1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */
/*
* tcp-fs: TCP with "fast start", a procedure for avoiding the penalty of
* slow start when a connection resumes after a pause. The connection tries
* to reuse values old values of variables such as cwnd_, ssthresh_, srtt_,
* etc., with suitable modifications. The same procedure as used in tcp-asym
* is used to clock out packets until ack clocking kicks in. A connection
* doing fast start protects itself and other connections in the network against
* the adverse consequences of stale information by (a) marking all packets sent
* during fast start as low priority for the purposes of a priority-drop router,
* and (b) quickly detecting the loss of several fast start packets and falling
* back to a regular slow start, almost as if a fast start had never been attempted
* in the first place.
*
* Contributed by Venkat Padmanabhan (padmanab@cs.berkeley.edu),
* Daedalus Research Group, U.C.Berkeley
*/
#include "tcp-fs.h"
void ResetTimer::expire(Event *) {
a_->timeout(TCP_TIMER_RESET);
}
static class TcpFsClass : public TclClass {
public:
TcpFsClass() : TclClass("Agent/TCP/FS") {}
TclObject* create(int, const char*const*) {
return (new TcpFsAgent());
}
} class_tcpfs;
static class RenoTcpFsClass : public TclClass {
public:
RenoTcpFsClass() : TclClass("Agent/TCP/Reno/FS") {}
TclObject* create(int, const char*const*) {
return (new RenoTcpFsAgent());
}
} class_renotcpfs;
static class NewRenoTcpFsClass : public TclClass {
public:
NewRenoTcpFsClass() : TclClass("Agent/TCP/Newreno/FS") {}
TclObject* create(int, const char*const*) {
return (new NewRenoTcpFsAgent());
}
} class_newrenotcpfs;
#ifdef USE_FACK
static class FackTcpFsClass : public TclClass {
public:
FackTcpFsClass() : TclClass("Agent/TCP/Fack/FS") {}
TclObject* create(int, const char*const*) {
return (new FackTcpFsAgent());
}
} class_facktcpfs;
#endif
/* mark packets sent as part of fast start */
void
TcpFsAgent::output_helper(Packet *pkt)
{
hdr_tcp *tcph = hdr_tcp::access(pkt);
double now = Scheduler::instance().clock();
double idle_time = now - last_recv_time_;
double timeout = ((t_srtt_ >> 3) + t_rttvar_) * tcp_tick_ ;
maxseq_ = max(int(maxseq_), int(highest_ack_));
/*
* if the connection has been idle (with no outstanding data) for long
* enough, we enter the fast start phase. We compute the start and end
* sequence numbers that define the fast start phase. Note that the
* first packet to be sent next is not included because it would have
* been sent even with regular slow start.
*/
if ((idle_time > timeout) && (maxseq_ == highest_ack_) && (cwnd_ > 1)){
/*
* We set cwnd_ to a "safe" value: cwnd_/2 if the connection
* was in slow start before the start of the idle period and
* cwnd_-1 if it was in congestion avoidance phase.
*/
/* if (cwnd_ < ssthresh_+1)*/
if (cwnd_ < ssthresh_)
cwnd_ = int(cwnd_/2);
else
cwnd_ -= 1;
/* set the start and end seq. nos. for the fast start phase */
fs_startseq_ = highest_ack_+2;
fs_endseq_ = highest_ack_+window()+1;
fs_mode_ = 1;
}
/* initially set fs_ flag to 0 */
hdr_flags::access(pkt)->fs_ = 0;
/* check if packet belongs to the fast start phase. */
if (tcph->seqno() >= fs_startseq_ && tcph->seqno() < fs_endseq_ && fs_mode_) {
/* if not a retransmission, mark the packet */
if (tcph->seqno() > maxseq_) {
hdr_flags::access(pkt)->fs_ = 1;
}
}
}
/* update last_output_time_ */
void
TcpFsAgent::recv_helper(Packet *)
{
double now = Scheduler::instance().clock();
last_recv_time_ = now;
}
/* schedule the next burst of data (of size at most maxburst) */
void
TcpFsAgent::send_helper(int maxburst)
{
/*
* If there is still data to be sent and there is space in the
* window, set a timer to schedule the next burst. Note that
* we wouldn't get here if TCP_TIMER_BURSTSEND were pending,
* so we do not need an explicit check here.
*/
if (t_seqno_ <= highest_ack_ + window() && t_seqno_ < curseq_) {
burstsnd_timer_.resched(t_exact_srtt_*maxburst/window());
}
}
#ifdef USE_FACK
/* schedule the next burst of data (of size at most maxburst) */
void
FackTcpFsAgent::send_helper(int maxburst)
{
/*
* If there is still data to be sent and there is space in the
* window, set a timer to schedule the next burst. Note that
* we wouldn't get here if TCP_TIMER_BURSTSEND were pending,
* so we do not need an explicit check here.
*/
if ((t_seqno_ <= fack_ + window() - retran_data_) && (!timeout_) && (t_seqno_ < curseq_)) {
burstsnd_timer_.resched(t_exact_srtt_*maxburst/window());
}
}
#endif
/* do appropriate processing depending on the length of idle time */
void
TcpFsAgent::send_idle_helper()
{
// Commented out because they are not used
// XXX What processing belong here??? - haoboy
//double now = Scheduler::instance().clock();
//double idle_time = now - last_recv_time_;
}
/* update srtt estimate */
void
TcpFsAgent::recv_newack_helper(Packet *pkt)
{
hdr_tcp *tcph = hdr_tcp::access(pkt);
double tao = Scheduler::instance().clock() - tcph->ts_echo();
double g = 1/8; /* gain used for smoothing rtt */
double h = 1/4; /* gain used for smoothing rttvar */
double delta;
int ackcount, i;
/*
* If we are counting the actual amount of data acked, ackcount >= 1.
