1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
|
.. include:: replace.txt
..
========================================================================================
Translated for portuguese by the students of the inter-institutional doctorate program of IME-USP/UTFPR-CM.
Traduzido para o portugus pelos alunos do programa de doutorado inter institucional do Instituto de Matemtica e Estatstica da Universidade de So Paulo --- IME-USP em parceria com a Universidade Tecnolgica Federal do Paran - Campus Campo Mouro --- UTFPR-CM:
* Frank Helbert (frank@ime.usp.br);
* Luiz Arthur Feitosa dos Santos (luizsan@ime.usp.br);
* Rodrigo Campiolo (campiolo@ime.usp.br).
========================================================================================
..
Tracing
Rastreamento
------------
..
Background
Introduo
**********
..
As mentioned in the Using the Tracing System section, the whole point of running
an |ns3| simulation is to generate output for study. You have two basic
strategies to work with in |ns3|: using generic pre-defined bulk output
mechanisms and parsing their content to extract interesting information; or
somehow developing an output mechanism that conveys exactly (and perhaps only)
the information wanted.
Como abordado na seo Usando o Sistema de Rastreamento, o objetivo principal de uma
simulao no |ns3| a gerao de sada para estudo. H duas estratgias bsicas:
usar mecanismos predefinidos de sada e processar o contedo para extrair informaes
relevantes; ou desenvolver mecanismos de sada que resultam somente ou exatamente na
informao pretendida.
..
Using pre-defined bulk output mechanisms has the advantage of not requiring any
changes to |ns3|, but it does require programming. Often, pcap or NS_LOG
output messages are gathered during simulation runs and separately run through
scripts that use grep, sed or awk to parse the messages and reduce and transform
the data to a manageable form. Programs must be written to do the
transformation, so this does not come for free. Of course, if the information
of interest in does not exist in any of the pre-defined output mechanisms,
this approach fails.
Usar mecanismos predefinidos de sada possui a vantagem de no necessitar modificaes
no |ns3|, mas requer programao. Geralmente, as mensagens de sada do pcap ou ``NS_LOG``
so coletadas durante a execuo da simulao e processadas separadamente por cdigos (`scripts`) que usam `grep`, `sed` ou `awk` para reduzir e transformar os dados para uma forma mais simples de gerenciar. H o custo do desenvolvimento de programas para realizar as transformaes e em algumas situaes a informao de interesse pode no estar contida em nenhuma das sadas, logo, a abordagem falha.
..
If you need to add some tidbit of information to the pre-defined bulk mechanisms,
this can certainly be done; and if you use one of the |ns3| mechanisms,
you may get your code added as a contribution.
Se precisarmos adicionar o mnimo de informao para os mecanismos predefinidos de sada, isto certamente pode ser feito e se usarmos os mecanismos do |ns3|, podemos
ter nosso cdigo adicionado como uma contribuio.
..
|ns3| provides another mechanism, called Tracing, that avoids some of the
problems inherent in the bulk output mechanisms. It has several important
advantages. First, you can reduce the amount of data you have to manage by only
tracing the events of interest to you (for large simulations, dumping everything
to disk for post-processing can create I/O bottlenecks). Second, if you use this
method, you can control the format of the output directly so you avoid the
postprocessing step with sed or awk script. If you desire, your output can be
formatted directly into a form acceptable by gnuplot, for example. You can add
hooks in the core which can then be accessed by other users, but which will
produce no information unless explicitly asked to do so. For these reasons, we
believe that the |ns3| tracing system is the best way to get information
out of a simulation and is also therefore one of the most important mechanisms
to understand in |ns3|.
O |ns3| fornece outro mecanismo, chamado Rastreamento (*Tracing*), que evita alguns dos
problemas associados com os mecanismos de sada predefinidos. H vrias vantagens. Primeiro, reduo da quantidade de dados para gerenciar (em simulaes grandes, armazenar toda sada no disco pode gerar gargalos de Entrada/Sada). Segundo, o formato da sada pode ser controlado diretamente evitando o ps-processamento com cdigos `sed` ou `awk`. Se desejar,
a sada pode ser processada diretamente para um formato reconhecido pelo `gnuplot`, por exemplo. Podemos adicionar ganchos ("`hooks`") no ncleo, os quais podem ser acessados por outros usurios, mas que no produziro nenhuma informao exceto que sejam explicitamente solicitados a produzir. Por essas razes, acreditamos que o sistema de rastreamento do |ns3| a melhor forma de obter informaes fora da simulao, portanto um dos mais importantes mecanismos para ser compreendido no |ns3|.
..
Blunt Instruments
Mtodos Simples
+++++++++++++++
..
There are many ways to get information out of a program. The most
straightforward way is to just directly print the information to the standard
output, as in,
H vrias formas de obter informao aps a finalizao de um programa. A mais direta
imprimir a informao na sada padro, como no exemplo,
::
#include <iostream>
...
void
SomeFunction (void)
{
uint32_t x = SOME_INTERESTING_VALUE;
...
std::cout << "The value of x is " << x << std::endl;
...
}
..
Nobody is going to prevent you from going deep into the core of |ns3| and
adding print statements. This is insanely easy to do and, after all, you have
complete control of your own |ns3| branch. This will probably not turn
out to be very satisfactory in the long term, though.
Ningum impedir que editemos o ncleo do |ns3| e adicionemos cdigos de impresso. Isto simples de fazer, alm disso temos controle e acesso total ao cdigo fonte do |ns3|. Entretanto, pensando no futuro, isto no muito interessante.
..
As the number of print statements increases in your programs, the task of
dealing with the large number of outputs will become more and more complicated.
Eventually, you may feel the need to control what information is being printed
in some way; perhaps by turning on and off certain categories of prints, or
increasing or decreasing the amount of information you want. If you continue
down this path you may discover that you have re-implemented the ``NS_LOG``
mechanism. In order to avoid that, one of the first things you might consider
is using ``NS_LOG`` itself.
Conforme aumentarmos o nmero de comandos de impresso em nossos programas, ficar mais difcil tratar a grande quantidade de sadas. Eventualmente, precisaremos controlar de alguma maneira qual a informao ser impressa; talvez habilitando ou no determinadas categorias de sadas, ou aumentando ou diminuindo a quantidade de informao desejada. Se continuarmos com esse processo, descobriremos depois de um tempo que, reimplementamos o mecanismo ``NS_LOG``. Para evitar isso, utilize o prprio ``NS_LOG``.
..
We mentioned above that one way to get information out of |ns3| is to
parse existing NS_LOG output for interesting information. If you discover that
some tidbit of information you need is not present in existing log output, you
could edit the core of |ns3| and simply add your interesting information
to the output stream. Now, this is certainly better than adding your own
print statements since it follows |ns3| coding conventions and could
potentially be useful to other people as a patch to the existing core.
Como abordado anteriormente, uma maneira de obter informao de sada do |ns3|
processar a sada do ``NS_LOG``, filtrando as informaes relevantes. Se a informao
no est presente nos registros existentes, pode-se editar o ncleo do |ns3| e
adicionar ao fluxo de sada a informao desejada. Claro, isto muito melhor
que adicionar comandos de impresso, desde que seguindo as convenes de codificao
do |ns3|, alm do que isto poderia ser potencialmente til a outras pessoas.
..
Let's pick a random example. If you wanted to add more logging to the
|ns3| TCP socket (``tcp-socket-base.cc``) you could just add a new
message down in the implementation. Notice that in TcpSocketBase::ReceivedAck()
there is no log message for the no ack case. You could simply add one,
changing the code from:
Vamos analisar um exemplo, adicionando mais informaes de registro ao `socket` TCP do arquivo ``tcp-socket-base.cc``, para isto vamos acrescentando uma nova mensagem de registro na implementao. Observe que em ``TcpSocketBase::ReceivedAck()`` no existem mensagem de registro para casos sem o ACK, ento vamos adicionar uma da seguinte forma:
::
/** Processa o mais recente ACK recebido */
void
TcpSocketBase::ReceivedAck (Ptr<Packet> packet, const TcpHeader& tcpHeader)
{
NS_LOG_FUNCTION (this << tcpHeader);
// ACK Recebido. Compara o nmero ACK com o mais alto seqno no confirmado
if (0 == (tcpHeader.GetFlags () & TcpHeader::ACK))
{ // Ignora se no h flag ACK
}
...
..
to add a new ``NS_LOG_LOGIC`` in the appropriate statement:
para adicionar um novo ``NS_LOG_LOGIC`` na sentena apropriada:
::
/** Processa o mais recente ACK recebido */
void
TcpSocketBase::ReceivedAck (Ptr<Packet> packet, const TcpHeader& tcpHeader)
{
NS_LOG_FUNCTION (this << tcpHeader);
// ACK Recebido. Compara o nmero ACK com o mais alto seqno no confirmado
if (0 == (tcpHeader.GetFlags () & TcpHeader::ACK))
{ // Ignora se no h flag ACK
NS_LOG_LOGIC ("TcpSocketBase " << this << " sem flag ACK");
}
...
..
This may seem fairly simple and satisfying at first glance, but something to
consider is that you will be writing code to add the ``NS_LOG`` statement
and you will also have to write code (as in grep, sed or awk scripts) to parse
the log output in order to isolate your information. This is because even
though you have some control over what is output by the logging system, you
only have control down to the log component level.
Isto pode parecer simples e satisfatrio a primeira vista, mas lembre-se que ns escreveremos
cdigo para adicionar ao ``NS_LOG`` e para processar a sada com a finalidade de isolar
a informao de interesse. Isto porque o controle limitado ao nvel do componente de registro.
..
If you are adding code to an existing module, you will also have to live with the
output that every other developer has found interesting. You may find that in
order to get the small amount of information you need, you may have to wade
through huge amounts of extraneous messages that are of no interest to you. You
may be forced to save huge log files to disk and process them down to a few lines
whenever you want to do anything.
Se cada desenvolvedor adicionar cdigos de sada para um mdulo existente, logo conviveremos com a sada que outro desenvolvedor achou interessante. descobriremos que para obter uma pequena quantidade de informao, precisaremos produzir uma volumosa quantidade de mensagens sem nenhuma relevncia (devido aos comandos de sada de vrios desenvolvedores). Assim seremos forados a gerar arquivos de registros gigantescos no disco e process-los para obter poucas linhas de nosso interesse.
..
Since there are no guarantees in |ns3| about the stability of ``NS_LOG``
output, you may also discover that pieces of log output on which you depend
disappear or change between releases. If you depend on the structure of the
output, you may find other messages being added or deleted which may affect your
parsing code.
Como no h nenhuma garantia no |ns3| sobre a estabilidade da sada do ``NS_LOG``, podemos descobrir que partes do registro de sada, que dependamos, desapareceram ou mudaram entre verses. Se dependermos da estrutura da sada, podemos encontrar outras mensagens sendo adicionadas ou removidas que podem afetar seu cdigo de processamento.
..
For these reasons, we consider prints to ``std::cout`` and NS_LOG messages
to be quick and dirty ways to get more information out of |ns3|.
Por estas razes, devemos considerar o uso do ``std::cout`` e as mensagens ``NS_LOG`` como formas rpidas e porm sujas de obter informao da sada no |ns3|.
..
It is desirable to have a stable facility using stable APIs that allow one to
reach into the core system and only get the information required. It is
desirable to be able to do this without having to change and recompile the
core system. Even better would be a system that notified the user when an item
of interest changed or an interesting event happened so the user doesn't have
to actively poke around in the system looking for things.
Na grande maioria dos casos desejamos ter um mecanismo estvel, usando APIs que permitam acessar o ncleo do sistema e obter somente informaes interessantes. Isto deve ser possvel sem que exista a necessidade de alterar e recompilar o ncleo do sistema. Melhor ainda seria se um sistema notificasse o usurio quando um item de interesse fora modificado ou um evento de interesse aconteceu, pois o usurio no teria que constantemente vasculhar o sistema procurando por coisas.
..
The |ns3| tracing system is designed to work along those lines and is
well-integrated with the Attribute and Config subsystems allowing for relatively
simple use scenarios.
O sistema de rastreamento do |ns3| projetado para trabalhar seguindo essas premissas e
integrado com os subsistemas de Atributos (*Attribute*) e Configurao (*Config*) permitindo cenrios de uso simples.
..
Overview
Viso Geral
***********
..
The ns-3 tracing system is built on the concepts of independent tracing sources
and tracing sinks; along with a uniform mechanism for connecting sources to sinks.
O sistema de rastreamento do |ns3| baseado no conceito independente origem do rastreamento e destino do rastreamento. O |ns3| utiliza um mecanismo uniforme para conectar origens a destinos.
..
Trace sources are entities that can signal events that happen in a simulation and
provide access to interesting underlying data. For example, a trace source could
indicate when a packet is received by a net device and provide access to the
packet contents for interested trace sinks. A trace source might also indicate
when an interesting state change happens in a model. For example, the congestion
window of a TCP model is a prime candidate for a trace source.
As origens do rastreamento (*trace source*) so entidades que podem assinalar eventos que ocorrem na simulao e fornecem acesso a dados de baixo nvel. Por exemplo, uma origem do rastreamento poderia indicar quando um pacote recebido por um dispositivo de rede e prove acesso ao contedo do pacote aos interessados no destino do rastreamento. Uma origem do rastreamento pode tambm indicar quando uma mudana de estado ocorre em um modelo. Por exemplo, a janela de congestionamento do modelo TCP um forte candidato para uma origem do rastreamento.
..
Trace sources are not useful by themselves; they must be connected to other pieces
of code that actually do something useful with the information provided by the source.
The entities that consume trace information are called trace sinks. Trace sources
are generators of events and trace sinks are consumers. This explicit division
allows for large numbers of trace sources to be scattered around the system in
places which model authors believe might be useful.
A origem do rastreamento no so teis sozinhas; elas devem ser conectadas a outras partes de cdigo que fazem algo til com a informao provida pela origem. As entidades que consomem a informao de rastreamento so chamadas de destino do rastreamento (*trace sinks*). As origens de rastreamento so geradores de eventos e destinos de rastreamento so consumidores. Esta diviso explcita permite que inmeras origens de rastreamento estejam dispersas no sistema em locais que os autores do modelo acreditam ser teis.
..
There can be zero or more consumers of trace events generated by a trace source.
One can think of a trace source as a kind of point-to-multipoint information link.
Your code looking for trace events from a particular piece of core code could
happily coexist with other code doing something entirely different from the same
information.
Pode haver zero ou mais consumidores de eventos de rastreamento gerados por uma origem do rastreamento. Podemos pensar em uma origem do rastreamento como um tipo de ligao de informao ponto-para-multiponto. Seu cdigo buscaria por eventos de rastreamento de uma parte especfica do cdigo do ncleo e poderia coexistir com outro cdigo que faz algo inteiramente diferente com a mesma informao.
..
Unless a user connects a trace sink to one of these sources, nothing is output. By
using the tracing system, both you and other people at the same trace source are
getting exactly what they want and only what they want out of the system. Neither
of you are impacting any other user by changing what information is output by the
system. If you happen to add a trace source, your work as a good open-source
citizen may allow other users to provide new utilities that are perhaps very useful
overall, without making any changes to the |ns3| core.
Ao menos que um usurio conecte um destino do rastreamento a uma destas origens, nenhuma sada produzida. Usando o sistema de rastreamento, todos conectados em uma mesma origem do rastreamento esto obtendo a informao que desejam do sistema. Um usurio no afeta os outros alterando a informao provida pela origem. Se acontecer de adicionarmos uma origem do rastreamento, seu trabalho como um bom cidado utilizador de cdigo livre pode permitir que outros usurios forneam novas utilidades para todos, sem fazer qualquer modificao no ncleo do |ns3|.
..
A Simple Low-Level Example
Um Exemplo Simples de Baixo Nvel
+++++++++++++++++++++++++++++++++
..
Let's take a few minutes and walk through a simple tracing example. We are going
to need a little background on Callbacks to understand what is happening in the
example, so we have to take a small detour right away.
Vamos gastar alguns minutos para entender um exemplo de rastreamento simples. Primeiramente
precisamos compreender o conceito de *callbacks* para entender o que est acontecendo
no exemplo.
*Callbacks*
~~~~~~~~~~~
..
The goal of the Callback system in |ns3| is to allow one piece of code to
call a function (or method in C++) without any specific inter-module dependency.
This ultimately means you need some kind of indirection -- you treat the address
of the called function as a variable. This variable is called a pointer-to-function
variable. The relationship between function and pointer-to-function pointer is
really no different that that of object and pointer-to-object.
O objetivo do sistema de *Callback*, no |ns3|, permitir a uma parte do cdigo invocar
uma funo (ou mtodo em C++) sem qualquer dependncia entre mdulos. Isto utilizado para prover algum tipo de indireo -- desta forma tratamos o endereo da chamada de funo como uma varivel. Esta varivel denominada varivel de ponteiro-para-funo. O relacionamento entre funo e ponteiro-para-funo no to diferente que de um objeto e ponteiro-para-objeto.
