1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
%
% personal commentary:
% DRAFT DRAFT DRAFT
% - KFALL
% RNG section reviewed and revised 11-Sep-98, johnh.
%
% RNG section revised 28-Aug-02 by Tim Buchheim to include material
% from Michelle Weigle which describes the new implementation of RNG
\chapter{Mathematical Support}
\label{chap:math}
The simulator includes a small collection of mathematical
functions used to implement random variate generation and integration.
This area of the simulator is currently undergoing some
changes.
The procedures and functions described in this chapter can be found in
\nsf{tools/rng.\{cc, h\}},
\nsf{tools/random.\{cc, h\}},
\nsf{tools/ranvar.\{cc, h\}},
\nsf{tools/pareto.\{cc, h\}},
\nsf{tools/expoo.\{cc, h\}},
\nsf{tools/integrator.\{cc, h\}}, and
\nsf{tcl/lib/ns-random.tcl}.
\section{Random Number Generation}
\label{sec:random}
The RNG class contains an implementation of the combined multiple
recursive generator MRG32k3a proposed by L'Ecuyer
\cite{lecuyer99}. The C++ code was adapted from \cite{lecuyer01}.
This replaces the previous implementation of \code{RNG}, which used
the minimal standard multiplicative linear congruential generator of
Park and Miller~\cite{Park88:Random}. The newer (MRG32k3a) \code{RNG} is
used in ns versions 2.1b9 and later.
The MRG32k3a generator provides $1.8$x$10^{19}$ independent
streams of random numbers, each of which consists of
$2.3$x$10^{15}$ substreams. Each substream has a period
(\emph{i.e.}, the number of random numbers before overlap) of
$7.6$x$10^{22}$. The period of the entire generator is
$3.1$x$10^{57}$. Figure \ref{streams} provides a graphical idea of
how the streams and substreams fit together.
\begin{figure}[ht]
\centering
\includegraphics[angle=270,width=6 in]{rng-streams.eps}
\caption{Overall arrangement of streams and substreams.
\cite{lecuyer01}} \label{streams}
\end{figure}
A default RNG ({\tt defaultRNG}), created at simulator initialization
time, is provided. If multiple random variables are used in a
simulation, each random variable should use a separate RNG object.
When a new RNG object is created, it is automatically seeded to
the beginning of the next independent stream of random numbers.
Used in this manner, the implementation allows for a maximum of
$1.8$x$10^{19}$ random variables.
Often, multiple independent replications of a simulation are
needed (\emph{i.e.}, to perform statistical analysis given
multiple runs with fixed parameters). For each replication, a
different substream should be used to ensure that the random
number streams are independent. (This process is given as an OTcl
example later.) This implementation allows for a maximum of
$2.3$x$10^{15}$ independent replications. Each random variable in
a single replication can produce up to $7.6$x$10^{22}$ random
numbers before overlapping.
{\bf Note:} Only the most common functions are described here. For
more information, see \cite{lecuyer01} and the source code found
in {\tt tools/rng.h} and {\tt tools/rng.cc}. For a comparison of this RNG to
the more common LCG16807 RNG (and why LCG16807 is not a good RNG),
see \cite{lecuyer-wsc}.
\subsection{Seeding The RNG}
Due to the nature of the RNG and its implementation, it is not
necessary to set a seed (the default is 12345). If you wish to
change the seed, functions are available. You should only set the
seed of the default RNG. Any other RNGs you create are
automatically seeded such that they produce independent streams.
The range of valid seeds is 1 to {\tt MAXINT}.
To get non-deterministic behavior, set the seed of the default RNG
to 0. This will set the seed based on the current time of day and
a counter. {\bf This method should not be used to set seeds for
independent replications.} There is no guarantee that the streams
produced by two random seeds will not overlap. The only way to
guarantee that two streams do not overlap is to use the substream
capability provided by the RNG implementation.