* Otherwise, ackcount=1 just as in standard TCP.
*/
if (count_bytes_acked_)
ackcount = tcph->seqno() - last_ack_;
else
ackcount = 1;
newack(pkt);
maxseq_ = max(int(maxseq_), int(highest_ack_));
if (t_exact_srtt_ != 0) {
delta = tao - t_exact_srtt_;
if (delta < 0)
delta = -delta;
/* update the fine-grained estimate of the smoothed RTT */
if (t_exact_srtt_ != 0)
t_exact_srtt_ = g*tao + (1-g)*t_exact_srtt_;
else
t_exact_srtt_ = tao;
/* update the fine-grained estimate of mean deviation in RTT */
delta -= t_exact_rttvar_;
t_exact_rttvar_ += h*delta;
}
else {
t_exact_srtt_ = tao;
t_exact_rttvar_ = tao/2;
}
/* grow cwnd. ackcount > 1 indicates that actual ack counting is enabled */
for (i=0; i<ackcount; i++)
opencwnd();
/* check if we are out of fast start mode */
if (fs_mode_ && (highest_ack_ >= fs_endseq_-1))
fs_mode_ = 0;
/* if the connection is done, call finish() */
if ((highest_ack_ >= curseq_-1) && !closed_) {
closed_ = 1;
finish();
}
}
void
NewRenoTcpFsAgent::partialnewack_helper(Packet* pkt)
{
partialnewack(pkt);
/* Do this because we may have retracted maxseq_ */
maxseq_ = max(int(maxseq_), int(highest_ack_));
if (fs_mode_ && fast_loss_recov_) {
/*
* A partial new ack implies that more than one packet has been lost
* in the window. Rather than recover one loss per RTT, we get out of
* fast start mode and do a slow start (no rtx timeout, though).
*/
timeout_nonrtx(TCP_TIMER_RESET);
}
else {
output(last_ack_ + 1, 0);
}
}
void
TcpFsAgent::set_rtx_timer()
{
if (rtx_timer_.status() == TIMER_PENDING)
rtx_timer_.cancel();
if (reset_timer_.status() == TIMER_PENDING)
reset_timer_.cancel();
if (fs_mode_ && fast_loss_recov_ && fast_reset_timer_)
reset_timer_.resched(rtt_exact_timeout());
else if (fs_mode_ && fast_loss_recov_)
reset_timer_.resched(rtt_timeout());
else
rtx_timer_.resched(rtt_timeout());
}
void
TcpFsAgent::cancel_rtx_timer()
{
rtx_timer_.force_cancel();
reset_timer_.force_cancel();
}
void
TcpFsAgent::cancel_timers()
{
rtx_timer_.force_cancel();
reset_timer_.force_cancel();
burstsnd_timer_.force_cancel();
delsnd_timer_.force_cancel();
}
void
TcpFsAgent::timeout_nonrtx(int tno)
{
if (tno == TCP_TIMER_RESET) {
fs_mode_ = 0; /* out of fast start mode */
dupacks_ = 0; /* just to be safe */
if (highest_ack_ == maxseq_ && !slow_start_restart_) {
/*
* TCP option:
* If no outstanding data, then don't do anything.
*/
return;
};
/*
* If the pkt sent just before the fast start phase has not
* gotten through, treat this as a regular rtx timeout.
*/
if (highest_ack_ < fs_startseq_-1) {
maxseq_ = fs_startseq_ - 1;
recover_ = maxseq_;
timeout(TCP_TIMER_RTX);
}
/* otherwise decrease window size to 1 but don't back off rtx timer */
else {
if (highest_ack_ > last_ack_)
last_ack_ = highest_ack_;
maxseq_ = last_ack_;
recover_ = maxseq_;
last_cwnd_action_ = CWND_ACTION_TIMEOUT;
slowdown(CLOSE_CWND_INIT);
timeout_nonrtx_helper(tno);
}
}
else {
TcpAgent::timeout_nonrtx(tno);
}
}
void
TcpFsAgent::timeout_nonrtx_helper(int tno)
{
if (tno == TCP_TIMER_RESET) {
reset_rtx_timer(0,0);
send_much(0, TCP_REASON_TIMEOUT, maxburst_);
}
}
void
RenoTcpFsAgent::timeout_nonrtx_helper(int tno)
{
if (tno == TCP_TIMER_RESET) {
dupwnd_ = 0;
dupacks_ = 0;
TcpFsAgent::timeout_nonrtx_helper(tno);
}
}
void
NewRenoTcpFsAgent::timeout_nonrtx_helper(int tno)
{
if (tno == TCP_TIMER_RESET) {
dupwnd_ = 0;
dupacks_ = 0;
TcpFsAgent::timeout_nonrtx_helper(tno);
}
}
#ifdef USE_FACK
void
FackTcpFsAgent::timeout_nonrtx_helper(int tno)
{
if (tno == TCP_TIMER_RESET) {
timeout_ = FALSE;
retran_data_ = 0;
fack_ = last_ack_;
t_seqno_ = last_ack_ + 1;
reset_rtx_timer(TCP_REASON_TIMEOUT, 0);
send_much(0, TCP_REASON_TIMEOUT);
}
}
#endif
|