..
In C the canonical example of a pointer-to-function is a
pointer-to-function-returning-integer (PFI). For a PFI taking one int parameter,
this could be declared like,
Em C, o exemplo clssico de um ponteiro-para-funo um ponteiro-para-funo-retornando-inteiro (PFI). Para um PFI ter um parmetro inteiro, poderia ser declarado como,
::
int (*pfi)(int arg) = 0;
..
What you get from this is a variable named simply "pfi" that is initialized
to the value 0. If you want to initialize this pointer to something meaningful,
you have to have a function with a matching signature. In this case, you could
provide a function that looks like,
O cdigo descreve uma varivel nomeada como "pfi" que inicializada com o valor 0. Se quisermos inicializar este ponteiro com um valor significante, temos que ter uma funo com uma assinatura idntica. Neste caso, poderamos prover uma funo como,
::
int MyFunction (int arg) {}
..
If you have this target, you can initialize the variable to point to your
function:
Dessa forma, podemos inicializar a varivel apontando para uma funo:
::
pfi = MyFunction;
..
You can then call MyFunction indirectly using the more suggestive form of
the call,
Podemos ento chamar ``MyFunction`` indiretamente, usando uma forma mais clara da chamada,
::
int result = (*pfi) (1234);
..
This is suggestive since it looks like you are dereferencing the function
pointer just like you would dereference any pointer. Typically, however,
people take advantage of the fact that the compiler knows what is going on
and will just use a shorter form,
uma forma mais clara, pois como se estivssemos dereferenciando o ponteiro da funo como dereferenciamos qualquer outro ponteiro. Tipicamente, todavia, usa-se uma forma mais curta pois o compilador sabe o que est fazendo,
::
int result = pfi (1234);
..
This looks like you are calling a function named "pfi," but the compiler is
smart enough to know to call through the variable ``pfi`` indirectly to
the function ``MyFunction``.
Esta forma como se estivessemos chamando uma funo nomeada "pfi", mas o compilador reconhece que uma chamada indireta da funo ``MyFunction`` por meio da varivel ``pfi``.
..
Conceptually, this is almost exactly how the tracing system will work.
Basically, a trace source *is* a callback. When a trace sink expresses
interest in receiving trace events, it adds a Callback to a list of Callbacks
internally held by the trace source. When an interesting event happens, the
trace source invokes its ``operator()`` providing zero or more parameters.
The ``operator()`` eventually wanders down into the system and does something
remarkably like the indirect call you just saw. It provides zero or more
parameters (the call to "pfi" above passed one parameter to the target function
``MyFunction``.
Conceitualmente, quase exatamente como o sistema de rastreamento funciona. Basicamente, uma origem do rastreamento ** um *callback*. Quando um destino do rastreamento expressa interesse em receber eventos de rastreamento, ela adiciona a *callback* para a lista de *callbacks* mantida internamente pela origem do rastreamento. Quando um evento de interesse ocorre, a origem do rastreamento invoca seu ``operator()`` provendo zero ou mais parmetros. O ``operator()`` eventualmente percorre o sistema e faz uma chamada indireta com zero ou mais parmetros.
..
The important difference that the tracing system adds is that for each trace
source there is an internal list of Callbacks. Instead of just making one
indirect call, a trace source may invoke any number of Callbacks. When a trace
sink expresses interest in notifications from a trace source, it basically just
arranges to add its own function to the callback list.
Uma diferena importante que o sistema de rastreamento adiciona para cada origem do rastreamento uma lista interna de *callbacks*. Ao invs de apenas fazer uma chamada indireta, uma origem do rastreamento pode invocar qualquer nmero de *callbacks*. Quando um destino do rastreamento expressa interesse em notificaes de uma origem, ela adiciona sua prpria funo para a lista de *callback*.
..
If you are interested in more details about how this is actually arranged in
|ns3|, feel free to peruse the Callback section of the manual.
Estando interessado em mais detalhes sobre como organizado o sistema de *callback* no |ns3|, leia a seo *Callback* do manual.
..
Example Code
Cdigo de Exemplo
~~~~~~~~~~~~~~~~~
..
We have provided some code to implement what is really the simplest example
of tracing that can be assembled. You can find this code in the tutorial
directory as ``fourth.cc``. Let's walk through it.
Analisaremos uma implementao simples de um exemplo de rastreamento. Este cdigo est no diretrio do tutorial, no arquivo ``fourth.cc``.
::
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "ns3/object.h"
#include "ns3/uinteger.h"
#include "ns3/traced-value.h"
#include "ns3/trace-source-accessor.h"
#include <iostream>
using namespace ns3;
..
Most of this code should be quite familiar to you. As mentioned above, the
trace system makes heavy use of the Object and Attribute systems, so you will
need to include them. The first two includes above bring in the declarations
for those systems explicitly. You could use the core module header, but this
illustrates how simple this all really is.
A maior parte deste cdigo deve ser familiar, pois como j abordado, o sistema de rastreamento faz uso constante dos sistemas Objeto (*Object*) e Atributos (*Attribute*), logo necessrio inclu-los. As duas primeiras incluses (*include*) declaram explicitamente estes dois sistemas. Poderamos usar o cabealho (*header*) do mdulo ncleo, este exemplo simples.
..
The file, ``traced-value.h`` brings in the required declarations for tracing
of data that obeys value semantics. In general, value semantics just means that
you can pass the object around, not an address. In order to use value semantics
at all you have to have an object with an associated copy constructor and
assignment operator available. We extend the requirements to talk about the set
of operators that are pre-defined for plain-old-data (POD) types. Operator=,
operator++, operator---, operator+, operator==, etc.
O arquivo ``traced-value.h`` uma declarao obrigatria para rastreamento de dados que usam passagem por valor. Na passagem por valor passada uma cpia do objeto e no um endereo. Com a finalidade de usar passagem por valor, precisa-se de um objeto com um construtor de cpia associado e um operador de atribuio. O conjunto de operadores predefinidos para tipos de dados primitivos (*plain-old-data*) so ++, ---, +, ==, etc.
..
What this all really means is that you will be able to trace changes to a C++
object made using those operators.
Isto significa que somos capazes de rastrear alteraes em um objeto C++ usando estes operadores.
..
Since the tracing system is integrated with Attributes, and Attributes work
with Objects, there must be an |ns3| ``Object`` for the trace source
to live in. The next code snippet declares and defines a simple Object we can
work with.
Como o sistema de rastreamento integrado com Atributos e este trabalham com Objetos, deve obrigatoriamente existir um ``Object`` |ns3| para cada origem do rastreamento. O prximo cdigo define e declara um Objeto.
::
class MyObject : public Object
{
public:
static TypeId GetTypeId (void)
{
static TypeId tid = TypeId ("MyObject")
.SetParent (Object::GetTypeId ())
.AddConstructor<MyObject> ()
.AddTraceSource ("MyInteger",
"An integer value to trace.",
MakeTraceSourceAccessor (&MyObject::m_myInt))
;
return tid;
}
MyObject () {}
TracedValue<int32_t> m_myInt;
};
..
The two important lines of code, above, with respect to tracing are the
``.AddTraceSource`` and the ``TracedValue`` declaration of ``m_myInt``.
As duas linhas mais importantes com relao ao rastreamento so ``.AddTraceSource`` e a declarao ``TracedValue`` do ``m_myInt``.
..
The ``.AddTraceSource`` provides the "hooks" used for connecting the trace
source to the outside world through the config system. The ``TracedValue``
declaration provides the infrastructure that overloads the operators mentioned
above and drives the callback process.
O mtodo ``.AddTraceSource`` prov a "ligao" usada para conectar a origem do rastreamento com o mundo externo, por meio do sistema de configurao. A declarao ``TracedValue`` prov a infraestrutura que sobrecarrega os operadores abordados anteriormente e gerencia o processo de *callback*.
::
void
IntTrace (int32_t oldValue, int32_t newValue)
{
std::cout << "Traced " << oldValue << " to " << newValue << std::endl;
}
..
This is the definition of the trace sink. It corresponds directly to a callback
function. Once it is connected, this function will be called whenever one of the
overloaded operators of the ``TracedValue`` is executed.
Esta a definio do destino do rastreamento. Isto corresponde diretamente a funo de *callback*. Uma vez que est conectada, esta funo ser chamada sempre que um dos operadores sobrecarregados de ``TracedValue`` executado.
..
We have now seen the trace source and the trace sink. What remains is code to
connect the source to the sink.
Ns temos a origem e o destino do rastreamento. O restante o cdigo para conectar a origem ao destino.
::
int
main (int argc, char *argv[])
{
Ptr<MyObject> myObject = CreateObject<MyObject> ();
myObject->TraceConnectWithoutContext ("MyInteger", MakeCallback(&IntTrace));
myObject->m_myInt = 1234;
}
..
Here we first create the Object in which the trace source lives.
Criamos primeiro o Objeto no qual est a origem do rastreamento.
..
The next step, the ``TraceConnectWithoutContext``, forms the connection
between the trace source and the trace sink. Notice the ``MakeCallback``
template function. This function does the magic required to create the
underlying |ns3| Callback object and associate it with the function
``IntTrace``. TraceConnect makes the association between your provided
function and the overloaded ``operator()`` in the traced variable referred
to by the "MyInteger" Attribute. After this association is made, the trace
source will "fire" your provided callback function.
No prximo passo, o ``TraceConnectWithoutContext`` conecta a origem ao destino do rastreamento. Observe que a funo ``MakeCallback`` cria o objeto *callback* e associa com a funo ``IntTrace``. ``TraceConnectWithoutContext`` faz a associao entre a sua funo e o ``operator()``, sobrecarregado a varivel rastreada referenciada pelo Atributo ``"MyInteger"``. Depois disso, a origem do rastreamento "disparar" sua funo de callback.
..
The code to make all of this happen is, of course, non-trivial, but the essence
is that you are arranging for something that looks just like the ``pfi()``
example above to be called by the trace source. The declaration of the
``TracedValue<int32_t> m_myInt;`` in the Object itself performs the magic
needed to provide the overloaded operators (++, ---, etc.) that will use the
``operator()`` to actually invoke the Callback with the desired parameters.
The ``.AddTraceSource`` performs the magic to connect the Callback to the
Config system, and ``TraceConnectWithoutContext`` performs the magic to
connect your function to the trace source, which is specified by Attribute
name.
O cdigo para fazer isto acontecer no trivial, mas a essncia a mesma que se a origem do rastreamento chamasse a funo ``pfi()`` do exemplo anterior. A declarao ``TracedValue<int32_t> m_myInt;`` no Objeto responsvel pela mgica dos operadores sobrecarregados que usaro o ``operator()`` para invocar o *callback* com os parmetros desejados. O mtodo ``.AddTraceSource`` conecta o *callback* ao sistema de configurao, e ``TraceConnectWithoutContext`` conecta sua funo a fonte de rastreamento, a qual especificada por um nome
Atributo.
..
Let's ignore the bit about context for now.
Vamos ignorar um pouco o contexto.
..
Finally, the line,
Finalmente a linha,
::
myObject->m_myInt = 1234;
..
should be interpreted as an invocation of ``operator=`` on the member
variable ``m_myInt`` with the integer ``1234`` passed as a parameter.
deveria ser interpretada como uma invocao do operador ``=`` na varivel membro ``m_myInt`` com o inteiro ``1234`` passado como parmetro.
..
It turns out that this operator is defined (by ``TracedValue``) to execute
a callback that returns void and takes two integer values as parameters ---
an old value and a new value for the integer in question. That is exactly
the function signature for the callback function we provided --- ``IntTrace``.
Por sua vez este operador definido (por ``TracedValue``) para executar um *callback* que retorna ``void`` e possui dois inteiros como parmetros --- um valor antigo e um novo valor para o inteiro em questo. Isto exatamente a assinatura da funo para a funo de *callback* que ns fornecemos --- ``IntTrace``.
..
To summarize, a trace source is, in essence, a variable that holds a list of
callbacks. A trace sink is a function used as the target of a callback. The
Attribute and object type information systems are used to provide a way to
connect trace sources to trace sinks. The act of "hitting" a trace source
is executing an operator on the trace source which fires callbacks. This
results in the trace sink callbacks registering interest in the source being
called with the parameters provided by the source.
Para resumir, uma origem do rastreamento , em essncia, uma varivel que mantm uma lista de *callbacks*. Um destino do rastreamento uma funo usada como alvo da *callback*. O Atributo e os sistemas de informao de tipo de objeto so usados para fornecer uma maneira de conectar origens e destinos do rastreamento. O ao de "acionar" uma origem do rastreamento executar um operador na origem, que dispara os *callbacks*. Isto resulta na execuo das *callbacks* dos destinos do rastreamento registrados na origem com os parmetros providos pela origem.
..
If you now build and run this example,
Se compilarmos e executarmos este exemplo,
::
./waf --run fourth
..
you will see the output from the ``IntTrace`` function execute as soon as the
trace source is hit:
observaremos que a sada da funo ``IntTrace`` processada logo aps a execuo da
origem do rastreamento:
::
Traced 0 to 1234
..
When we executed the code, ``myObject->m_myInt = 1234;``, the trace source
fired and automatically provided the before and after values to the trace sink.
The function ``IntTrace`` then printed this to the standard output. No
problem.
Quando executamos o cdigo, ``myObject->m_myInt = 1234;`` a origem do rastreamento disparou e automaticamente forneceu os valores anteriores e posteriores para o destino do rastreamento. A funo ``IntTrace`` ento imprimiu na sada padro, sem maiores problemas.
..
Using the Config Subsystem to Connect to Trace Sources
Usando o Subsistema de Configurao para Conectar as Origens de Rastreamento
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
..
The ``TraceConnectWithoutContext`` call shown above in the simple example is
actually very rarely used in the system. More typically, the ``Config``
subsystem is used to allow selecting a trace source in the system using what is
called a *config path*. We saw an example of this in the previous section
where we hooked the "CourseChange" event when we were playing with
``third.cc``.
A chamada ``TraceConnectWithoutContext`` apresentada anteriormente raramente usada no sistema. Geralmente, o subsistema ``Config`` usado para selecionar uma origem do rastreamento no sistema usando um caminho de configurao (*config path*). Ns estudamos um exemplo onde ligamos o evento "CourseChange", quando estvamos brincando com ``third.cc``.
..
Recall that we defined a trace sink to print course change information from the
mobility models of our simulation. It should now be a lot more clear to you
what this function is doing.
Ns definimos um destino do rastreamento para imprimir a informao de mudana de rota dos modelos de mobilidade de nossa simulao. Agora est mais claro o que est funo realizava.
::
void
CourseChange (std::string context, Ptr<const MobilityModel> model)
{
Vector position = model->GetPosition ();
NS_LOG_UNCOND (context <<
" x = " << position.x << ", y = " << position.y);
}
..
When we connected the "CourseChange" trace source to the above trace sink,
we used what is called a "Config Path" to specify the source when we
arranged a connection between the pre-defined trace source and the new trace
sink:
Quando conectamos a origem do rastreamento "CourseChange" para o destino do rastreamento anteriormente, usamos o que chamado de caminho de configurao ("`Config Path`") para especificar a origem e o novo destino do rastreamento.
::
std::ostringstream oss;
oss <<
"/NodeList/" << wifiStaNodes.Get (nWifi - 1)->GetId () <<
"/$ns3::MobilityModel/CourseChange";
Config::Connect (oss.str (), MakeCallback (&CourseChange));
..
Let's try and make some sense of what is sometimes considered relatively
mysterious code. For the purposes of discussion, assume that the node
number returned by the ``GetId()`` is "7". In this case, the path
above turns out to be,
Para entendermos melhor o cdigo, suponha que o nmero do n retornado por ``GetId()`` "7". Neste caso, o caminho seria,
::
"/NodeList/7/$ns3::MobilityModel/CourseChange"
..
The last segment of a config path must be an ``Attribute`` of an
``Object``. In fact, if you had a pointer to the ``Object`` that has the
"CourseChange" ``Attribute`` handy, you could write this just like we did
in the previous example. You know by now that we typically store pointers to
our nodes in a NodeContainer. In the ``third.cc`` example, the Nodes of
interest are stored in the ``wifiStaNodes`` NodeContainer. In fact, while
putting the path together, we used this container to get a Ptr<Node> which we
used to call GetId() on. We could have used this Ptr<Node> directly to call
a connect method directly:
O ltimo segmento de um caminho de configurao deve ser um Atributo de um
Objeto. Na verdade, se tnhamos um ponteiro para o Objeto que tem o Atributo
"CourseChange" ``, poderamos escrever como no exemplo anterior.
Ns j sabemos que guardamos tipicamente ponteiros para outros ns em um ``NodeContainer``. No exemplo ``third.cc``, os ns de rede de interesse esto armazenados no ``wifiStaNodes`` ``NodeContainer``. De fato enquanto colocamos o caminho junto usamos este continer para obter um ``Ptr<Node>``, usado na chamada ``GetId()``. Poderamos usar diretamente o ``Ptr<Node>`` para chamar um mtodo de conexo.