\subsubsection{Example}
\begin{verbatim}
# Usage: ns rng-test.tcl [replication number]
if {$argc > 1} {
puts "Usage: ns rng-test.tcl \[replication number\]"
exit
}
set run 1
if {$argc == 1} {
set run [lindex $argv 0]
}
if {$run < 1} {
set run 1
}
# seed the default RNG
global defaultRNG
$defaultRNG seed 9999
# create the RNGs and set them to the correct substream
set arrivalRNG [new RNG]
set sizeRNG [new RNG]
for {set j 1} {$j < $run} {incr j} {
$arrivalRNG next-substream
$sizeRNG next-substream
}
# arrival_ is a exponential random variable describing the time
# between consecutive packet arrivals
set arrival_ [new RandomVariable/Exponential]
$arrival_ set avg_ 5
$arrival_ use-rng $arrivalRNG
# size_ is a uniform random variable describing packet sizes
set size_ [new RandomVariable/Uniform]
$size_ set min_ 100
$size_ set max_ 5000
$size_ use-rng $sizeRNG
# print the first 5 arrival times and sizes
for {set j 0} {$j < 5} {incr j} {
puts [format "%-8.3f %-4d" [$arrival_ value] \
[expr round([$size_ value])]]
}
\end{verbatim}
\subsubsection{Output}
\begin{verbatim}
% ns rng-test.tcl 1
6.358 4783
5.828 1732
1.469 2188
0.732 3076
4.002 626
% ns rng-test.tcl 5
0.691 1187
0.204 4924
8.849 857
2.111 4505
3.200 1143
\end{verbatim}
\subsection{OTcl Support}
\subsubsection{Commands}
The following commands on the RNG class can be accessed from OTcl
and are found in {\tt tools/rng.cc}:
\begin{description}
\item[{\tt seed $n$}] -- seed the RNG to $n$, if $n == 0$, the seed
is set according to the current time and a counter
\item[{\tt next-random}] -- return the next random number
\item[{\tt seed}] -- return the current value of the seed
\item[{\tt next-substream}] -- advance to the next substream
\item[{\tt reset-start-substream}] -- reset the stream to the beginning
of the current substream
\item[{\tt normal $avg$ $std$}] -- return a number sampled from a normal
distribution with the given average and standard deviation
\item[{\tt lognormal $avg$ $std$}] -- return a number sampled from a
lognormal distribution with the given average and standard deviation
\end{description}
The following commands on the RNG class can be accessed from OTcl
and are found in {\tt tcl/lib/ns-random.tcl}:
\begin{description}
\item[{\tt exponential $mu$}] -- return a number sampled from an
exponential distribution with mean $mu$
\item[{\tt uniform $min$ $max$}] -- return an integer sampled from a
uniform distribution on [$min$, $max$]
\item[{\tt integer $k$}] -- return an integer sampled from a uniform
distribution on [0, $k$-1]
\end{description}
\subsubsection{Example}
\begin{verbatim}
# Usage: ns rng-test2.tcl [replication number]
if {$argc > 1} {
puts "Usage: ns rng-test2.tcl \[replication number\]"
exit
}
set run 1
if {$argc == 1} {
set run [lindex $argv 0]
}
if {$run < 1} {
set run 1
}
# the default RNG is seeded with 12345
# create the RNGs and set them to the correct substream
set arrivalRNG [new RNG]
set sizeRNG [new RNG]
for {set j 1} {$j < $run} {incr j} {
$arrivalRNG next-substream
$sizeRNG next-substream
}
# print the first 5 arrival times and sizes
for {set j 0} {$j < 5} {incr j} {
puts [format "%-8.3f %-4d" [$arrivalRNG lognormal 5 0.1] \
[expr round([$sizeRNG normal 5000 100])]]
}
\end{verbatim}
\subsubsection{Output}
\begin{verbatim}
% ns rng-test2.tcl 1
142.776 5038
174.365 5024
147.160 4984
169.693 4981
187.972 4982
% ns rng-test2.tcl 5
160.993 4907
119.895 4956
149.468 5131
137.678 4985
158.936 4871
\end{verbatim}
\subsection{C++ Support}
\subsubsection{Member Functions}
The random number generator is implemented by the RNG class and is
defined in {\tt tools/rng.h}.
{\bf Note:} The Random class in {\tt tools/random.h} is an older
interface to the standard random number stream.
