == PKT_DEPT) {
cur_p.dept++;
return;
}
// Packet dropped
if (flag == PKT_DROP) {
cur_p.drop++;
return;
}
}
// Detect changes in packet rate
void EWdetectorP::detect() {
if (cur_rate > avg_rate * (1 + EW_DETECT_RANGE)) {
if (!alarm) {
setAlarm();
}
} else if (cur_rate < avg_rate * (1 - EW_RELEASE_RANGE)) {
if (alarm)
resetAlarm();
}
}
// Update current measurement
void EWdetectorP::updateCur() {
// measure the accepted packet rate (rather than arrival rate)
cur_rate = (cur_p.dept - last_p.dept) / dt_inv;
// keep the current value
last_p.arrival = cur_p.arrival;
last_p.dept = cur_p.dept;
last_p.drop = cur_p.drop;
}
// Update long term average
/*void EWdetectorP::updateAvg() {
avg_rate = (int)(hlf.alpha * avg_rate + (1 - hlf.alpha) * cur_rate);
}
*/
// Update stats
void EWdetectorP::measure(Packet *) {
// stats on packet departure and drop are collect in policer
}
// Trace packet incoming rate (req rate)
void EWdetectorP::trace() {
printf("P %d %.2f %.2f %d %d %d %d %d %d %d\n",
(int)now, cur_rate, avg_rate, alarm,
cur_p.arrival - last_p_db.arrival,
cur_p.dept - last_p_db.dept,
cur_p.drop - last_p_db.drop,
cur_p.arrival, cur_p.dept, cur_p.drop);
last_p_db.arrival = cur_p.arrival;
last_p_db.dept = cur_p.dept;
last_p_db.drop = cur_p.drop;
}
// EW Policy: deal with queueing stuffs.
//Constructor.
EWPolicy::EWPolicy() : Policy() {
// Initialize detectors
ewB = cewB = NULL;
ewP = cewP = NULL;
// Initialize rate limitor
rlP = rlB = NULL;
max_p = max_b = 0;
alarm = pre_alarm = 0;
change = 0;
}
//Deconstructor.
EWPolicy::~EWPolicy(){
if (ewB)
free(ewB);
if (ewP)
free(ewP);
if (cewB)
free(cewB);
if (cewP)
free(cewP);
}
// Initialize the EW parameters
void EWPolicy::init(int adj, int src, int dst) {
ew_adj = adj;
qsrc = src;
qdst = dst;
}
// EW meter: do nothing.
// measurement is done in policer: we need to know whether the packet is
// dropped or not.
void EWPolicy::applyMeter(policyTableEntry *, Packet *) {
return;
}
// EW Policer
// 1. do measurement: P: both arrival and departure; B: only departure
// 2. make packet drop decisions
int EWPolicy::applyPolicer(policyTableEntry *, policerTableEntry *policer, Packet *pkt) {
//printf("enter applyPolicer ");
// can't count/penalize ACKs:
// with resp: may cause inaccurate calculation with TSW(??)
// with req: may cause resp retransmission.
// just pass them through
hdr_cmn *th = hdr_cmn::access(pkt);
hdr_ip* iph = hdr_ip::access(pkt);
int dst_id = iph->daddr();
int src_id = iph->saddr();
if (th->ptype() == PT_ACK)
return(policer->initialCodePt);
// for other packets...