::
Ptr<Object> theObject = wifiStaNodes.Get (nWifi - 1);
theObject->TraceConnectWithoutContext ("CourseChange", MakeCallback (&CourseChange));
..
In the ``third.cc`` example, we actually want an additional "context" to
be delivered along with the Callback parameters (which will be explained below) so we
could actually use the following equivalent code,
No exemplo ``third.cc``, queremos um "contexto" adicional para ser encaminhado com os parmetros do *callback* (os quais so explicados a seguir) ento podemos usar o cdigo equivalente,
::
Ptr<Object> theObject = wifiStaNodes.Get (nWifi - 1);
theObject->TraceConnect ("CourseChange", MakeCallback (&CourseChange));
..
It turns out that the internal code for ``Config::ConnectWithoutContext`` and
``Config::Connect`` actually do find a Ptr<Object> and call the appropriate
TraceConnect method at the lowest level.
Acontece que o cdigo interno para ``Config::ConnectWithoutContext`` e ``Config::Connect`` permite localizar um Ptr<Object> e chama o mtodo ``TraceConnect``, no nvel mais baixo.
..
The ``Config`` functions take a path that represents a chain of ``Object``
pointers. Each segment of a path corresponds to an Object Attribute. The last
segment is the Attribute of interest, and prior segments must be typed to contain
or find Objects. The ``Config`` code parses and "walks" this path until it
gets to the final segment of the path. It then interprets the last segment as
an ``Attribute`` on the last Object it found while walking the path. The
``Config`` functions then call the appropriate ``TraceConnect`` or
``TraceConnectWithoutContext`` method on the final Object. Let's see what
happens in a bit more detail when the above path is walked.
As funes ``Config`` aceitam um caminho que representa uma cadeia de ponteiros de Objetos. Cada segmento do caminho corresponde a um Atributo Objeto. O ltimo segmento o Atributo de interesse e os seguimentos anteriores devem ser definidos para conter ou encontrar Objetos. O cdigo ``Config`` processa o caminho at obter o segmento final. Ento, interpreta o ltimo segmento como um Atributo no ltimo Objeto ele encontrou no caminho. Ento as funes ``Config`` chamam o mtodo ``TraceConnect`` ou ``TraceConnectWithoutContext`` adequado no Objeto final.
Vamos analisar com mais detalhes o processo descrito.
..
The leading "/" character in the path refers to a so-called namespace. One
of the predefined namespaces in the config system is "NodeList" which is a
list of all of the nodes in the simulation. Items in the list are referred to
by indices into the list, so "/NodeList/7" refers to the eighth node in the
list of nodes created during the simulation. This reference is actually a
``Ptr<Node>`` and so is a subclass of an ``ns3::Object``.
O primeiro caractere "/" no caminho faz referncia a um *namespace*. Um dos *namespaces* predefinidos no sistema de configurao "NodeList" que uma lista de todos os ns na simulao. Itens na lista so referenciados por ndices , logo "/NodeList/7" refere-se ao oitavo n na lista de ns criados durante a simulao. Esta referncia um ``Ptr<Node>``, por consequncia uma subclasse de um ``ns3::Object``.
..
As described in the Object Model section of the |ns3| manual, we support
Object Aggregation. This allows us to form an association between different
Objects without any programming. Each Object in an Aggregation can be reached
from the other Objects.
Como descrito na seo Modelo de Objeto do manual |ns3|, h suporte para Agregao de Objeto. Isto permite realizar associao entre diferentes Objetos sem qualquer programao. Cada Objeto em uma Agregao pode ser acessado a partir de outros Objetos.
..
The next path segment being walked begins with the "$" character. This
indicates to the config system that a ``GetObject`` call should be made
looking for the type that follows. It turns out that the MobilityHelper used in
``third.cc`` arranges to Aggregate, or associate, a mobility model to each of
the wireless Nodes. When you add the "$" you are asking for another Object that
has presumably been previously aggregated. You can think of this as switching
pointers from the original Ptr<Node> as specified by "/NodeList/7" to its
associated mobility model --- which is of type "$ns3::MobilityModel". If you
are familiar with ``GetObject``, we have asked the system to do the following:
O prximo segmento no caminho inicia com o carcter "$". O cifro indica ao sistema de configurao que uma chamada ``GetObject`` deveria ser realizada procurando o tipo especificado em seguida. diferente do que o ``MobilityHelper`` usou em ``third.cc`` gerenciar a Agregao, ou associar, um modelo de mobilidade para cada dos ns de rede sem fio. Quando adicionamos o "$", significa que estamos pedindo por outro Objeto que tinha sido presumidamente agregado anteriormente. Podemos pensar nisso como ponteiro de comutao do ``Ptr<Node>`` original como especificado por "/NodeList/7" para os modelos de mobilidade associados --- quais so do tipo "$ns3::MobilityModel". Se estivermos familiarizados com ``GetObject``, solicitamos ao sistema para fazer o
seguinte:
::
Ptr<MobilityModel> mobilityModel = node->GetObject<MobilityModel> ()
..
We are now at the last Object in the path, so we turn our attention to the
Attributes of that Object. The ``MobilityModel`` class defines an Attribute
called "CourseChange". You can see this by looking at the source code in
``src/mobility/model/mobility-model.cc`` and searching for "CourseChange" in your
favorite editor. You should find,
Estamos no ltimo Objeto do caminho e neste verificamos os Atributos daquele Objeto. A classe ``MobilityModel`` define um Atributo chamado "CourseChange". Observando o cdigo fonte em ``src/mobility/model/mobility-model.cc`` e procurando por "CourseChange", encontramos,
::
.AddTraceSource ("CourseChange",
"The value of the position and/or velocity vector changed",
MakeTraceSourceAccessor (&MobilityModel::m_courseChangeTrace))
..
which should look very familiar at this point.
o qual parece muito familiar neste momento.
..
If you look for the corresponding declaration of the underlying traced variable
in ``mobility-model.h`` you will find
Se procurarmos por declaraes semelhantes das variveis rastreadas em ``mobility-model.h``
encontraremos,
::
TracedCallback<Ptr<const MobilityModel> > m_courseChangeTrace;
..
The type declaration ``TracedCallback`` identifies ``m_courseChangeTrace``
as a special list of Callbacks that can be hooked using the Config functions
described above.
A declarao de tipo ``TracedCallback`` identifica ``m_courseChangeTrace`` como um lista especial de *callbacks* que pode ser ligada usando as funes de Configurao descritas anteriormente.
..
The ``MobilityModel`` class is designed to be a base class providing a common
interface for all of the specific subclasses. If you search down to the end of
the file, you will see a method defined called ``NotifyCourseChange()``:
A classe ``MobilityModel`` projetada para ser a classe base provendo uma interface comum para todas as subclasses. No final do arquivo, encontramos um mtodo chamado ``NotifyCourseChange()``:
::
void
MobilityModel::NotifyCourseChange (void) const
{
m_courseChangeTrace(this);
}
..
Derived classes will call into this method whenever they do a course change to
support tracing. This method invokes ``operator()`` on the underlying
``m_courseChangeTrace``, which will, in turn, invoke all of the registered
Callbacks, calling all of the trace sinks that have registered interest in the
trace source by calling a Config function.
Classes derivadas chamaro este mtodo toda vez que fizerem uma alterao na rota para
suportar rastreamento. Este mtodo invoca ``operator()`` em ``m_courseChangeTrace``,
que invocar todos os *callbacks* registrados, chamando todos os *trace sinks* que tem
interesse registrado na origem do rastreamento usando a funo de Configurao.
..
So, in the ``third.cc`` example we looked at, whenever a course change is
made in one of the ``RandomWalk2dMobilityModel`` instances installed, there
will be a ``NotifyCourseChange()`` call which calls up into the
``MobilityModel`` base class. As seen above, this invokes ``operator()``
on ``m_courseChangeTrace``, which in turn, calls any registered trace sinks.
In the example, the only code registering an interest was the code that provided
the config path. Therefore, the ``CourseChange`` function that was hooked
from Node number seven will be the only Callback called.
No exemplo ``third.cc`` ns vimos que sempre que uma mudana de rota realizada em uma das instncias ``RandomWalk2dMobilityModel`` instaladas, haver uma chamada ``NotifyCourseChange()`` da classe base ``MobilityModel``. Como observado, isto invoca ``operator()`` em ``m_courseChangeTrace``, que por sua vez, chama qualquer destino do rastreamento registrados. No exemplo, o nico cdigo que registrou interesse foi aquele que forneceu o caminho de configurao. Consequentemente, a funo ``CourseChange`` que foi ligado no Node de nmero sete ser a nica *callback* chamada.
..
The final piece of the puzzle is the "context". Recall that we saw an output
looking something like the following from ``third.cc``:
A pea final do quebra-cabea o "contexto". Lembre-se da sada de ``third.cc``:
::
/NodeList/7/$ns3::MobilityModel/CourseChange x = 7.27897, y = 2.22677
..
The first part of the output is the context. It is simply the path through
which the config code located the trace source. In the case we have been looking at
there can be any number of trace sources in the system corresponding to any number
of nodes with mobility models. There needs to be some way to identify which trace
source is actually the one that fired the Callback. An easy way is to request a
trace context when you ``Config::Connect``.
A primeira parte da sada o contexto. simplesmente o caminho pelo qual o cdigo de configurao localizou a origem do rastreamento. No caso, poderamos ter qualquer nmero de origens de rastreamento no sistema correspondendo a qualquer nmero de ns com modelos de mobilidade. necessrio uma maneira de identificar qual origem do rastreamento disparou o *callback*. Uma forma simples solicitar um contexto de rastreamento quando usado o ``Config::Connect``.
..
How to Find and Connect Trace Sources, and Discover Callback Signatures
Como Localizar e Conectar Origens de Rastreamento, e Descobrir Assinaturas de *Callback*
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
..
The first question that inevitably comes up for new users of the Tracing system is,
"okay, I know that there must be trace sources in the simulation core, but how do
I find out what trace sources are available to me"?
The second question is, "okay, I found a trace source, how do I figure out the
config path to use when I connect to it"?
The third question is, "okay, I found a trace source, how do I figure out what
the return type and formal arguments of my callback function need to be"?
The fourth question is, "okay, I typed that all in and got this incredibly bizarre
error message, what in the world does it mean"?
As questes que inevitavelmente os novos usurios do sistema de Rastreamento fazem, so:
1. "Eu sei que existem origens do rastreamento no ncleo da simulao, mas como
eu descubro quais esto disponveis para mim?"
2. "Eu encontrei uma origem do rastreamento, como eu defino o caminho de configurao para
usar quando eu conectar a origem?"
3. "Eu encontrei uma origem do rastreamento, como eu defino o tipo de retorno e os
argumentos formais da minha funo de *callback*?"
4. "Eu fiz tudo corretamente e obtive uma mensagem de erro bizarra, o que isso significa?"
..
What Trace Sources are Available?
Quais Origens de Rastreamento so Disponibilizadas
++++++++++++++++++++++++++++++++++++++++++++++++++
..
The answer to this question is found in the |ns3| Doxygen. If you go to
the project web site,
`ns-3 project
<http://www.nsnam.org>`_, you will find a link to "Documentation" in the navigation bar. If you select this link, you will be
taken to our documentation page. There
is a link to "Latest Release" that will take you to the documentation
for the latest stable release of |ns3|.
If you select the "API Documentation" link, you will be
taken to the |ns3| API documentation page.
A resposta encontrada no Doxygen do |ns3|. Acesse o stio Web do projeto, `ns-3 project <http://www.nsnam.org>`_, em seguida, "Documentation" na barra de navegao. Logo aps, "Latest Release" e "API Documentation".
Acesse o item "Modules" na documentao do NS-3. Agora, selecione o item "C++ Constructs Used by All Modules". Sero exibidos quatro tpicos extremamente teis:
* The list of all trace sources
* The list of all attributes
* The list of all global values
* Debugging
..
The list of interest to us here is "the list of all trace sources". Go
ahead and select that link. You will see, perhaps not too surprisingly, a
list of all of the trace sources available in the |ns3| core.
Estamos interessados em "*the list of all trace sources*" - a lista de todas origens do rastreamento. Selecionando este item, exibido uma lista com todas origens disponveis no ncleo do |ns3|.
..
As an example, scroll down to ``ns3::MobilityModel``. You will find
an entry for
Como exemplo, ``ns3::MobilityModel``, ter uma entrada para
::
CourseChange: The value of the position and/or velocity vector changed
..
You should recognize this as the trace source we used in the ``third.cc``
example. Perusing this list will be helpful.
No caso, esta foi a origem do rastreamento usada no exemplo ``third.cc``, esta lista ser muito til.
..
What String do I use to Connect?
Qual String eu uso para Conectar?
+++++++++++++++++++++++++++++++++
..
The easiest way to do this is to grep around in the |ns3| codebase for someone
who has already figured it out, You should always try to copy someone else's
working code before you start to write your own. Try something like:
A forma mais simples procurar na base de cdigo do |ns3| por algum que j fez uso do caminho de configurao que precisamos para ligar a fonte de rastreamento. Sempre deveramos primeiro copiar um cdigo que funciona antes de escrever nosso prprio cdigo. Tente usar os comandos:
::
find . -name '*.cc' | xargs grep CourseChange | grep Connect
..
and you may find your answer along with working code. For example, in this
case, ``./ns-3-dev/examples/wireless/mixed-wireless.cc`` has something
just waiting for you to use:
e poderemos encontrar um cdigo operacional que atenda nossas necessidades. Por exemplo, neste caso, ``./ns-3-dev/examples/wireless/mixed-wireless.cc`` tem algo que podemos usar:
::
Config::Connect ("/NodeList/*/$ns3::MobilityModel/CourseChange",
MakeCallback (&CourseChangeCallback));
..
If you cannot find any examples in the distribution, you can find this out
from the |ns3| Doxygen. It will probably be simplest just to walk
through the "CourseChanged" example.
Se no localizamos nenhum exemplo na distribuio, podemos tentar o Doxygen do |ns3|. provavelmente mais simples que percorrer o exemplo "CourseChanged".
..
Let's assume that you have just found the "CourseChanged" trace source in
"The list of all trace sources" and you want to figure out how to connect to
it. You know that you are using (again, from the ``third.cc`` example) an
``ns3::RandomWalk2dMobilityModel``. So open the "Class List" book in
the NS-3 documentation tree by clicking its "+" box. You will now see a
list of all of the classes in |ns3|. Scroll down until you see the
entry for ``ns3::RandomWalk2dMobilityModel`` and follow that link.
You should now be looking at the "ns3::RandomWalk2dMobilityModel Class
Reference".
Suponha que encontramos a origem do rastreamento "CourseChanged" na "The list of all trace sources" e queremos resolver como nos conectar a ela. Voc sabe que est usando um ``ns3::RandomWalk2dMobilityModel``. Logo, acesse o item "Class List" na documentao do |ns3|. Ser exibida a lista de todas as classes. Selecione a entrada para ``ns3::RandomWalk2dMobilityModel`` para exibir a documentao da classe.
..
If you now scroll down to the "Member Function Documentation" section, you
will see documentation for the ``GetTypeId`` function. You constructed one
of these in the simple tracing example above:
Acesse a seo "Member Function Documentation" e obter a documentao para a funo ``GetTypeId``. Voc construiu uma dessas em um exemplo anterior:
::
static TypeId GetTypeId (void)
{
static TypeId tid = TypeId ("MyObject")
.SetParent (Object::GetTypeId ())
.AddConstructor<MyObject> ()
.AddTraceSource ("MyInteger",
"An integer value to trace.",
MakeTraceSourceAccessor (&MyObject::m_myInt))
;
return tid;
}
..
As mentioned above, this is the bit of code that connected the Config
and Attribute systems to the underlying trace source. This is also the
place where you should start looking for information about the way to
connect.
Como abordado, este cdigo conecta os sistemas *Config* e Atributos origem do rastreamento. tambm o local onde devemos iniciar a busca por informao sobre como conectar.
..
You are looking at the same information for the RandomWalk2dMobilityModel; and
the information you want is now right there in front of you in the Doxygen:
Voc est observando a mesma informao para ``RandomWalk2dMobilityModel``; e a informao que voc precisa est explcita no Doxygen:
::
This object is accessible through the following paths with Config::Set
and Config::Connect:
/NodeList/[i]/$ns3::MobilityModel/$ns3::RandomWalk2dMobilityModel
..
The documentation tells you how to get to the ``RandomWalk2dMobilityModel``
Object. Compare the string above with the string we actually used in the
example code:
A documentao apresenta como obter o Objeto ``RandomWalk2dMobilityModel``. Compare o texto anterior com o texto que ns usamos no cdigo do exemplo:
::
"/NodeList/7/$ns3::MobilityModel"
..