Member functions provide the following operations:
\begin{description}
\item[{\tt void set\_seed (long seed)}] -- set the seed of the RNG, if
$seed == 0$, the seed is set according to the current time and a
counter
\item[{\tt long seed (void)}] -- return the current seed
\item[{\tt long next (void)}] -- return the next random number as an
integer on [0, {\tt MAXINT}]
\item[{\tt double next\_double (void)}] -- return the next random number
on [0, 1]
\item[{\tt void reset\_start\_substream (void)}] -- reset the stream
to the beginning of the current substream
\item[{\tt void reset\_next\_substream (void)}] -- advance to the next
substream
\item[{\tt int uniform (int k)}] -- return an integer sampled from a
uniform distribution on [0, k-1]
\item[{\tt double uniform (double r)}] -- return a number sampled from a
uniform distribution on [0, r]
\item[{\tt double uniform (double a, double b)}] -- return a number
sampled from a uniform distribution on [a, b]
\item[{\tt double exponential (void)}] -- return a number sampled from an
exponential distribution with mean 1.0
\item[{\tt double exponential (double k)}] -- return a number sampled from
an exponential distribution with mean k
\item[{\tt double normal (double avg, double std)}] -- return a number
sampled from a normal distribution with the given average and standard
deviation
\item[{\tt double lognormal (double avg, double std)}] -- return a number
sampled from a lognormal distribution with the given average and
standard deviation
\end{description}
\subsubsection{Example}
\begin{verbatim}
/* create new RNGs */
RNG arrival (23456);
RNG size;
/* set the RNGs to the appropriate substream */
for (int i = 1; i < 3; i++) {
arrival.reset_next_substream();
size.reset_next_substream();
}
/* print the first 5 arrival times and sizes */
for (int j = 0; j < 5; j++) {
printf ("%-8.3f %-4d\n", arrival.lognormal(5, 0.1),
int(size.normal(500, 10)));
}
\end{verbatim}
\subsubsection{Output}
\begin{verbatim}
161.826 506
160.591 503
157.145 509
137.715 507
118.573 496
\end{verbatim}
\section{Random Variables}
\label{sec:ranvar}
The \clsref{RandomVariable}{../ns-2/ranvar.h}
provides a thin layer of functionality on top
of the base random number generator and the default random number stream.
It is defined in \nsf{ranvar.h}:
\begin{program}
class RandomVariable : public TclObject \{
public:
virtual double value() = 0;
int command(int argc, const char*const* argv);
RandomVariable();
protected:
RNG* rng_;
\};
\end{program}
Classes derived from this abstract class implement specific
distributions. Each distribution is parameterized with the values of
appropriate parameters. The value method is used to return a value
from the distribution.
The currently defined distributions, and their associated parameters are:
\begin{tabular}{rl}
\clsref{UniformRandomVariable}{tools/ranvar.h} & \code{min_}, \code{max_} \\
\clsref{ExponentialRandomVariable}{tools/ranvar.h} & \code{avg_} \\
\clsref{ParetoRandomVariable}{tools/ranvar.h} & \code{avg_}, \code{shape_}\\
\clsref{ParetoIIRandomVariable}{tools/ranvar.h} & \code{avg_}, \code{shape_}\\
\clsref{ConstantRandomVariable}{tools/ranvar.h} & \code{val_}\\
\clsref{HyperExponentialRandomVariable}{tools/ranvar.h} & \code{avg_}, \code{cov_}\\
\clsref{NormalRandomVariable}{tools/ranvar.h} & \code{avg_}, \code{std_}\\
\clsref{LogNormalRandomVariable}{tools/ranvar.h} & \code{avg_}, \code{std_}\\
\end{tabular}
The RandomVariable class is available in OTcl. For instance, to
create a random variable that generates number uniformly on [10, 20]:
\begin{program}
set u [new RandomVariable/Uniform]
$u set min_ 10
$u set max_ 20
$u value
\end{program}
By default, RandomVariable objects use the default random number
generator described in the previous section. The use-rng method can
be used to associate a RandomVariable with a non-default RNG:
\begin{program}
set rng [new RNG]
$rng seed 0
set e [new RandomVariable/Exponential]
$e use-rng $rng
\end{program}
\section{Integrals}
\label{sec:integral}
The \clsref{Integrator}{../ns-2/integrator.h}
supports the approximation of (continuous) integration by (discrete)
sums; it is defined in \nsf{integrator.h} as
\begin{program}
{\rm From integrator.h:}
class Integrator : public TclObject \{
public:
Integrator();
void set(double x, double y);
void newPoint(double x, double y);
int command(int argc, const char*const* argv);
protected:
double lastx_;
double lasty_;
double sum_;
\};
{\rm From integrator.cc:}
Integrator::Integrator() : lastx_(0.), lasty_(0.), sum_(0.)
\{
bind("lastx_", &lastx_);
bind("lasty_", &lasty_);
bind("sum_", &sum_);
\}
void Integrator::set(double x, double y)
\{
lastx_ = x;
lasty_ = y;
sum_ = 0.;
\}
void Integrator::newPoint(double x, double y)
\{
sum_ += (x - lastx_) * lasty_;
lastx_ = x;
lasty_ = y;
\}
int Integrator::command(int argc, const char*const* argv)
\{
if (argc == 4) \{
if (strcmp(argv[1], "newpoint") == 0) \{
double x = atof(argv[2]);
double y = atof(argv[3]);
newPoint(x, y);
return (TCL_OK);
\}
\}
return (TclObject::command(argc, argv));
\}
\end{program}
This class provides a base class used by other classes such
as \code{QueueMonitor} that keep running sums.