// Get time
now = Scheduler::instance().clock();
// keep arrival packet stats
if (ewP) {
printf("TRR %d %d %d %d\n", (int)now, src_id, dst_id, th->size());
ewP->updateStats(PKT_ARRIVAL);
}
// For other packets:
if (dropPacket(pkt)) {
// keep packet stats
if (ewP)
ewP->updateStats(PKT_DROP);
//printf("downgrade!\n");
return(policer->downgrade1);
} else {
// keep packet stats
if (ewP)
ewP->updateStats(PKT_DEPT);
// conduct EW detection
if (ewP)
ewP->run(pkt);
if (ewB)
ewB->run(pkt);
//printf("initial!\n");
return(policer->initialCodePt);
}
}
// detect if there is alarm triggered
void EWPolicy::detect(Packet *) {
int alarm_b, alarm_p;
alarm_b = alarm_p = 0;
if (!ewP || ! cewB)
return;
alarm_b = cewB->testAlarm();
alarm_p = ewP->testAlarm();
if (alarm_p == EW_UNCHANGE || alarm_b == EW_UNCHANGE)
return;
// Need to get info from both parts to make a decision
// Reset change flags
ewP->resetChange();
cewB->resetChange();
change = 1;
// keep the old value of alarm
pre_alarm = alarm;
// As long as alarm_b is 0, reset the alarm
if (alarm_b == 0)
alarm = 0;
else if (alarm_p == 0)
alarm = 0;
else
alarm = 1;
printf("ALARM %d %d\n", pre_alarm, alarm);
}
// make packet drop decisions
int EWPolicy::dropPacket(Packet *pkt) {
// 1. arrival stats is measured in meter (departure and drops here)
// 2. No penalty to response traffic!!
// 3. need to protect existing connections
// pass EW if there is any
if (cewB && ewP) {
// protecting existing connections
// drop requests for new connection (SYN packet)
// if (cewB->exFlow(pkt))
hdr_tcp *tcph = hdr_tcp::access(pkt);
// Protecting non-SYN packets: existing connections
if ((tcph->flags() & TH_SYN) == 0) {
//return(0);
}
// Check alarm
detect(pkt);
if (change) {
// for new incoming requests:
// use EW measurement to adjust the rate limit (to current Rq)
// see if the alarm should be reset
if (pre_alarm) {
if (alarm) {
// The rate is not right:
// too low: too few connection admitted;
// too high: congestion in response
// Adjustment is needed.
if (rlP)
rlP->adjustRate();
} else {
// the current rate is ok, award the current choice
if (rlP)
rlP->adjustScore(1);
}
} else {
if (alarm) {
if (rlP) {
// Start a new round
rlP->resetScore();
// Use current request rate as the rate limit
rlP->setRate(ewP->getRate());
}
} else {
// the current rate is ok
}
}
change = 0;
}
}
// Passing rate limitor if there is any
if (rlP) {
// rate limiting
return(rlP->run(1));
};
// through by default
return(0);
}
// Enable detecting on packet incoming rate (req rate)
void EWPolicy::detectPr(int dt_inv, int db_inv) {
ewP = new EWdetectorP;
ewP->setLink(qsrc, qdst);
ewP->setDt(dt_inv);
ewP->setDb(db_inv);
}
void EWPolicy::detectPr(int dt_inv) {
detectPr(dt_inv, dt_inv);
}
void EWPolicy::detectPr() {
detectPr(EW_DT_INV, EW_DB_INV);
}
// Enable detecting and debugging bit rate (eg: resp rate)
void EWPolicy::detectBr(int dt_inv, int db_inv) {
ewB = new EWdetectorB;
ewB->init(ew_adj);
ewB->setLink(qsrc, qdst);
ewB->setDt(dt_inv);
ewB->setDb(db_inv);
}
void EWPolicy::detectBr(int dt_inv) {
detectBr(dt_inv, dt_inv);
}
void EWPolicy::detectBr() {
detectBr(EW_DT_INV, EW_DB_INV);
}
// Rate limitor: packet rate
void EWPolicy::limitPr(double rate) {
//printf("PR %d\n", rate);
rlP = new TBrateLimitor(rate);
}
// Rate limitor: bit rate
void EWPolicy::limitBr(double rate) {
//printf("BR %d\n", rate);
rlB = new TBrateLimitor(rate);
}
// Rate limitor: packet rate
void EWPolicy::limitPr() {
limitPr(DEFAULT_TB_RATE_P);
}
// Rate limitor: bit rate
void EWPolicy::limitBr() {
limitBr(DEFAULT_TB_RATE_B);
}
// couple EW detector
void EWPolicy::coupleEW(EWPolicy *ewpc) {
coupleEW(ewpc, 0);
}
// couple EW detector
void EWPolicy::coupleEW(EWPolicy *ewpc, double rate) {
// couple the EW detector
cewB = ewpc->ewB;
// Setup rate limitor with the default limit
if (rate)
limitPr(rate);
else
limitPr();
}
// End of EWP
|