File: sat-wired.tcl

package info (click to toggle)
ns2 2.35%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 78,864 kB
  • sloc: cpp: 172,923; tcl: 107,130; perl: 6,391; sh: 6,143; ansic: 5,846; makefile: 818; awk: 525; csh: 355
file content (229 lines) | stat: -rw-r--r-- 9,011 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#
# Contributed by Tom Henderson, November 2001 
#
# Extension of the sat-mixed.tcl script to support integration of
# non-satellite nodes (wired and satellite nodes).  See the documentation
# for usage instructions.  
# 
# $Header: /cvsroot/nsnam/ns-2/tcl/ex/sat-wired.tcl,v 1.1 2001/11/06 06:13:24 tomh Exp $

global ns
set ns [new Simulator]
# Note:  Even though "Static" is normally reserved for static
#        topologies, the satellite code will trigger a recalculation
#        of the routing tables whenever the topology changes.
#	 Therefore, it is not so much "static" as "omniscient", in that
#        topology changes are known instantly throughout the topology.
#        See documentation for discussion of dynamic routing protocols.
$ns rtproto Static

###########################################################################
# Global configuration parameters                                         #
###########################################################################

HandoffManager/Term set elevation_mask_ 8.2
HandoffManager/Term set term_handoff_int_ 10
HandoffManager set handoff_randomization_ false

global opt
set opt(chan)           Channel/Sat
set opt(bw_down)	1.5Mb; # Downlink bandwidth (satellite to ground)
set opt(bw_up)		1.5Mb; # Uplink bandwidth
set opt(bw_isl)		25Mb
set opt(phy)            Phy/Sat
set opt(mac)            Mac/Sat
set opt(ifq)            Queue/DropTail
set opt(qlim)		50
set opt(ll)             LL/Sat
set opt(wiredRouting)	ON

set opt(alt)		780; # Polar satellite altitude (Iridium)
set opt(inc)		90; # Orbit inclination w.r.t. equator

# IMPORTANT This tracing enabling (trace-all) must precede link and node 
#           creation.  Then following all node, link, and error model
#           creation, invoke "$ns trace-all-satlinks $outfile" 
set outfile [open out.tr w]
$ns trace-all $outfile

###########################################################################
# Set up satellite and terrestrial nodes                                  #
###########################################################################

# Let's first create a single orbital plane of Iridium-like satellites
# 11 satellites in a plane

# Set up the node configuration

$ns node-config -satNodeType polar \
		-llType $opt(ll) \
		-ifqType $opt(ifq) \
		-ifqLen $opt(qlim) \
		-macType $opt(mac) \
		-phyType $opt(phy) \
		-channelType $opt(chan) \
		-downlinkBW $opt(bw_down) \
		-wiredRouting $opt(wiredRouting)

# Create nodes n0 through n10
set n0 [$ns node]; set n1 [$ns node]; set n2 [$ns node]; set n3 [$ns node] 
set n4 [$ns node]; set n5 [$ns node]; set n6 [$ns node]; set n7 [$ns node] 
set n8 [$ns node]; set n9 [$ns node]; set n10 [$ns node]

# Now provide position information for each of these nodes
# Position arguments are: altitude, incl., longitude, "alpha", and plane
# See documentation for definition of these fields
set plane 1
$n0 set-position $opt(alt) $opt(inc) 0 0 $plane 
$n1 set-position $opt(alt) $opt(inc) 0 32.73 $plane
$n2 set-position $opt(alt) $opt(inc) 0 65.45 $plane
$n3 set-position $opt(alt) $opt(inc) 0 98.18 $plane
$n4 set-position $opt(alt) $opt(inc) 0 130.91 $plane
$n5 set-position $opt(alt) $opt(inc) 0 163.64 $plane
$n6 set-position $opt(alt) $opt(inc) 0 196.36 $plane
$n7 set-position $opt(alt) $opt(inc) 0 229.09 $plane
$n8 set-position $opt(alt) $opt(inc) 0 261.82 $plane
$n9 set-position $opt(alt) $opt(inc) 0 294.55 $plane
$n10 set-position $opt(alt) $opt(inc) 0 327.27 $plane

# This next step is specific to polar satellites
# By setting the next_ variable on polar sats; handoffs can be optimized  
# This step must follow all polar node creation
$n0 set_next $n10; $n1 set_next $n0; $n2 set_next $n1; $n3 set_next $n2
$n4 set_next $n3; $n5 set_next $n4; $n6 set_next $n5; $n7 set_next $n6
$n8 set_next $n7; $n9 set_next $n8; $n10 set_next $n9

# GEO satellite:  above North America-- lets put it at 100 deg. W
$ns node-config -satNodeType geo
set n11 [$ns node]
$n11 set-position -100

# Terminals:  Let's put two within the US, two around the prime meridian
$ns node-config -satNodeType terminal 
set n100 [$ns node]; set n101 [$ns node]
$n100 set-position 37.9 -122.3; # Berkeley
$n101 set-position 42.3 -71.1; # Boston
set n200 [$ns node]; set n201 [$ns node]
$n200 set-position 0 10 
$n201 set-position 0 -10

###########################################################################
# Set up links                                                            #
###########################################################################