The difference is due to the fact that two ``GetObject`` calls are implied
in the string found in the documentation. The first, for ``$ns3::MobilityModel``
will query the aggregation for the base class. The second implied
``GetObject`` call, for ``$ns3::RandomWalk2dMobilityModel``, is used to "cast"
the base class to the concrete implementation class. The documentation shows
both of these operations for you. It turns out that the actual Attribute you are
going to be looking for is found in the base class as we have seen.
A diferena que h duas chamadas ``GetObject`` inclusas no texto da documentao. A primeira, para ``$ns3::MobilityModel`` solicita a agregao para a classe base. A segunda, para ``$ns3::RandomWalk2dMobilityModel`` usada como *cast* da classe base para a
implementao concreta da classe.
..
Look further down in the ``GetTypeId`` doxygen. You will find,
Analisando ainda mais o ``GetTypeId`` no Doxygen, temos
::
No TraceSources defined for this type.
TraceSources defined in parent class ns3::MobilityModel:
CourseChange: The value of the position and/or velocity vector changed
Reimplemented from ns3::MobilityModel
..
This is exactly what you need to know. The trace source of interest is found in
``ns3::MobilityModel`` (which you knew anyway). The interesting thing this
bit of Doxygen tells you is that you don't need that extra cast in the config
path above to get to the concrete class, since the trace source is actually in
the base class. Therefore the additional ``GetObject`` is not required and
you simply use the path:
Isto exatamente o que precisamos saber. A origem do rastreamento de interesse encontrada em ``ns3::MobilityModel``. O interessante que pela documentao no necessrio o *cast* extra para obter a classe concreta, pois a origem do rastreamento est na classe base. Por consequncia, o ``GetObject`` adicional no necessrio e podemos usar o caminho:
::
/NodeList/[i]/$ns3::MobilityModel
..
which perfectly matches the example path:
que idntico ao caminho do exemplo:
::
/NodeList/7/$ns3::MobilityModel
..
What Return Value and Formal Arguments?
Quais so os Argumentos Formais e o Valor de Retorno?
+++++++++++++++++++++++++++++++++++++++++++++++++++++
..
The easiest way to do this is to grep around in the |ns3| codebase for someone
who has already figured it out, You should always try to copy someone else's
working code. Try something like:
A forma mais simples procurar na base de cdigo do |ns3| por um cdigo existente. Voc sempre deveria primeiro copiar um cdigo que funciona antes de escrever seu prprio. Tente usar os comandos:
::
find . -name '*.cc' | xargs grep CourseChange | grep Connect
..
and you may find your answer along with working code. For example, in this
case, ``./ns-3-dev/examples/wireless/mixed-wireless.cc`` has something
just waiting for you to use. You will find
e voc poder encontrar cdigo operacional. Por exemplo, neste caso, ``./ns-3-dev/examples/wireless/mixed-wireless.cc`` tem cdigo para ser reaproveitado.
::
Config::Connect ("/NodeList/*/$ns3::MobilityModel/CourseChange",
MakeCallback (&CourseChangeCallback));
..
as a result of your grep. The ``MakeCallback`` should indicate to you that
there is a callback function there which you can use. Sure enough, there is:
como resultado, ``MakeCallback`` indicaria que h uma funo *callback* que pode ser usada.
Para reforar:
::
static void
CourseChangeCallback (std::string path, Ptr<const MobilityModel> model)
{
...
}
..
Take my Word for It
Acredite em Minha Palavra
~~~~~~~~~~~~~~~~~~~~~~~~~
..
If there are no examples to work from, this can be, well, challenging to
actually figure out from the source code.
Se no h exemplos, pode ser desafiador descobrir por meio da anlise do cdigo fonte.
..
Before embarking on a walkthrough of the code, I'll be kind and just tell you
a simple way to figure this out: The return value of your callback will always
be void. The formal parameter list for a ``TracedCallback`` can be found
from the template parameter list in the declaration. Recall that for our
current example, this is in ``mobility-model.h``, where we have previously
found:
Antes de aventurar-se no cdigo, diremos algo importante: O valor de retorno de sua *callback* sempre ser *void*. A lista de parmetros formais para uma ``TracedCallback`` pode ser encontrada no lista de parmetro padro na declarao. Recorde do exemplo atual, isto est em ``mobility-model.h``, onde encontramos:
::
TracedCallback<Ptr<const MobilityModel> > m_courseChangeTrace;
..
There is a one-to-one correspondence between the template parameter list in
the declaration and the formal arguments of the callback function. Here,
there is one template parameter, which is a ``Ptr<const MobilityModel>``.
This tells you that you need a function that returns void and takes a
a ``Ptr<const MobilityModel>``. For example,
No h uma correspondncia de um-para-um entre a lista de parmetro padro na declarao e os argumentos formais da funo *callback*. Aqui, h um parmetro padro, que um ``Ptr<const MobilityModel>``. Isto significa que precisamos de uma funo que retorna *void* e possui um parmetro ``Ptr<const MobilityModel>``. Por exemplo,
::
void
CourseChangeCallback (Ptr<const MobilityModel> model)
{
...
}
..
That's all you need if you want to ``Config::ConnectWithoutContext``. If
you want a context, you need to ``Config::Connect`` and use a Callback
function that takes a string context, then the required argument.
Isto tudo que precisamos para ``Config::ConnectWithoutContext``. Se voc quer um contexto, use ``Config::Connect`` e uma funo *callback* que possui como um parmetro uma `string` de contexto, seguido pelo argumento.
::
void
CourseChangeCallback (std::string path, Ptr<const MobilityModel> model)
{
...
}
..
If you want to ensure that your ``CourseChangeCallback`` is only visible
in your local file, you can add the keyword ``static`` and come up with:
Para garantir que ``CourseChangeCallback`` seja somente visvel em seu arquivo, voc pode adicionar a palavra chave ``static``, como no exemplo:
::
static void
CourseChangeCallback (std::string path, Ptr<const MobilityModel> model)
{
...
}
..
which is exactly what we used in the ``third.cc`` example.
exatamente o que usado no exemplo ``third.cc``.
..
The Hard Way
A Forma Complicada
~~~~~~~~~~~~~~~~~~
..
This section is entirely optional. It is going to be a bumpy ride, especially
for those unfamiliar with the details of templates. However, if you get through
this, you will have a very good handle on a lot of the |ns3| low level
idioms.
Esta seo opcional. Pode ser bem penosa para aqueles que conhecem poucos detalhes de tipos parametrizados de dados (*templates*). Entretanto, se continuarmos nessa seo, mergulharemos em detalhes de baixo nvel do |ns3|.
..
So, again, let's figure out what signature of callback function is required for
the "CourseChange" Attribute. This is going to be painful, but you only need
to do this once. After you get through this, you will be able to just look at
a ``TracedCallback`` and understand it.
Vamos novamente descobrir qual assinatura da funo de *callback* necessria para o Atributo "CourseChange". Isto pode ser doloroso, mas precisamos faz-lo apenas uma vez. Depois de tudo, voc ser capaz de entender um ``TracedCallback``.
..
The first thing we need to look at is the declaration of the trace source.
Recall that this is in ``mobility-model.h``, where we have previously
found:
Primeiro, verificamos a declarao da origem do rastreamento. Recorde que isto est em ``mobility-model.h``:
::
TracedCallback<Ptr<const MobilityModel> > m_courseChangeTrace;
..
This declaration is for a template. The template parameter is inside the
angle-brackets, so we are really interested in finding out what that
``TracedCallback<>`` is. If you have absolutely no idea where this might
be found, grep is your friend.
Esta declarao para um *template*. O parmetro do *template* est entre ``<>``, logo estamos interessados em descobrir o que ``TracedCallback<>``. Se no tem nenhuma ideia de onde pode ser encontrado, use o utilitrio *grep*.
..
We are probably going to be interested in some kind of declaration in the
|ns3| source, so first change into the ``src`` directory. Then,
we know this declaration is going to have to be in some kind of header file,
so just grep for it using:
Estamos interessados em uma declarao similar no cdigo fonte do |ns3|, logo buscamos no diretrio ``src``. Ento, sabemos que esta declarao tem um arquivo de cabealho, e procuramos por ele usando:
::
find . -name '*.h' | xargs grep TracedCallback
..
You'll see 124 lines fly by (I piped this through wc to see how bad it was).
Although that may seem like it, that's not really a lot. Just pipe the output
through more and start scanning through it. On the first page, you will see
some very suspiciously template-looking stuff.
Obteremos 124 linhas, com este comando. Analisando a sada, encontramos alguns *templates* que podem ser teis.
::
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::TracedCallback ()
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::ConnectWithoutContext (c ...
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::Connect (const CallbackB ...
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::DisconnectWithoutContext ...
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::Disconnect (const Callba ...
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::operator() (void) const ...
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::operator() (T1 a1) const ...
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::operator() (T1 a1, T2 a2 ...
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::operator() (T1 a1, T2 a2 ...
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::operator() (T1 a1, T2 a2 ...
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::operator() (T1 a1, T2 a2 ...
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::operator() (T1 a1, T2 a2 ...
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::operator() (T1 a1, T2 a2 ...
..
It turns out that all of this comes from the header file
``traced-callback.h`` which sounds very promising. You can then take a
look at ``mobility-model.h`` and see that there is a line which confirms
this hunch:
Observamos que todas linhas so do arquivo de cabealho ``traced-callback.h``, logo ele parece muito promissor. Para confirmar, verifique o arquivo ``mobility-model.h`` e procure uma linha que corrobore esta suspeita.
::
#include "ns3/traced-callback.h"
..
Of course, you could have gone at this from the other direction and started
by looking at the includes in ``mobility-model.h`` and noticing the
include of ``traced-callback.h`` and inferring that this must be the file
you want.
Observando as incluses em ``mobility-model.h``, verifica-se a incluso do ``traced-callback.h`` e conclui-se que este deve ser o arquivo.
..
In either case, the next step is to take a look at ``src/core/model/traced-callback.h``
in your favorite editor to see what is happening.
O prximo passo analisar o arquivo ``src/core/model/traced-callback.h`` e entender sua funcionalidade.
..
You will see a comment at the top of the file that should be comforting:
H um comentrio no topo do arquivo que deveria ser animador:
::
An ns3::TracedCallback has almost exactly the same API as a normal ns3::Callback but
instead of forwarding calls to a single function (as an ns3::Callback normally does),
it forwards calls to a chain of ns3::Callback.
..
This should sound very familiar and let you know you are on the right track.
Isto deveria ser familiar e confirma que estamos no caminho correto.
..
Just after this comment, you will find,
Depois deste comentrio, encontraremos
::
template<typename T1 = empty, typename T2 = empty,
typename T3 = empty, typename T4 = empty,
typename T5 = empty, typename T6 = empty,
typename T7 = empty, typename T8 = empty>
class TracedCallback
{
...
..
This tells you that TracedCallback is a templated class. It has eight possible
type parameters with default values. Go back and compare this with the
declaration you are trying to understand:
Isto significa que TracedCallback uma classe genrica (*templated class*). Possui oito possveis tipos de parmetros com valores padres. Retorne e compare com a declarao que voc est tentando entender:
::
TracedCallback<Ptr<const MobilityModel> > m_courseChangeTrace;
..
The ``typename T1`` in the templated class declaration corresponds to the
``Ptr<const MobilityModel>`` in the declaration above. All of the other
type parameters are left as defaults. Looking at the constructor really
doesn't tell you much. The one place where you have seen a connection made
between your Callback function and the tracing system is in the ``Connect``
and ``ConnectWithoutContext`` functions. If you scroll down, you will see
a ``ConnectWithoutContext`` method here:
O ``typename T1`` na declarao da classe corresponde a ``Ptr<const MobilityModel>`` da declarao anterior. Todos os outros parmetros so padres. Observe que o construtor no contribui com muita informao. O nico lugar onde h uma conexo entre a funo *callback* e o sistema de rastreamento nas funes ``Connect`` e ``ConnectWithoutContext``. Como mostrado a seguir:
::
template<typename T1, typename T2,
typename T3, typename T4,
typename T5, typename T6,
typename T7, typename T8>
void
TracedCallback<T1,T2,T3,T4,T5,T6,T7,T8>::ConnectWithoutContext ...
{
Callback<void,T1,T2,T3,T4,T5,T6,T7,T8> cb;
cb.Assign (callback);
m_callbackList.push_back (cb);
}
..
You are now in the belly of the beast. When the template is instantiated for
the declaration above, the compiler will replace ``T1`` with
``Ptr<const MobilityModel>``.
Voc est no olho do furao. Quando o *template* instanciado pela declarao anterior, o compilador substitui ``T1`` por ``Ptr<const MobilityModel>``.
::
void
TracedCallback<Ptr<const MobilityModel>::ConnectWithoutContext ... cb
{
Callback<void, Ptr<const MobilityModel> > cb;
cb.Assign (callback);
m_callbackList.push_back (cb);
}
..
You can now see the implementation of everything we've been talking about. The
code creates a Callback of the right type and assigns your function to it. This
is the equivalent of the ``pfi = MyFunction`` we discussed at the start of
this section. The code then adds the Callback to the list of Callbacks for
this source. The only thing left is to look at the definition of Callback.
Using the same grep trick as we used to find ``TracedCallback``, you will be
able to find that the file ``./core/callback.h`` is the one we need to look at.
Podemos observar a implementao de tudo que foi explicado at este ponto. O cdigo cria uma *callback* do tipo adequado e atribui sua funo para ela. Isto equivalente a ``pfi = MyFunction`` discutida anteriormente. O cdigo ento adiciona a *callback* para a lista de *callbacks* para esta origem. O que no observamos ainda a definio da *callback*. Usando o utilitrio *grep* podemos encontrar o arquivo ``./core/callback.h`` e verificar a definio.
..
If you look down through the file, you will see a lot of probably almost
incomprehensible template code. You will eventually come to some Doxygen for
the Callback template class, though. Fortunately, there is some English:
No arquivo h muito cdigo incompreensvel. Felizmente h algum em Ingls.
::
This class template implements the Functor Design Pattern.
It is used to declare the type of a Callback:
- the first non-optional template argument represents
the return type of the callback.
- the second optional template argument represents
the type of the first argument to the callback.
- the third optional template argument represents
the type of the second argument to the callback.
- the fourth optional template argument represents
the type of the third argument to the callback.
- the fifth optional template argument represents
the type of the fourth argument to the callback.
- the sixth optional template argument represents
the type of the fifth argument to the callback.
..
We are trying to figure out what the
Ns estamos tentando descobrir o que significa a declarao
::
Callback<void, Ptr<const MobilityModel> > cb;
..
declaration means. Now we are in a position to understand that the first
(non-optional) parameter, ``void``, represents the return type of the
Callback. The second (non-optional) parameter, ``Ptr<const MobilityModel>``
represents the first argument to the callback.
Agora entendemos que o primeiro parmetro, ``void``, indica o tipo de retorno da *callback*. O segundo parmetro, ``Ptr<const MobilityModel>`` representa o primeiro argumento da *callback*.
..
The Callback in question is your function to receive the trace events. From
this you can infer that you need a function that returns ``void`` and takes
a ``Ptr<const MobilityModel>``. For example,
A *callback* em questo a sua funo que recebe os eventos de rastreamento. Logo, podemos deduzir que precisamos de uma funo que retorna ``void`` e possui um parmetro ``Ptr<const MobilityModel>``. Por exemplo,
::
void
CourseChangeCallback (Ptr<const MobilityModel> model)
{
...
}
..
That's all you need if you want to ``Config::ConnectWithoutContext``. If
you want a context, you need to ``Config::Connect`` and use a Callback
function that takes a string context. This is because the ``Connect``
function will provide the context for you. You'll need:
Isto tudo que precisamos no ``Config::ConnectWithoutContext``. Se voc quer um contexto, use ``Config::Connect`` e uma funo *callback* que possui como um parmetro uma `string` de contexto, seguido pelo argumento.
::
void
CourseChangeCallback (std::string path, Ptr<const MobilityModel> model)
{
...
}
..
If you want to ensure that your ``CourseChangeCallback`` is only visible
in your local file, you can add the keyword ``static`` and come up with:
Se queremos garantir que ``CourseChangeCallback`` visvel somente
em seu arquivo, voc pode adicionar a palavra chave ``static``, como no exemplo:
::
static void
CourseChangeCallback (std::string path, Ptr<const MobilityModel> model)
{
...
}
..
which is exactly what we used in the ``third.cc`` example. Perhaps you
should now go back and reread the previous section (Take My Word for It).
o que exatamente usado no exemplo ``third.cc``. Talvez seja interessante reler a seo (Acredite em Minha Palavra).
..
If you are interested in more details regarding the implementation of
Callbacks, feel free to take a look at the |ns3| manual. They are one
of the most frequently used constructs in the low-level parts of |ns3|.
It is, in my opinion, a quite elegant thing.
H mais detalhes sobre a implementao de *callbacks* no manual do |ns3|. Elas esto entre os mais usados construtores das partes de baixo-nvel do |ns3|. Em minha opinio, algo bastante elegante.
..
What About TracedValue?
E quanto a TracedValue?