Each new element of the running sum is added by
the \fcn[x, y]{newPoint} function.
After the $k$th execution of \code{newPoint}, the running sum
is equal to $\sum_{i=1}^{k}y_{i-1}(x_i - x_{i-1})$ where
$x_0 = y_0 = 0$ unless \code{lastx\_}, \code{lasty\_}, or \code{sum\_}
are reset via OTcl.
Note that a new point in the sum can be added either by the
C++ member \code{newPoint} or the OTcl member \code{newpoint}.
The use of integrals to compute certain types of averages
(e.g. mean queue lengths) is given in (pp. 429--430, \cite{Jain91:Art}).
\section{\code{ns-random}}
{\bf \code{ns-random} is an obsolete way to generate random numbers.
This information is provided only for backward compatibility.}
\code{ns-random} is implemented in \nsf{misc.\{cc,h\}}.
When called with no argument, it generates a random number with
uniform distribution between 0 and \code{MAXINT}.
When an integer argument is provided, it seeds the random generater
with the given number.
A special case is when \code{ns-random 0} is called, it randomly seeds
the generator based on current time.
This feature is useful to produce non-deterministic results across
runs.
\section{Some mathematical-support related objects}
\label{sec:mathobjects}
\textsc{Integrator objects}
Integrator Objects support the approximate computation of continuous
integrals using discrete sums. The running sum(integral) is computed as:
\code{sum_ += [lasty_ * (x lastx_)]} where (x, y) is the last element
entered and
(lastx\_, lasty\_) was the element previous to that added to the sum.
lastx\_ and lasty\_ are updated as new elements are added. The first
sample point defaults to (0,0) that can be changed by changing the values
of (lastx\_,lasty\_).
\code{$integrator newpoint <x> <y>}\\ %$
Add the point (x,y) to the sum. Note that it does not make sense for x to
be less than lastx\_.
There are no configuration parameters specific to this object. \\
State Variables are:
\begin{description}
\item[lastx\_]
x-coordinate of the last sample point.
\item[lasty\_]
y-coordinate of the last sample point.
\item[sum\_] Running sum (i.e. the integral) of the sample points.
\end{description}
\textsc{Samples Object}
Samples Objects support the computation of mean and variance statistics
for a given sample.
\code{$samples mean}\\
Returns mean of the sample.
\code{$samples variance}\\
Returns variance of the sample.
\code{$samples cnt}\\
Returns a count of the sample points considered.
\code{$samples reset }\\
Reset the Samples object to monitor a fresh set of samples.
There are no configuration parameters or state variables specific to this
object.
\section{Commands at a glance}
\label{sec:mathcommand}
Following is a list of mathematical support related commands commonly used
in simulation scripts:
\begin{flushleft}
\code{set rng [new RNG]}\\
This creates a new random number generator.
\code{$rng seed <0 or n>}\\
This command seeds the RNG. If 0 is specified, the RNG is seeded
heuristically. Otherwise the RNG is seeded with the value <n>.
\code{$rng next-random}\\
This returns the next random number from RNG.
\code{$rng uniform <a> <b>}\\
This returns a number uniformly distributed on <a> and <b>.
\code{$rng integer <k>}\\
This returns an integer uniformly distributed on 0 and k-1.
\code{$rng exponential}\\
This returns a number that has exponential distribution with average 1.
\code{set rv [new Randomvariable/<type of random-variable>]}\\
This creates an instance of a random variable object that generates random
variables with specific distribution. The different types of random
variables derived from the base class are:\\
RandomVariable/Uniform, RandomVariable/Exponential, RandomVariable/Pareto,
RandomVariable/Constant, RandomVariable/HyperExponential.
Each of these distribution types are parameterized with values of
appropriate parameters. For details see section \ref{sec:ranvar} of this
chapter.
\code{$rv use-rng <rng>}\\
This method is used to associated a random variable object with a
non-default RNG. Otherwise by default, the random variable object is
associated with the default random number generator.
\end{flushleft}
% LocalWords: ranvar pareto expoo tcl lib ns cc integrator RNG rng TclObject
% LocalWords: enum RNGSources PREDEF int MAXINT rX edv prob edp setbit iph ECN
% LocalWords: ip ecn eed OURCE OTcl RandomVariable argc const argv min avg val
% LocalWords: UniformRandomVariable ExponentialRandomVariable cov newPoint pp
% LocalWords: ParetoRandomVariable ConstantRandomVariable lastx lasty strcmp
% LocalWords: HyperExponentialRandomVariable newpoint atof QueueMonitor
|