# Add any necessary ISLs or GSLs
# GSLs to the geo satellite:
$n100 add-gsl geo $opt(ll) $opt(ifq) $opt(qlim) $opt(mac) $opt(bw_up) \
  $opt(phy) [$n11 set downlink_] [$n11 set uplink_]
$n101 add-gsl geo $opt(ll) $opt(ifq) $opt(qlim) $opt(mac) $opt(bw_up) \
  $opt(phy) [$n11 set downlink_] [$n11 set uplink_]
# Attach n200 and n201 initially to a satellite on other side of the earth
# (handoff will automatically occur to fix this at the start of simulation)
$n200 add-gsl polar $opt(ll) $opt(ifq) $opt(qlim) $opt(mac) $opt(bw_up) \
  $opt(phy) [$n5 set downlink_] [$n5 set uplink_]
$n201 add-gsl polar $opt(ll) $opt(ifq) $opt(qlim) $opt(mac) $opt(bw_up) \
  $opt(phy) [$n5 set downlink_] [$n5 set uplink_]

# ISLs for the polar satellites
$ns add-isl intraplane $n0 $n1 $opt(bw_isl) $opt(ifq) $opt(qlim)
$ns add-isl intraplane $n1 $n2 $opt(bw_isl) $opt(ifq) $opt(qlim)
$ns add-isl intraplane $n2 $n3 $opt(bw_isl) $opt(ifq) $opt(qlim)
$ns add-isl intraplane $n3 $n4 $opt(bw_isl) $opt(ifq) $opt(qlim)
$ns add-isl intraplane $n4 $n5 $opt(bw_isl) $opt(ifq) $opt(qlim)
$ns add-isl intraplane $n5 $n6 $opt(bw_isl) $opt(ifq) $opt(qlim)
$ns add-isl intraplane $n6 $n7 $opt(bw_isl) $opt(ifq) $opt(qlim)
$ns add-isl intraplane $n7 $n8 $opt(bw_isl) $opt(ifq) $opt(qlim)
$ns add-isl intraplane $n8 $n9 $opt(bw_isl) $opt(ifq) $opt(qlim)
$ns add-isl intraplane $n9 $n10 $opt(bw_isl) $opt(ifq) $opt(qlim)
$ns add-isl intraplane $n10 $n0 $opt(bw_isl) $opt(ifq) $opt(qlim)

###########################################################################
# Set up wired nodes                                                      #
###########################################################################
# Connect $n300 <-> $n301 <-> $n302 <-> $n100 <-> $n11 <-> $n101 <-> $n303
#                      ^                   ^
#                      |___________________|    
#
# Packets from n303 to n300 should bypass n302 (node #18 in the trace)
# (i.e., these packets should take the following path:  19,13,11,12,17,16)
#
$ns unset satNodeType_
set n300 [$ns node]; # node 16 in trace
set n301 [$ns node]; # node 17 in trace
set n302 [$ns node]; # node 18 in trace
set n303 [$ns node]; # node 19 in trace
$ns duplex-link $n300 $n301 5Mb 2ms DropTail; # 16 <-> 17
$ns duplex-link $n301 $n302 5Mb 2ms DropTail; # 17 <-> 18
$ns duplex-link $n302 $n100 5Mb 2ms DropTail; # 18 <-> 11
$ns duplex-link $n303 $n101 5Mb 2ms DropTail; # 19 <-> 13
$ns duplex-link $n301 $n100 5Mb 2ms DropTail; # 17 <-> 11


###########################################################################
# Tracing                                                                 #
###########################################################################
$ns trace-all-satlinks $outfile

###########################################################################
# Attach agents                                                           #
###########################################################################

set udp0 [new Agent/UDP]
$ns attach-agent $n100 $udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set interval_ 60.01

set udp1 [new Agent/UDP]
$ns attach-agent $n200 $udp1
$udp1 set class_ 1
set cbr1 [new Application/Traffic/CBR]
$cbr1 attach-agent $udp1
$cbr1 set interval_ 90.5

set null0 [new Agent/Null]
$ns attach-agent $n101 $null0
set null1 [new Agent/Null]
$ns attach-agent $n201 $null1

$ns connect $udp0 $null0
$ns connect $udp1 $null1

###########################################################################
# Set up connection between wired nodes                                   #
###########################################################################
set udp2 [new Agent/UDP]
$ns attach-agent $n303 $udp2
set cbr2 [new Application/Traffic/CBR]
$cbr2 attach-agent $udp2
$cbr2 set interval_ 300
set null2 [new Agent/Null]
$ns attach-agent $n300 $null2

$ns connect $udp2 $null2
$ns at 10.0 "$cbr2 start"

###########################################################################
# Satellite routing                                                       #
###########################################################################

set satrouteobject_ [new SatRouteObject]
$satrouteobject_ compute_routes
#$satrouteobject_ set wiredRouting_ true

$ns at 1.0 "$cbr0 start"
$ns at 305.0 "$cbr1 start"
#$ns at 0.9 "$cbr1 start"

$ns at 9000.0 "finish"

proc finish {} {
	global ns outfile 
	$ns flush-trace
	close $outfile

	exit 0
}

$ns run