+++++++++++++++++++++++
..
Earlier in this section, we presented a simple piece of code that used a
``TracedValue<int32_t>`` to demonstrate the basics of the tracing code.
We just glossed over the way to find the return type and formal arguments
for the ``TracedValue``. Rather than go through the whole exercise, we
will just point you at the correct file, ``src/core/model/traced-value.h`` and
to the important piece of code:
No incio desta seo, ns apresentamos uma parte de cdigo simples que usou um ``TracedValue<int32_t>`` para demonstrar o bsico sobre cdigo de rastreamento. Ns desprezamos os mtodos para encontrar o tipo de retorno e os argumentos formais para o ``TracedValue``. Acelerando o processo, indicamos o arquivo ``src/core/model/traced-value.h`` e a parte relevante do cdigo:
::
template <typename T>
class TracedValue
{
public:
...
void Set (const T &v) {
if (m_v != v)
{
m_cb (m_v, v);
m_v = v;
}
}
...
private:
T m_v;
TracedCallback<T,T> m_cb;
};
..
Here you see that the ``TracedValue`` is templated, of course. In the simple
example case at the start of the section, the typename is int32_t. This means
that the member variable being traced (``m_v`` in the private section of the
class) will be an ``int32_t m_v``. The ``Set`` method will take a
``const int32_t &v`` as a parameter. You should now be able to understand
that the ``Set`` code will fire the ``m_cb`` callback with two parameters:
the first being the current value of the ``TracedValue``; and the second
being the new value being set.
Verificamos que ``TracedValue`` uma classe parametrizada. No caso simples do incio da seo, o nome do tipo int32_t. Isto significa que a varivel membro sendo rastreada (``m_v`` na seo privada da classe) ser ``int32_t m_v``. O mtodo ``Set`` possui um argumento ``const int32_t &v``. Voc deveria ser capaz de entender que o cdigo ``Set`` dispar o *callback* ``m_cb`` com dois parmetros: o primeiro sendo o valor atual do ``TracedValue``; e o segundo sendo o novo valor.
..
The callback, ``m_cb`` is declared as a ``TracedCallback<T, T>`` which
will correspond to a ``TracedCallback<int32_t, int32_t>`` when the class is
instantiated.
A *callback* ``m_cb`` declarada como um ``TracedCallback<T, T>`` que corresponder a um ``TracedCallback<int32_t, int32_t>`` quando a classe instanciada.
..
Recall that the callback target of a TracedCallback always returns ``void``.
Further recall that there is a one-to-one correspondence between the template
parameter list in the declaration and the formal arguments of the callback
function. Therefore the callback will need to have a function signature that
looks like:
Lembre-se que o destino da *callback* de um TracedCallback sempre retorna ``void``. Lembre tambm que h uma correspondncia de um-para-um entre a lista de parmetros polimrfica e os argumentos formais da funo *callback*. Logo, a *callback* precisa ter uma assinatura de funo similar a:
::
void
MyCallback (int32_t oldValue, int32_t newValue)
{
...
}
..
It probably won't surprise you that this is exactly what we provided in that
simple example we covered so long ago:
Isto exatamente o que ns apresentamos no exemplo simples abordado anteriormente.
::
void
IntTrace (int32_t oldValue, int32_t newValue)
{
std::cout << "Traced " << oldValue << " to " << newValue << std::endl;
}
..
A Real Example
Um Exemplo Real
***************
..
Let's do an example taken from one of the best-known books on TCP around.
"TCP/IP Illustrated, Volume 1: The Protocols," by W. Richard Stevens is a
classic. I just flipped the book open and ran across a nice plot of both the
congestion window and sequence numbers versus time on page 366. Stevens calls
this, "Figure 21.10. Value of cwnd and send sequence number while data is being
transmitted." Let's just recreate the cwnd part of that plot in |ns3|
using the tracing system and ``gnuplot``.
Vamos fazer um exemplo retirado do livro "TCP/IP Illustrated, Volume 1: The Protocols" escrito por W. Richard Stevens. Localizei na pgina 366 do livro um grfico da janela de congestionamento e nmeros de sequncia versus tempo. Stevens denomina de "Figure 21.10. Value of cwnd and send sequence number while data is being transmitted." Vamos recriar a parte *cwnd* daquele grfico em |ns3| usando o sistema de rastreamento e ``gnuplot``.
..
Are There Trace Sources Available?
H Fontes de Rastreamento Disponibilizadas?
+++++++++++++++++++++++++++++++++++++++++++
..
The first thing to think about is how we want to get the data out. What is it
that we need to trace? The first thing to do is to consult "The list of all
trace sources" to see what we have to work with. Recall that this is found
in the |ns3| Doxygen in the "C++ Constructs Used by All Modules" Module section. If you scroll
through the list, you will eventually find:
Primeiro devemos pensar sobre como queremos obter os dados de sada. O que que ns precisamos rastrear? Consultamos ento *"The list of all trace sources"* para sabermos o que temos para trabalhar. Essa seo encontra-se na documentao na seo *"Module"*, no item *"C++ Constructs Used by All Modules"*. Procurando na lista, encontraremos:
::
ns3::TcpNewReno
CongestionWindow: The TCP connection's congestion window
..
It turns out that the |ns3| TCP implementation lives (mostly) in the
file ``src/internet/model/tcp-socket-base.cc`` while congestion control
variants are in files such as ``src/internet/model/tcp-newreno.cc``.
If you don't know this a priori, you can use the recursive grep trick:
A maior parte da implementao do TCP no |ns3| est no arquivo ``src/internet/model/tcp-socket-base.cc`` enquanto variantes do controle de congestionamento esto em arquivos como ``src/internet/model/tcp-newreno.cc``. Se no sabe a priori dessa informao, use:
::
find . -name '*.cc' | xargs grep -i tcp
..
You will find page after page of instances of tcp pointing you to that file.
Haver pginas de respostas apontando para aquele arquivo.
..
If you open ``src/internet/model/tcp-newreno.cc`` in your favorite
editor, you will see right up at the top of the file, the following declarations:
No incio do arquivo ``src/internet/model/tcp-newreno.cc`` h as seguintes declaraes:
::
TypeId
TcpNewReno::GetTypeId ()
{
static TypeId tid = TypeId("ns3::TcpNewReno")
.SetParent<TcpSocketBase> ()
.AddConstructor<TcpNewReno> ()
.AddTraceSource ("CongestionWindow",
"The TCP connection's congestion window",
MakeTraceSourceAccessor (&TcpNewReno::m_cWnd))
;
return tid;
}
..
This should tell you to look for the declaration of ``m_cWnd`` in the header
file ``src/internet/model/tcp-newreno.h``. If you open this file in your
favorite editor, you will find:
Isto deveria gui-lo para localizar a declarao de ``m_cWnd`` no arquivo de cabealho ``src/internet/model/tcp-newreno.h``. Temos nesse arquivo:
::
TracedValue<uint32_t> m_cWnd; //Congestion window
..
You should now understand this code completely. If we have a pointer to the
``TcpNewReno``, we can ``TraceConnect`` to the "CongestionWindow" trace
source if we provide an appropriate callback target. This is the same kind of
trace source that we saw in the simple example at the start of this section,
except that we are talking about ``uint32_t`` instead of ``int32_t``.
Voc deveria entender este cdigo. Se ns temos um ponteiro para ``TcpNewReno``, podemos fazer ``TraceConnect`` para a origem do rastreamento "CongestionWindow" se fornecermos uma *callback* adequada. o mesmo tipo de origem do rastreamento que ns abordamos no exemplo simples no incio da seo, exceto que estamos usando ``uint32_t`` ao invs de ``int32_t``.
..
We now know that we need to provide a callback that returns void and takes
two ``uint32_t`` parameters, the first being the old value and the second
being the new value:
Precisamos prover uma *callback* que retorne ``void`` e receba dois parmetros ``uint32_t``, o primeiro representando o valor antigo e o segundo o novo valor:
::
void
CwndTrace (uint32_t oldValue, uint32_t newValue)
{
...
}
..
What Script to Use?
Qual cdigo Usar?
+++++++++++++++++
..
It's always best to try and find working code laying around that you can
modify, rather than starting from scratch. So the first order of business now
is to find some code that already hooks the "CongestionWindow" trace source
and see if we can modify it. As usual, grep is your friend:
sempre melhor localizar e modificar um cdigo operacional que iniciar do zero. Portanto, vamos procurar uma origem do rastreamento da "CongestionWindow" e verificar se possvel modificar. Para tal, usamos novamente o *grep*:
::
find . -name '*.cc' | xargs grep CongestionWindow
..
This will point out a couple of promising candidates:
``examples/tcp/tcp-large-transfer.cc`` and
``src/test/ns3tcp/ns3tcp-cwnd-test-suite.cc``.
Encontramos alguns candidatos:
``examples/tcp/tcp-large-transfer.cc`` e
``src/test/ns3tcp/ns3tcp-cwnd-test-suite.cc``.
..
We haven't visited any of the test code yet, so let's take a look there. You
will typically find that test code is fairly minimal, so this is probably a
very good bet. Open ``src/test/ns3tcp/ns3tcp-cwnd-test-suite.cc`` in your
favorite editor and search for "CongestionWindow". You will find,
Ns no visitamos nenhum cdigo de teste ainda, ento vamos fazer isto agora. Cdigo de teste pequeno, logo uma tima escolha. Acesse o arquivo ``src/test/ns3tcp/ns3tcp-cwnd-test-suite.cc`` e localize "CongestionWindow". Como resultado, temos
::
ns3TcpSocket->TraceConnectWithoutContext ("CongestionWindow",
MakeCallback (&Ns3TcpCwndTestCase1::CwndChange, this));
..
This should look very familiar to you. We mentioned above that if we had a
"CongestionWindow" trace source. That's exactly what we have here; so it
pointer to the ``TcpNewReno``, we could ``TraceConnect`` to the
turns out that this line of code does exactly what we want. Let's go ahead
and extract the code we need from this function
(``Ns3TcpCwndTestCase1::DoRun (void)``). If you look at this function,
you will find that it looks just like an |ns3| script. It turns out that
is exactly what it is. It is a script run by the test framework, so we can just
pull it out and wrap it in ``main`` instead of in ``DoRun``. Rather than
walk through this, step, by step, we have provided the file that results from
porting this test back to a native |ns3| script --
``examples/tutorial/fifth.cc``.
Como abordado, temos uma origem do rastreamento "CongestionWindow"; ento ela aponta para ``TcpNewReno``, poderamos alterar o ``TraceConnect`` para o que ns desejamos. Vamos extrair o cdigo que precisamos desta funo (``Ns3TcpCwndTestCase1::DoRun (void)``). Se voc observar, perceber que parece como um cdigo |ns3|. E descobre-se exatamente que realmente um cdigo. um cdigo executado pelo `framework` de teste, logo podemos apenas coloc-lo no ``main`` ao invs de ``DoRun``. A traduo deste teste para um cdigo nativo do |ns3| apresentada no arquivo ``examples/tutorial/fifth.cc``.
..
A Common Problem and Solution
Um Problema Comum e a Soluo
+++++++++++++++++++++++++++++
..
The ``fifth.cc`` example demonstrates an extremely important rule that you
must understand before using any kind of ``Attribute``: you must ensure
that the target of a ``Config`` command exists before trying to use it.
This is no different than saying an object must be instantiated before trying
to call it. Although this may seem obvious when stated this way, it does
trip up many people trying to use the system for the first time.
O exemplo ``fifth.cc`` demonstra um importante regra que devemos entender antes de usar qualquer tipo de Atributo: devemos garantir que o alvo de um comando ``Config`` existe antes de tentar us-lo. a mesma ideia que um objeto no pode ser usado sem ser primeiro instanciado. Embora parea bvio, muitas pessoas erram ao usar o sistema pela primeira vez.
..
Let's return to basics for a moment. There are three basic time periods that
exist in any |ns3| script. The first time period is sometimes called
"Configuration Time" or "Setup Time," and is in force during the period
when the ``main`` function of your script is running, but before
``Simulator::Run`` is called. The second time period is sometimes called
"Simulation Time" and is in force during the time period when
``Simulator::Run`` is actively executing its events. After it completes
executing the simulation, ``Simulator::Run`` will return control back to
the ``main`` function. When this happens, the script enters what can be
called "Teardown Time," which is when the structures and objects created
during setup and taken apart and released.
H trs fases bsicas em qualquer cdigo |ns3|. A primeira a chamada de "Configuration Time" ou "Setup Time" e ocorre durante a execuo da funo ``main``, mas antes da chamada ``Simulator::Run``. O segunda fase chamada de "Simulation Time" e quando o ``Simulator::Run`` est executando seus eventos. Aps completar a execuo da simulao, ``Simulator::Run`` devolve o controle a funo ``main``. Quando isto acontece, o cdigo entra na terceira fase, o "Teardown Time", que quando estruturas e objetos criados durante a configurao so analisados e liberados.
..
Perhaps the most common mistake made in trying to use the tracing system is
assuming that entities constructed dynamically during simulation time are
available during configuration time. In particular, an |ns3|
``Socket`` is a dynamic object often created by ``Applications`` to
communicate between ``Nodes``. An |ns3| ``Application``
always has a "Start Time" and a "Stop Time" associated with it. In the
vast majority of cases, an ``Application`` will not attempt to create
a dynamic object until its ``StartApplication`` method is called at some
"Start Time". This is to ensure that the simulation is completely
configured before the app tries to do anything (what would happen if it tried
to connect to a node that didn't exist yet during configuration time).
The answer to this issue is to 1) create a simulator event that is run after the
dynamic object is created and hook the trace when that event is executed; or
2) create the dynamic object at configuration time, hook it then, and give
the object to the system to use during simulation time. We took the second
approach in the ``fifth.cc`` example. This decision required us to create
the ``MyApp`` ``Application``, the entire purpose of which is to take
a ``Socket`` as a parameter.
Talvez o erro mais comum em tentar usar o sistema de rastreamento supor que entidades construdas dinamicamente durante a fase de simulao esto acessveis durante a fase de configurao. Em particular, um ``Socket`` |ns3| um objeto dinmico frequentemente criado por Aplicaes (``Applications``) para comunicao entre ns de redes. Uma Aplicao |ns3| tem um "Start Time" e "Stop Time" associado a ela. Na maioria dos casos, uma Aplicao no tentar criar um objeto dinmico at que seu mtodo ``StartApplication`` chamado
em algum "Start Time". Isto para garantir que a simulao est completamente configurada antes que a aplicao tente fazer alguma coisa (o que aconteceria se tentasse conectar a um n que no existisse durante a fase de configurao). A resposta para esta questo :
1. criar um evento no simulador que executado depois que o objeto dinmico
criado e ativar o rastreador quando aquele evento executado; ou
2. criar o objeto dinmico na fase de configurao, ativ-lo,
e passar o objeto para o sistema usar durante a fase de simulao.
Ns consideramos a segunda abordagem no exemplo ``fifth.cc``. A deciso implicou na criao da Aplicao ``MyApp``, com o propsito de passar um ``Socket`` como parmetro.
..
A fifth.cc Walkthrough
Analisando o exemplo fifth.cc
+++++++++++++++++++++++++++++
..
Now, let's take a look at the example program we constructed by dissecting
the congestion window test. Open ``examples/tutorial/fifth.cc`` in your
favorite editor. You should see some familiar looking code:
Agora, vamos analisar o programa exemplo detalhando o teste da janela de congestionamento.
Segue o cdigo do arquivo localizado em ``examples/tutorial/fifth.cc``:
::
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Include., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <fstream>
#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/internet-module.h"
#include "ns3/point-to-point-module.h"
#include "ns3/applications-module.h"
using namespace ns3;
NS_LOG_COMPONENT_DEFINE ("FifthScriptExample");
..
This has all been covered, so we won't rehash it. The next lines of source are
the network illustration and a comment addressing the problem described above
with ``Socket``.
Todo o cdigo apresentado j foi discutido. As prximas linhas so comentrios apresentando
a estrutura da rede e comentrios abordando o problema descrito com o ``Socket``.
::
// ===========================================================================
//
// node 0 node 1
// +----------------+ +----------------+
// | ns-3 TCP | | ns-3 TCP |
// +----------------+ +----------------+
// | 10.1.1.1 | | 10.1.1.2 |
// +----------------+ +----------------+
// | point-to-point | | point-to-point |
// +----------------+ +----------------+
// | |
// +---------------------+
// 5 Mbps, 2 ms
//
//
// We want to look at changes in the ns-3 TCP congestion window. We need
// to crank up a flow and hook the CongestionWindow attribute on the socket
// of the sender. Normally one would use an on-off application to generate a
// flow, but this has a couple of problems. First, the socket of the on-off
// application is not created until Application Start time, so we wouldn't be
// able to hook the socket (now) at configuration time. Second, even if we
// could arrange a call after start time, the socket is not public so we
// couldn't get at it.
//
// So, we can cook up a simple version of the on-off application that does what
// we want. On the plus side we don't need all of the complexity of the on-off
// application. On the minus side, we don't have a helper, so we have to get
// a little more involved in the details, but this is trivial.
//
// So first, we create a socket and do the trace connect on it; then we pass
// this socket into the constructor of our simple application which we then
// install in the source node.
// ===========================================================================
//
..
This should also be self-explanatory.
..
The next part is the declaration of the ``MyApp`` ``Application`` that
we put together to allow the ``Socket`` to be created at configuration time.
A prxima parte a declarao da Aplicao ``MyApp`` que permite que o ``Socket`` seja criado na fase de configurao.
::
class MyApp : public Application
{
public:
MyApp ();
virtual ~MyApp();
void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize,
uint32_t nPackets, DataRate dataRate);
private:
virtual void StartApplication (void);
virtual void StopApplication (void);
void ScheduleTx (void);
void SendPacket (void);
Ptr<Socket> m_socket;
Address m_peer;
uint32_t m_packetSize;
uint32_t m_nPackets;
DataRate m_dataRate;
EventId m_sendEvent;
bool m_running;
uint32_t m_packetsSent;
};
..
You can see that this class inherits from the |ns3| ``Application``
class. Take a look at ``src/network/model/application.h`` if you are interested in
what is inherited. The ``MyApp`` class is obligated to override the
``StartApplication`` and ``StopApplication`` methods. These methods are
automatically called when ``MyApp`` is required to start and stop sending
data during the simulation.
A classe ``MyApp`` herda a classe ``Application`` do |ns3|. Acesse o arquivo ``src/network/model/application.h`` se estiver interessado sobre detalhes dessa herana. A classe ``MyApp`` obrigada sobrescrever os mtodos ``StartApplication`` e ``StopApplication``. Estes mtodos so automaticamente chamado quando ``MyApp`` solicitada iniciar e parar de enviar dados durante a simulao.
..
How Applications are Started and Stopped (optional)
Como Aplicaes so Iniciadas e Paradas (Opcional)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
..
It is worthwhile to spend a bit of time explaining how events actually get
started in the system. This is another fairly deep explanation, and can be
ignored if you aren't planning on venturing down into the guts of the system.
It is useful, however, in that the discussion touches on how some very important
parts of |ns3| work and exposes some important idioms. If you are
planning on implementing new models, you probably want to understand this
section.
Nesta seo explicado como eventos tem incio no sistema. uma explicao mais detalhada e no necessria se no planeja entender detalhes do sistema. interessante, por outro lado, pois aborda como partes do |ns3| trabalham e mostra alguns detalhes de implementao importantes. Se voc planeja implementar novos modelos, ento deve entender essa seo.
..
The most common way to start pumping events is to start an ``Application``.
This is done as the result of the following (hopefully) familar lines of an
|ns3| script:
A maneira mais comum de iniciar eventos iniciar uma Aplicao. Segue as linhas de um cdigo |ns3| que faz exatamente isso:
::
ApplicationContainer apps = ...
apps.Start (Seconds (1.0));
apps.Stop (Seconds (10.0));
..
The application container code (see ``src/network/helper/application-container.h`` if
you are interested) loops through its contained applications and calls,
O cdigo do continer aplicao (``src/network/helper/application-container.h``) itera pelas aplicaes no continer e chama,
::
app->SetStartTime (startTime);
..
as a result of the ``apps.Start`` call and
como um resultado da chamada ``apps.Start`` e
::
app->SetStopTime (stopTime);
..
as a result of the ``apps.Stop`` call.
como um resultado da chamada ``apps.Stop``.
..
The ultimate result of these calls is that we want to have the simulator
automatically make calls into our ``Applications`` to tell them when to
start and stop. In the case of ``MyApp``, it inherits from class
``Application`` and overrides ``StartApplication``, and
``StopApplication``. These are the functions that will be called by
the simulator at the appropriate time. In the case of ``MyApp`` you
will find that ``MyApp::StartApplication`` does the initial ``Bind``,
and ``Connect`` on the socket, and then starts data flowing by calling
``MyApp::SendPacket``. ``MyApp::StopApplication`` stops generating
packets by cancelling any pending send events and closing the socket.
O ltimo resultado destas chamadas queremos ter o simulador executando chamadas em nossa ``Applications`` para controlar o inicio e a parada. No caso ``MyApp``, herda da classe ``Application`` e sobrescreve ``StartApplication`` e ``StopApplication``. Estas so as funes invocadas pelo simulador no momento certo. No caso de ``MyApp``, o ``MyApp::StartApplication`` faz o ``Bind`` e ``Connect`` no `socket`, em seguida, inicia o fluxo de dados chamando ``MyApp::SendPacket``. ``MyApp::StopApplication`` interrompe a gerao de pacotes cancelando qualquer evento pendente de envio e tambm fechando o socket.
..
One of the nice things about |ns3| is that you can completely
ignore the implementation details of how your ``Application`` is
"automagically" called by the simulator at the correct time. But since
we have already ventured deep into |ns3| already, let's go for it.
Uma das coisas legais sobre o |ns3| que podemos ignorar completamente os detalhes de implementao de como sua Aplicao "automaticamente" chamada pelo simulador no momento correto. De qualquer forma, detalhamos como isso acontece a seguir.
..
If you look at ``src/network/model/application.cc`` you will find that the
``SetStartTime`` method of an ``Application`` just sets the member
variable ``m_startTime`` and the ``SetStopTime`` method just sets
``m_stopTime``. From there, without some hints, the trail will probably
end.
Se observarmos em ``src/network/model/application.cc``, descobriremos que o
mtodo ``SetStartTime`` de uma ``Application`` apenas altera a varivel ``m_startTime`` e o mtodo ``SetStopTime`` apenas altera a varivel ``m_stopTime``.
..
The key to picking up the trail again is to know that there is a global
list of all of the nodes in the system. Whenever you create a node in
a simulation, a pointer to that node is added to the global ``NodeList``.
Para continuar e entender o processo, precisamos saber que h uma lista global de todos os ns no sistema. Sempre que voc cria um n em uma simulao, um ponteiro para aquele n adicionado para a lista global ``NodeList``.
..
Take a look at ``src/network/model/node-list.cc`` and search for
``NodeList::Add``. The public static implementation calls into a private
implementation called ``NodeListPriv::Add``. This is a relatively common
idom in |ns3|. So, take a look at ``NodeListPriv::Add``. There
you will find,
Observe em ``src/network/model/node-list.cc`` e procure por ``NodeList::Add``. A implementao ``public static`` chama uma implementao privada denominada ``NodeListPriv::Add``. Isto comum no |ns3|. Ento, observe ``NodeListPriv::Add`` e encontrar,
::
Simulator::ScheduleWithContext (index, TimeStep (0), &Node::Start, node);
..
This tells you that whenever a ``Node`` is created in a simulation, as
a side-effect, a call to that node's ``Start`` method is scheduled for
you that happens at time zero. Don't read too much into that name, yet.
It doesn't mean that the node is going to start doing anything, it can be
interpreted as an informational call into the ``Node`` telling it that
the simulation has started, not a call for action telling the ``Node``
to start doing something.
Isto significa que sempre que um ``Node`` criado em uma simulao, como uma implicao, uma chamada para o mtodo ``Start`` do n agendada para que ocorra no tempo zero. Isto no significa que o n vai iniciar fazendo alguma coisa, pode ser interpretado como uma chamada informacional no ``Node`` dizendo a ele que a simulao teve incio, no uma chamada para ao dizendo ao ``Node`` iniciar alguma coisa.
..
So, ``NodeList::Add`` indirectly schedules a call to ``Node::Start``
at time zero to advise a new node that the simulation has started. If you
look in ``src/network/model/node.h`` you will, however, not find a method called
``Node::Start``. It turns out that the ``Start`` method is inherited
from class ``Object``. All objects in the system can be notified when
the simulation starts, and objects of class ``Node`` are just one kind
of those objects.
Ento, o ``NodeList::Add`` indiretamente agenda uma chamada para ``Node::Start`` no tempo zero, para informar ao novo n que a simulao foi iniciada. Se olharmos em ``src/network/model/node.h`` no acharemos um mtodo chamado ``Node::Start``. Acontece que o mtodo ``Start`` herdado da classe ``Object``. Todos objetos no sistema podem ser avisados que a simulao iniciou e objetos da classe ``Node`` so exemplos.
..
Take a look at ``src/core/model/object.cc`` next and search for ``Object::Start``.
This code is not as straightforward as you might have expected since
|ns3| ``Objects`` support aggregation. The code in
``Object::Start`` then loops through all of the objects that have been
aggregated together and calls their ``DoStart`` method. This is another
idiom that is very common in |ns3|. There is a public API method,
that stays constant across implementations, that calls a private implementation
method that is inherited and implemented by subclasses. The names are typically
something like ``MethodName`` for the public API and ``DoMethodName`` for
the private API.
Observe em seguida ``src/core/model/object.cc``. Localize por ``Object::Start``. Este cdigo no to simples como voc esperava desde que ``Objects`` |ns3| suportam agregao. O cdigo em ``Object::Start`` ento percorre todos os objetos que esto agregados e chama o mtodo ``DoStart`` de cada um. Este uma outra prtica muito comum em |ns3|. H um mtodo pblica na API, que permanece constante entre implementaes, que chama um mtodo de implementao privada que herdado e implementado por subclasses. Os nomes so tipicamente
algo como ``MethodName`` para os da API pblica e ``DoMethodName`` para os da API privada.
..
This tells us that we should look for a ``Node::DoStart`` method in
``src/network/model/node.cc`` for the method that will continue our trail. If you
locate the code, you will find a method that loops through all of the devices
in the node and then all of the applications in the node calling
``device->Start`` and ``application->Start`` respectively.
Logo, deveramos procurar por um mtodo ``Node::DoStart`` em ``src/network/model/node.cc``. Ao localizar o mtodo, descobrir um mtodo que percorre todos os dispositivos e aplicaes no n chamando respectivamente ``device->Start`` e ``application->Start``.
..
You may already know that classes ``Device`` and ``Application`` both
inherit from class ``Object`` and so the next step will be to look at
what happens when ``Application::DoStart`` is called. Take a look at
``src/network/model/application.cc`` and you will find:
As classes ``Device`` e ``Application`` herdam da classe ``Object``, ento o prximo passo entender o que acontece quando ``Application::DoStart`` executado. Observe o cdigo em ``src/network/model/application.cc``:
::
void
Application::DoStart (void)
{
m_startEvent = Simulator::Schedule (m_startTime, &Application::StartApplication, this);
if (m_stopTime != TimeStep (0))
{
m_stopEvent = Simulator::Schedule (m_stopTime, &Application::StopApplication, this);
}
Object::DoStart ();
}
..
Here, we finally come to the end of the trail. If you have kept it all straight,
when you implement an |ns3| ``Application``, your new application
inherits from class ``Application``. You override the ``StartApplication``
and ``StopApplication`` methods and provide mechanisms for starting and
stopping the flow of data out of your new ``Application``. When a ``Node``
is created in the simulation, it is added to a global ``NodeList``. The act
of adding a node to this ``NodeList`` causes a simulator event to be scheduled
for time zero which calls the ``Node::Start`` method of the newly added
``Node`` to be called when the simulation starts. Since a ``Node`` inherits
from ``Object``, this calls the ``Object::Start`` method on the ``Node``
which, in turn, calls the ``DoStart`` methods on all of the ``Objects``
aggregated to the ``Node`` (think mobility models). Since the ``Node``
``Object`` has overridden ``DoStart``, that method is called when the
simulation starts. The ``Node::DoStart`` method calls the ``Start`` methods
of all of the ``Applications`` on the node. Since ``Applications`` are
also ``Objects``, this causes ``Application::DoStart`` to be called. When
``Application::DoStart`` is called, it schedules events for the
``StartApplication`` and ``StopApplication`` calls on the ``Application``.
These calls are designed to start and stop the flow of data from the
``Application``
Aqui finalizamos nosso detalhamento. Ao implementar uma Aplicao do |ns3|, sua nova aplicao herda da classe ``Application``. Voc sobrescreve os mtodos ``StartApplication`` e ``StopApplication`` e prov mecanismos para iniciar e finalizar o fluxo de dados de sua nova ``Application``. Quando um ``Node`` criado na simulao, ele adicionado a uma lista global ``NodeList``. A ao de adicionar um n na lista faz com que um evento do simulador seja agendado para o tempo zero e que chama o mtodo ``Node::Start`` do ``Node`` recentemente adicionado para ser chamado quando a simulao inicia. Como um ``Node`` herda de ``Object``,
a chamada invoca o mtodo ``Object::Start`` no ``Node``, o qual, por sua vez, chama os mtodos ``DoStart`` em todos os ``Objects`` agregados ao ``Node`` (pense em modelos mveis). Como o ``Node`` ``Object``
tem sobrescritos ``DoStart``, o mtodo chamado quando a simulao inicia. O mtodo ``Node::DoStart`` chama o mtodo ``Start`` de todas as ``Applications`` no n. Por sua vez, ``Applications`` so tambm ``Objects``, o que resulta na invocao do ``Application::DoStart``. Quando ``Application::DoStart`` chamada, ela agenda eventos para as chamadas ``StartApplication`` e ``StopApplication`` na ``Application``. Estas chamadas so projetadas para iniciar e parar o fluxo de dados da ``Application``.
..
This has been another fairly long journey, but it only has to be made once, and
you now understand another very deep piece of |ns3|.
Aps essa longa jornada, voc pode entende melhor outra parte do |ns3|.
..
The MyApp Application
A Aplicao MyApp
~~~~~~~~~~~~~~~~~
..
The ``MyApp`` ``Application`` needs a constructor and a destructor,
of course:
A Aplicao ``MyApp`` precisa de um construtor e um destrutor,
::
MyApp::MyApp ()
: m_socket (0),
m_peer (),
m_packetSize (0),
m_nPackets (0),
m_dataRate (0),
m_sendEvent (),
m_running (false),
m_packetsSent (0)
{
}
MyApp::~MyApp()
{
m_socket = 0;
}
..
The existence of the next bit of code is the whole reason why we wrote this
``Application`` in the first place.
O cdigo seguinte a principal razo da existncia desta Aplicao.
::
void
MyApp::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize,
uint32_t nPackets, DataRate dataRate)
{
m_socket = socket;
m_peer = address;
m_packetSize = packetSize;
m_nPackets = nPackets;
m_dataRate = dataRate;
}
..
This code should be pretty self-explanatory. We are just initializing member
variables. The important one from the perspective of tracing is the
``Ptr<Socket> socket`` which we needed to provide to the application
during configuration time. Recall that we are going to create the ``Socket``
as a ``TcpSocket`` (which is implemented by ``TcpNewReno``) and hook
its "CongestionWindow" trace source before passing it to the ``Setup``
method.
Neste cdigo inicializamos os atributos da classe. Do ponto de vista do rastreamento, a mais importante ``Ptr<Socket> socket`` que deve ser passado para a aplicao durante o fase de configurao. Lembre-se que vamos criar o ``Socket`` como um ``TcpSocket`` (que implementado por ``TcpNewReno``) e associar sua origem do rastreamento de sua *"CongestionWindow"* antes de pass-lo no mtodo ``Setup``.
::
void
MyApp::StartApplication (void)
{
m_running = true;
m_packetsSent = 0;
m_socket->Bind ();
m_socket->Connect (m_peer);
SendPacket ();
}
..
The above code is the overridden implementation ``Application::StartApplication``
that will be automatically called by the simulator to start our ``Application``
running at the appropriate time. You can see that it does a ``Socket`` ``Bind``
operation. If you are familiar with Berkeley Sockets this shouldn't be a surprise.
It performs the required work on the local side of the connection just as you might
expect. The following ``Connect`` will do what is required to establish a connection
with the TCP at ``Address`` m_peer. It should now be clear why we need to defer
a lot of this to simulation time, since the ``Connect`` is going to need a fully
functioning network to complete. After the ``Connect``, the ``Application``
then starts creating simulation events by calling ``SendPacket``.
Este cdigo sobrescreve ``Application::StartApplication`` que ser chamado automaticamente pelo simulador para iniciar a ``Application`` no momento certo. Observamos que realizada uma operao ``Socket`` ``Bind``. Se voc conhece Sockets de Berkeley isto no uma novidade. responsvel pelo conexo no lado do cliente, ou seja, o ``Connect`` estabelece uma conexo usando TCP no endereo ``m_peer``. Por isso, precisamos de uma infraestrutura funcional de rede antes de executar a fase de simulao. Depois do ``Connect``, a ``Application`` inicia a criao dos eventos de simulao chamando ``SendPacket``.
::
void
MyApp::StopApplication (void)
{
m_running = false;
if (m_sendEvent.IsRunning ())
{
Simulator::Cancel (m_sendEvent);
}
if (m_socket)
{
m_socket->Close ();
}
}
..
Every time a simulation event is scheduled, an ``Event`` is created. If the
``Event`` is pending execution or executing, its method ``IsRunning`` will
return ``true``. In this code, if ``IsRunning()`` returns true, we
``Cancel`` the event which removes it from the simulator event queue. By
doing this, we break the chain of events that the ``Application`` is using to
keep sending its ``Packets`` and the ``Application`` goes quiet. After we
quiet the ``Application`` we ``Close`` the socket which tears down the TCP
connection.
A todo instante um evento da simulao agendado, isto , um ``Event`` criado. Se o ``Event`` uma execuo pendente ou est executando, seu mtodo ``IsRunning`` retornar ``true``. Neste cdigo, se ``IsRunning()`` retorna verdadeiro (`true`), ns cancelamos (``Cancel``) o evento, e por consequncia, removido da fila de eventos do simulador. Dessa forma, interrompemos a cadeia de eventos que a
``Application`` est usando para enviar seus ``Packets``. A Aplicao no enviar mais pacotes e em seguida fechamos (``Close``) o `socket` encerrando a conexo TCP.
..
The socket is actually deleted in the destructor when the ``m_socket = 0`` is
executed. This removes the last reference to the underlying Ptr<Socket> which
causes the destructor of that Object to be called.
O socket deletado no destrutor quando ``m_socket = 0`` executado. Isto remove a ltima referncia para Ptr<Socket> que ocasiona o destrutor daquele Objeto ser chamado.
..
Recall that ``StartApplication`` called ``SendPacket`` to start the
chain of events that describes the ``Application`` behavior.
Lembre-se que ``StartApplication`` chamou ``SendPacket`` para iniciar a cadeia de eventos que descreve o comportamento da ``Application``.
::
void
MyApp::SendPacket (void)
{
Ptr<Packet> packet = Create<Packet> (m_packetSize);
m_socket->Send (packet);
if (++m_packetsSent < m_nPackets)
{
ScheduleTx ();
}
}
..
Here, you see that ``SendPacket`` does just that. It creates a ``Packet``
and then does a ``Send`` which, if you know Berkeley Sockets, is probably
just what you expected to see.
Este cdigo apenas cria um pacote (``Packet``) e ento envia (``Send``).
..
It is the responsibility of the ``Application`` to keep scheduling the
chain of events, so the next lines call ``ScheduleTx`` to schedule another
transmit event (a ``SendPacket``) until the ``Application`` decides it
has sent enough.
responsabilidade da ``Application`` gerenciar o agendamento da cadeia de eventos, ento, a chamada ``ScheduleTx`` agenda outro evento de transmisso (um ``SendPacket``) at que a ``Application`` decida que enviou o suficiente.
::
void
MyApp::ScheduleTx (void)
{
if (m_running)
{
Time tNext (Seconds (m_packetSize * 8 / static_cast<double> (m_dataRate.GetBitRate ())));
m_sendEvent = Simulator::Schedule (tNext, &MyApp::SendPacket, this);
}
}
..
Here, you see that ``ScheduleTx`` does exactly that. If the ``Application``
is running (if ``StopApplication`` has not been called) it will schedule a
new event, which calls ``SendPacket`` again. The alert reader will spot
something that also trips up new users. The data rate of an ``Application`` is
just that. It has nothing to do with the data rate of an underlying ``Channel``.
This is the rate at which the ``Application`` produces bits. It does not take
into account any overhead for the various protocols or channels that it uses to
transport the data. If you set the data rate of an ``Application`` to the same
data rate as your underlying ``Channel`` you will eventually get a buffer overflow.
Enquanto a ``Application`` est executando, ``ScheduleTx`` agendar um novo evento, que chama ``SendPacket`` novamente. Verifica-se que a taxa de transmisso sempre a mesma, ou seja, a taxa que a ``Application`` produz os bits. No considera nenhuma sobrecarga de protocolos ou canais fsicos no transporte dos dados. Se alterarmos a taxa de transmisso da ``Application`` para a mesma taxa dos canais fsicos, poderemos
ter um estouro de *buffer*.
..
The Trace Sinks
Destino do Rastreamento
~~~~~~~~~~~~~~~~~~~~~~~
..
The whole point of this exercise is to get trace callbacks from TCP indicating the
congestion window has been updated. The next piece of code implements the
corresponding trace sink:
O foco deste exerccio obter notificaes (*callbacks*) do TCP indicando a modificao da janela de congestionamento. O cdigo a seguir implementa o destino do rastreamento.
::
static void
CwndChange (uint32_t oldCwnd, uint32_t newCwnd)
{
NS_LOG_UNCOND (Simulator::Now ().GetSeconds () << "\t" << newCwnd);
}
..
This should be very familiar to you now, so we won't dwell on the details. This
function just logs the current simulation time and the new value of the
congestion window every time it is changed. You can probably imagine that you
could load the resulting output into a graphics program (gnuplot or Excel) and
immediately see a nice graph of the congestion window behavior over time.
Esta funo registra o tempo de simulao atual e o novo valor da janela de congestionamento toda vez que modificada. Poderamos usar essa sada para construir um grfico do comportamento da janela de congestionamento com relao ao tempo.
..
We added a new trace sink to show where packets are dropped. We are going to
add an error model to this code also, so we wanted to demonstrate this working.
Ns adicionamos um novo destino do rastreamento para mostrar onde pacotes so perdidos. Vamos adicionar um modelo de erro.
::
static void
RxDrop (Ptr<const Packet> p)
{
NS_LOG_UNCOND ("RxDrop at " << Simulator::Now ().GetSeconds ());
}
..
This trace sink will be connected to the "PhyRxDrop" trace source of the
point-to-point NetDevice. This trace source fires when a packet is dropped
by the physical layer of a ``NetDevice``. If you take a small detour to the
source (``src/point-to-point/model/point-to-point-net-device.cc``) you will
see that this trace source refers to ``PointToPointNetDevice::m_phyRxDropTrace``.
If you then look in ``src/point-to-point/model/point-to-point-net-device.h``
for this member variable, you will find that it is declared as a
``TracedCallback<Ptr<const Packet> >``. This should tell you that the
callback target should be a function that returns void and takes a single
parameter which is a ``Ptr<const Packet>`` -- just what we have above.
Este destino do rastreamento ser conectado a origem do rastreamento "PhyRxDrop" do ``NetDevice`` ponto-a-ponto. Esta origem do rastreamento dispara quando um pacote removido da camada fsica de um ``NetDevice``. Se olharmos rapidamente ``src/point-to-point/model/point-to-point-net-device.cc`` verificamos que a origem do rastreamento refere-se a ``PointToPointNetDevice::m_phyRxDropTrace``. E se procurarmos em ``src/point-to-point/model/point-to-point-net-device.h`` por essa varivel, encontraremos que ela est declarada como uma ``TracedCallback<Ptr<const Packet> >``. Isto significa que nosso *callback* deve ser uma funo que retorna ``void`` e tem um nico parmetro ``Ptr<const Packet>``.
..
The Main Program
O Programa Principal
~~~~~~~~~~~~~~~~~~~~
..
The following code should be very familiar to you by now:
O cdigo a seguir corresponde ao incio da funo principal:
::
int
main (int argc, char *argv[])
{
NodeContainer nodes;
nodes.Create (2);
PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));
NetDeviceContainer devices;
devices = pointToPoint.Install (nodes);
..
This creates two nodes with a point-to-point channel between them, just as
shown in the illustration at the start of the file.
So criados dois ns ligados por um canal ponto-a-ponto, como mostrado na ilustrao
no incio do arquivo.
..
The next few lines of code show something new. If we trace a connection that
behaves perfectly, we will end up with a monotonically increasing congestion
window. To see any interesting behavior, we really want to introduce link
errors which will drop packets, cause duplicate ACKs and trigger the more
interesting behaviors of the congestion window.
Nas prximas linhas, temos um cdigo com algumas informaes novas. Se ns
rastrearmos uma conexo que comporta-se perfeitamente, terminamos com um
janela de congestionamento que aumenta monoliticamente. Para observarmos um
comportamento interessante, introduzimos erros que causaro perda de pacotes,
duplicao de ACK's e assim, introduz comportamentos mais interessantes a
janela de congestionamento.
..
|ns3| provides ``ErrorModel`` objects which can be attached to
``Channels``. We are using the ``RateErrorModel`` which allows us
to introduce errors into a ``Channel`` at a given *rate*.
O |ns3| prov objetos de um modelo de erros (``ErrorModel``) que pode ser adicionado aos canais (``Channels``). Ns usamos o ``RateErrorModel`` que permite introduzir erros no canal dada uma *taxa*.
::
Ptr<RateErrorModel> em = CreateObjectWithAttributes<RateErrorModel> (
"RanVar", RandomVariableValue (UniformVariable (0., 1.)),
"ErrorRate", DoubleValue (0.00001));
devices.Get (1)->SetAttribute ("ReceiveErrorModel", PointerValue (em));
..
The above code instantiates a ``RateErrorModel`` Object. Rather than
using the two-step process of instantiating it and then setting Attributes,
we use the convenience function ``CreateObjectWithAttributes`` which
allows us to do both at the same time. We set the "RanVar"
``Attribute`` to a random variable that generates a uniform distribution
from 0 to 1. We also set the "ErrorRate" ``Attribute``.
We then set the resulting instantiated ``RateErrorModel`` as the error
model used by the point-to-point ``NetDevice``. This will give us some
retransmissions and make our plot a little more interesting.
O cdigo instancia um objeto ``RateErrorModel``. Para simplificar usamos a funo ``CreateObjectWithAttributes`` que instancia e configura os Atributos. O Atributo "RanVar" foi configurado para uma varivel randmica que gera uma distribuio uniforme entre 0 e 1. O Atributo "ErrorRate" tambm foi alterado. Por fim, configuramos o modelo erro no ``NetDevice`` ponto-a-ponto modificando o atributo "ReceiveErrorModel". Isto causar retransmisses e o grfico ficar mais interessante.
::
InternetStackHelper stack;
stack.Install (nodes);
Ipv4AddressHelper address;
address.SetBase ("10.1.1.0", "255.255.255.252");
Ipv4InterfaceContainer interfaces = address.Assign (devices);
..
The above code should be familiar. It installs internet stacks on our two
nodes and creates interfaces and assigns IP addresses for the point-to-point
devices.
Neste cdigo configura a pilha de protocolos da internet nos dois ns de rede, cria interfaces e associa endereos IP para os dispositivos ponto-a-ponto.
..
Since we are using TCP, we need something on the destination node to receive
TCP connections and data. The ``PacketSink`` ``Application`` is commonly
used in |ns3| for that purpose.
Como estamos usando TCP, precisamos de um n de destino para receber as conexes e os dados. O ``PacketSink`` ``Application`` comumente usado no |ns3| para este propsito.
::
uint16_t sinkPort = 8080;
Address sinkAddress (InetSocketAddress(interfaces.GetAddress (1), sinkPort));
PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory",
InetSocketAddress (Ipv4Address::GetAny (), sinkPort));
ApplicationContainer sinkApps = packetSinkHelper.Install (nodes.Get (1));
sinkApps.Start (Seconds (0.));
sinkApps.Stop (Seconds (20.));
..
This should all be familiar, with the exception of,
Este cdigo deveria ser familiar, com exceo de,
::
PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory",
InetSocketAddress (Ipv4Address::GetAny (), sinkPort));
..
This code instantiates a ``PacketSinkHelper`` and tells it to create sockets
using the class ``ns3::TcpSocketFactory``. This class implements a design
pattern called "object factory" which is a commonly used mechanism for
specifying a class used to create objects in an abstract way. Here, instead of
having to create the objects themselves, you provide the ``PacketSinkHelper``
a string that specifies a ``TypeId`` string used to create an object which
can then be used, in turn, to create instances of the Objects created by the
factory.
Este cdigo instancia um ``PacketSinkHelper`` e cria sockets usando a classe ``ns3::TcpSocketFactory``. Esta classe implementa o padro de projeto "fbrica de objetos". Dessa forma, em vez de criar os objetos diretamente, fornecemos ao ``PacketSinkHelper`` um texto que especifica um ``TypeId`` usado para criar
um objeto que, por sua vez, pode ser usado para criar instncias de Objetos criados pela implementao da fbrica de objetos.
..
The remaining parameter tells the ``Application`` which address and port it
should ``Bind`` to.
O parmetro seguinte especifica o endereo e a porta para o mapeamento.
..
The next two lines of code will create the socket and connect the trace source.
As prximas duas linhas do cdigo criam o `socket` e conectam a origem do rastreamento.
::
Ptr<Socket> ns3TcpSocket = Socket::CreateSocket (nodes.Get (0),
TcpSocketFactory::GetTypeId ());
ns3TcpSocket->TraceConnectWithoutContext ("CongestionWindow",
MakeCallback (&CwndChange));
..
The first statement calls the static member function ``Socket::CreateSocket``
and provides a ``Node`` and an explicit ``TypeId`` for the object factory
used to create the socket. This is a slightly lower level call than the
``PacketSinkHelper`` call above, and uses an explicit C++ type instead of
one referred to by a string. Otherwise, it is conceptually the same thing.
A primeira declarao chama a funo esttica ``Socket::CreateSocket`` e passa um ``Node`` e um ``TypeId`` para o objeto fbrica usado para criar o `socket`.
..
Once the ``TcpSocket`` is created and attached to the ``Node``, we can
use ``TraceConnectWithoutContext`` to connect the CongestionWindow trace
source to our trace sink.
Uma vez que o ``TcpSocket`` criado e adicionado ao ``Node``, ns usamos ``TraceConnectWithoutContext`` para conectar a origem do rastreamento "CongestionWindow" para o nosso destino do rastreamento.
..
Recall that we coded an ``Application`` so we could take that ``Socket``
we just made (during configuration time) and use it in simulation time. We now
have to instantiate that ``Application``. We didn't go to any trouble to
create a helper to manage the ``Application`` so we are going to have to
create and install it "manually". This is actually quite easy:
Codificamos uma ``Application`` ento podemos obter um ``Socket`` (durante a fase de configurao) e usar na fase de simulao. Temos agora que instanciar a ``Application``. Para tal, segue os passos:
::
Ptr<MyApp> app = CreateObject<MyApp> ();
app->Setup (ns3TcpSocket, sinkAddress, 1040, 1000, DataRate ("1Mbps"));
nodes.Get (0)->AddApplication (app);
app->Start (Seconds (1.));
app->Stop (Seconds (20.));
..
The first line creates an ``Object`` of type ``MyApp`` -- our
``Application``. The second line tells the ``Application`` what
``Socket`` to use, what address to connect to, how much data to send
at each send event, how many send events to generate and the rate at which
to produce data from those events.
A primeira linha cria um Objeto do tipo ``MyApp`` -- nossa ``Application``. A segunda linha especifica o `socket`, o endereo de conexo, a quantidade de dados a ser enviada em cada evento, a quantidade de eventos de transmisso a ser gerados e a taxa de produo de dados para estes eventos.
Next, we manually add the ``MyApp Application`` to the source node
and explicitly call the ``Start`` and ``Stop`` methods on the
``Application`` to tell it when to start and stop doing its thing.
Depois, adicionamos a ``MyApp Application`` para o n origem e chamamos os mtodos ``Start`` e ``Stop`` para dizer quando e iniciar e parar a simulao.
..
We need to actually do the connect from the receiver point-to-point ``NetDevice``
to our callback now.
Precisamos agora fazer a conexo entre o receptor com nossa *callback*.
::
devices.Get (1)->TraceConnectWithoutContext("PhyRxDrop", MakeCallback (&RxDrop));
..
It should now be obvious that we are getting a reference to the receiving
``Node NetDevice`` from its container and connecting the trace source defined
by the attribute "PhyRxDrop" on that device to the trace sink ``RxDrop``.
Estamos obtendo uma referncia para o ``Node NetDevice`` receptor e conectando a origem do rastreamento pelo Atributo "PhyRxDrop" do dispositivo no destino do rastreamento ``RxDrop``.
..
Finally, we tell the simulator to override any ``Applications`` and just
stop processing events at 20 seconds into the simulation.
Finalmente, dizemos ao simulador para sobrescrever qualquer ``Applications`` e parar o processamento de eventos em 20 segundos na simulao.
::
Simulator::Stop (Seconds(20));
Simulator::Run ();
Simulator::Destroy ();
return 0;
}
..
Recall that as soon as ``Simulator::Run`` is called, configuration time
ends, and simulation time begins. All of the work we orchestrated by
creating the ``Application`` and teaching it how to connect and send
data actually happens during this function call.
Lembre-se que quando ``Simulator::Run`` chamado, a fase de configurao termina e a fase de simulao inicia. Todo o processo descrito anteriormente ocorre durante a chamada dessa funo.
..
As soon as ``Simulator::Run`` returns, the simulation is complete and
we enter the teardown phase. In this case, ``Simulator::Destroy`` takes
care of the gory details and we just return a success code after it completes.
Aps o retorno do ``Simulator::Run``, a simulao terminada e entramos na fase de finalizao. Neste caso, ``Simulator::Destroy`` executa a tarefa pesada e ns apenas retornamos o cdigo de sucesso.
..
Running fifth.cc
Executando fifth.cc
+++++++++++++++++++
..
Since we have provided the file ``fifth.cc`` for you, if you have built
your distribution (in debug mode since it uses NS_LOG -- recall that optimized
builds optimize out NS_LOGs) it will be waiting for you to run.
O arquivo ``fifth.cc`` distribudo no cdigo fonte, no diretrio ``examples/tutorial``. Para executar:
::
./waf --run fifth
Waf: Entering directory `/home/craigdo/repos/ns-3-allinone-dev/ns-3-dev/build
Waf: Leaving directory `/home/craigdo/repos/ns-3-allinone-dev/ns-3-dev/build'
'build' finished successfully (0.684s)
1.20919 1072
1.21511 1608
1.22103 2144
...
1.2471 8040
1.24895 8576
1.2508 9112
RxDrop at 1.25151
...
..
You can probably see immediately a downside of using prints of any kind in your
traces. We get those extraneous waf messages printed all over our interesting
information along with those RxDrop messages. We will remedy that soon, but I'm
sure you can't wait to see the results of all of this work. Let's redirect that
output to a file called ``cwnd.dat``:
Podemos observar o lado negativo de usar "prints" de qualquer tipo no rastreamento. Temos mensagens ``waf`` sendo impressas sobre a informao relevante. Vamos resolver esse problema, mas primeiro vamos verificar o resultado redirecionando a sada para um arquivo ``cwnd.dat``:
::
./waf --run fifth > cwnd.dat 2>&1
..
Now edit up "cwnd.dat" in your favorite editor and remove the waf build status
and drop lines, leaving only the traced data (you could also comment out the
``TraceConnectWithoutContext("PhyRxDrop", MakeCallback (&RxDrop));`` in the
script to get rid of the drop prints just as easily.
Removemos as mensagens do ``waf`` e deixamos somente os dados rastreados. Pode-se tambm comentar as mensagens de "RxDrop...".
..
You can now run gnuplot (if you have it installed) and tell it to generate some
pretty pictures:
Agora podemos executar o gnuplot (se instalado) e gerar um grfico:
::
gnuplot> set terminal png size 640,480
gnuplot> set output "cwnd.png"
gnuplot> plot "cwnd.dat" using 1:2 title 'Congestion Window' with linespoints
gnuplot> exit
..
You should now have a graph of the congestion window versus time sitting in the
file "cwnd.png" that looks like:
Devemos obter um grfico da janela de congestionamento pelo tempo no arquivo "cwnd.png", similar ao grfico 7.1:
figure:: figures/cwnd.png
Grfico da janela de congestionamento versus tempo.
..
Using Mid-Level Helpers
Usando Auxiliares Intermedirios
++++++++++++++++++++++++++++++++
..
In the previous section, we showed how to hook a trace source and get hopefully
interesting information out of a simulation. Perhaps you will recall that we
called logging to the standard output using ``std::cout`` a "Blunt Instrument"
much earlier in this chapter. We also wrote about how it was a problem having
to parse the log output in order to isolate interesting information. It may
have occurred to you that we just spent a lot of time implementing an example
that exhibits all of the problems we purport to fix with the |ns3| tracing
system! You would be correct. But, bear with us. We're not done yet.
Na seo anterior, mostramos como adicionar uma origem do rastreamento e obter informaes de interesse fora da simulao. Entretanto, no incio do captulo foi comentado que imprimir informaes na sada padro no uma boa prtica. Alm disso, comentamos que no interessante realizar processamento sobre a sada para isolar a informao de interesse. Podemos pensar que perdemos muito tempo em um exemplo que apresenta todos os problemas que propomos resolver usando o sistema de rastreamento do |ns3|. Voc estaria correto, mas ns ainda no terminamos.
..
One of the most important things we want to do is to is to have the ability to
easily control the amount of output coming out of the simulation; and we also
want to save those data to a file so we can refer back to it later. We can use
the mid-level trace helpers provided in |ns3| to do just that and complete
the picture.
Uma da coisas mais importantes que queremos fazer controlar a quantidade de sada da simulao. Ns podemos usar assistentes de rastreamento intermedirios fornecido pelo |ns3| para alcanar com sucesso esse objetivo.
..
We provide a script that writes the cwnd change and drop events developed in
the example ``fifth.cc`` to disk in separate files. The cwnd changes are
stored as a tab-separated ASCII file and the drop events are stored in a pcap
file. The changes to make this happen are quite small.
Fornecemos um cdigo que separa em arquivos distintos no disco os eventos de modificao da janela e os eventos de remoo. As alteraes em cwnd so armazenadas em um arquivo ASCII separadas por TAB e os eventos de remoo so armazenados em um arquivo *pcap*. As alteraes para obter esse resultado so pequenas.
..
A sixth.cc Walkthrough
Analisando sixth.cc
~~~~~~~~~~~~~~~~~~~
..
Let's take a look at the changes required to go from ``fifth.cc`` to
``sixth.cc``. Open ``examples/tutorial/fifth.cc`` in your favorite
editor. You can see the first change by searching for CwndChange. You will
find that we have changed the signatures for the trace sinks and have added
a single line to each sink that writes the traced information to a stream
representing a file.
Vamos verificar as mudanas do arquivo ``fifth.cc`` para o ``sixth.cc``. Verificamos a primeira mudana em ``CwndChange``. Notamos que as assinaturas para o destino do rastreamento foram alteradas e que foi adicionada uma linha para cada um que escreve a informao rastreada para um fluxo (*stream*) representando um arquivo
::
static void
CwndChange (Ptr<OutputStreamWrapper> stream, uint32_t oldCwnd, uint32_t newCwnd)
{
NS_LOG_UNCOND (Simulator::Now ().GetSeconds () << "\t" << newCwnd);
*stream->GetStream () << Simulator::Now ().GetSeconds () << "\t"
<< oldCwnd << "\t" << newCwnd << std::endl;
}
static void
RxDrop (Ptr<PcapFileWrapper> file, Ptr<const Packet> p)
{
NS_LOG_UNCOND ("RxDrop at " << Simulator::Now ().GetSeconds ());
file->Write(Simulator::Now(), p);
}
..
We have added a "stream" parameter to the ``CwndChange`` trace sink.
This is an object that holds (keeps safely alive) a C++ output stream. It
turns out that this is a very simple object, but one that manages lifetime
issues for the stream and solves a problem that even experienced C++ users
run into. It turns out that the copy constructor for ostream is marked
private. This means that ostreams do not obey value semantics and cannot
be used in any mechanism that requires the stream to be copied. This includes
the |ns3| callback system, which as you may recall, requires objects
that obey value semantics. Further notice that we have added the following
line in the ``CwndChange`` trace sink implementation:
Um parmetro "stream" foi adicionado para o destino do rastreamento ``CwndChange``. Este um objeto que armazena (mantm seguramente vivo) um fluxo de sada em C++. Isto resulta em um objeto muito simples, mas que gerncia problemas no ciclo de vida para fluxos e resolve um problema que mesmo programadores experientes de C++ tem dificuldades. Resulta que o construtor de cpia para o fluxo de sada (*ostream*) marcado como privado. Isto significa que fluxos de sada no seguem a semntica de passagem por valor e no podem ser usados em mecanismos que necessitam que o fluxo seja copiado. Isto inclui o sistema de *callback* do |ns3|. Alm disso, adicionamos a seguinte linha:
::
*stream->GetStream () << Simulator::Now ().GetSeconds () << "\t" << oldCwnd
<< "\t" << newCwnd << std::endl;
..
This would be very familiar code if you replaced ``*stream->GetStream ()``
with ``std::cout``, as in:
que substitui ``std::cout`` por ``*stream->GetStream ()``
::
std::cout << Simulator::Now ().GetSeconds () << "\t" << oldCwnd << "\t" <<
newCwnd << std::endl;
..
This illustrates that the ``Ptr<OutputStreamWrapper>`` is really just
carrying around a ``std::ofstream`` for you, and you can use it here like
any other output stream.
Isto demostra que o ``Ptr<OutputStreamWrapper>`` est apenas encapsulando um ``std::ofstream``, logo pode ser usado como qualquer outro fluxo de sada.
..
A similar situation happens in ``RxDrop`` except that the object being
passed around (a ``Ptr<PcapFileWrapper>``) represents a pcap file. There
is a one-liner in the trace sink to write a timestamp and the contents of the
packet being dropped to the pcap file:
Uma situao similar ocorre em ``RxDrop``, exceto que o objeto passado (``Ptr<PcapFileWrapper>``) representa um arquivo pcap. H uma linha no *trace sink* para escrever um marcador de tempo (*timestamp*) eo contedo do pacote perdido para o arquivo pcap.
::
file->Write(Simulator::Now(), p);
..
Of course, if we have objects representing the two files, we need to create
them somewhere and also cause them to be passed to the trace sinks. If you
look in the ``main`` function, you will find new code to do just that:
claro, se ns temos objetos representando os dois arquivos, precisamos cri-los em algum lugar e tambm pass-los aos *trace sinks*. Se observarmos a funo ``main``, temos o cdigo:
::
AsciiTraceHelper asciiTraceHelper;
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("sixth.cwnd");
ns3TcpSocket->TraceConnectWithoutContext ("CongestionWindow",
MakeBoundCallback (&CwndChange, stream));
...
PcapHelper pcapHelper;
Ptr<PcapFileWrapper> file = pcapHelper.CreateFile ("sixth.pcap",
std::ios::out, PcapHelper::DLT_PPP);
devices.Get (1)->TraceConnectWithoutContext("PhyRxDrop",
MakeBoundCallback (&RxDrop, file));
..
In the first section of the code snippet above, we are creating the ASCII
trace file, creating an object responsible for managing it and using a
variant of the callback creation function to arrange for the object to be
passed to the sink. Our ASCII trace helpers provide a rich set of
functions to make using text (ASCII) files easy. We are just going to
illustrate the use of the file stream creation function here.
Na primeira seo do cdigo, criamos o arquivo de rastreamento ASCII e o objeto responsvel para gerenci-lo. Em seguida, usando uma das formas da funo para criao da *callback* permitimos o objeto ser passado para o destino do rastreamento. As classes assistentes para rastreamento ASCII fornecem um vasto conjunto de funes para facilitar a manipulao de arquivos texto. Neste exemplo, focamos apenas na criao do arquivo para o fluxo de sada.
..
The ``CreateFileStream{}`` function is basically going to instantiate
a std::ofstream object and create a new file (or truncate an existing file).
This ofstream is packaged up in an |ns3| object for lifetime management
and copy constructor issue resolution.
A funo ``CreateFileStream()`` instancia um objeto ``std::ofstream`` e cria um novo arquivo. O fluxo de sada ``ofstream`` encapsulado em um objeto do |ns3| para gerenciamento do ciclo de vida e para resolver o
problema do construtor de cpia.
..
We then take this |ns3| object representing the file and pass it to
``MakeBoundCallback()``. This function creates a callback just like
``MakeCallback()``, but it "binds" a new value to the callback. This
value is added to the callback before it is called.
Ento pegamos o objeto que representa o arquivo e passamos para ``MakeBoundCallback()``. Esta funo cria um *callback* como ``MakeCallback()``, mas "associa" um novo valor para o *callback*. Este valor adicionado ao *callback* antes de sua invocao.
..
Essentially, ``MakeBoundCallback(&CwndChange, stream)`` causes the trace
source to add the additional "stream" parameter to the front of the formal
parameter list before invoking the callback. This changes the required
signature of the ``CwndChange`` sink to match the one shown above, which
includes the "extra" parameter ``Ptr<OutputStreamWrapper> stream``.
Essencialmente, ``MakeBoundCallback(&CwndChange, stream)`` faz com que a origem do rastreamento adicione um parmetro extra "fluxo" aps a lista formal de parmetros antes de invocar o *callback*. Esta mudana est de acordo com o apresentado anteriormente, a qual inclui o parmetro ``Ptr<OutputStreamWrapper> stream``.
..
In the second section of code in the snippet above, we instantiate a
``PcapHelper`` to do the same thing for our pcap trace file that we did
with the ``AsciiTraceHelper``. The line of code,
Na segunda seo de cdigo, instanciamos um ``PcapHelper`` para fazer a mesma coisa para o arquivo de rastreamento pcap. A linha de cdigo,
::
Ptr<PcapFileWrapper> file = pcapHelper.CreateFile ("sixth.pcap", "w",
PcapHelper::DLT_PPP);
..
creates a pcap file named "sixth.pcap" with file mode "w". This means that
the new file is to truncated if an existing file with that name is found. The
final parameter is the "data link type" of the new pcap file. These are
the same as the pcap library data link types defined in ``bpf.h`` if you are
familar with pcap. In this case, ``DLT_PPP`` indicates that the pcap file
is going to contain packets prefixed with point to point headers. This is true
since the packets are coming from our point-to-point device driver. Other
common data link types are DLT_EN10MB (10 MB Ethernet) appropriate for csma
devices and DLT_IEEE802_11 (IEEE 802.11) appropriate for wifi devices. These
are defined in ``src/network/helper/trace-helper.h"`` if you are interested in seeing
the list. The entries in the list match those in ``bpf.h`` but we duplicate
them to avoid a pcap source dependence.
cria um arquivo pcap chamado "sixth.pcap" no modo "w" (escrita). O parmetro final o "tipo da ligao de dados" do arquivo pcap. As opes esto definidas em ``bpf.h``. Neste caso, ``DLT_PPP`` indica que o arquivo pcap dever conter pacotes prefixado com cabealhos ponto-a-ponto. Isto verdade pois os pacotes esto chegando de nosso `driver` de dispositivo ponto-a-ponto. Outros tipos de ligao de dados comuns so DLT_EN10MB (10 MB Ethernet) apropriado para dispositivos CSMA e DLT_IEEE802_11 (IEEE 802.11) apropriado para dispositivos sem fio. O arquivo ``src/network/helper/trace-helper.h"`` define uma lista com os tipos. As entradas na lista so idnticas as definidas em ``bpf.h``, pois foram duplicadas para evitar um dependncia com o pcap.
..
A |ns3| object representing the pcap file is returned from ``CreateFile``
and used in a bound callback exactly as it was in the ascii case.
Um objeto |ns3| representando o arquivo pcap retornado de ``CreateFile`` e usado em uma *callback* exatamente como no caso ASCII.
..
An important detour: It is important to notice that even though both of these
objects are declared in very similar ways,
importante observar que ambos objetos so declarados de maneiras muito similares,
::
Ptr<PcapFileWrapper> file ...
Ptr<OutputStreamWrapper> stream ...
..
The underlying objects are entirely different. For example, the
Ptr<PcapFileWrapper> is a smart pointer to an |ns3| Object that is a
fairly heaviweight thing that supports ``Attributes`` and is integrated into
the config system. The Ptr<OutputStreamWrapper>, on the other hand, is a smart
pointer to a reference counted object that is a very lightweight thing.
Remember to always look at the object you are referencing before making any
assumptions about the "powers" that object may have.
Mas os objetos internos so inteiramente diferentes. Por exemplo, o Ptr<PcapFileWrapper> um ponteiro para um objeto |ns3| que suporta ``Attributes`` e integrado dentro do sistema de configurao. O Ptr<OutputStreamWrapper>, por outro lado, um ponteiro para uma referncia para um simples objeto contado. Lembre-se sempre de analisar o objeto que voc est referenciando antes de fazer suposies sobre os "poderes" que o objeto pode ter.
..
For example, take a look at ``src/network/utils/pcap-file-wrapper.h`` in the
distribution and notice,
Por exemplo, acesse o arquivo ``src/network/utils/pcap-file-wrapper.h`` e observe,
::
class PcapFileWrapper : public Object
..
that class ``PcapFileWrapper`` is an |ns3| Object by virtue of
its inheritance. Then look at ``src/network/model/output-stream-wrapper.h`` and
notice,
que a classe ``PcapFileWrapper`` um ``Object`` |ns3| por herana. J no arquivo ``src/network/model/output-stream-wrapper.h``, observe,
::
class OutputStreamWrapper : public SimpleRefCount<OutputStreamWrapper>
..
that this object is not an |ns3| Object at all, it is "merely" a
C++ object that happens to support intrusive reference counting.
que no um ``Object`` |ns3|, mas um objeto C++ que suporta contagem de referncia.
..
The point here is that just because you read Ptr<something> it does not necessarily
mean that "something" is an |ns3| Object on which you can hang |ns3|
``Attributes``, for example.
A questo que se voc tem um Ptr<alguma_coisa>, no necessariamente significa que "alguma_coisa" um ``Object`` |ns3|, no qual voc pode modificar ``Attributes``, por exemplo.
..
Now, back to the example. If you now build and run this example,
Voltando ao exemplo. Se compilarmos e executarmos o exemplo,
::
./waf --run sixth
..
you will see the same messages appear as when you ran "fifth", but two new
files will appear in the top-level directory of your |ns3| distribution.
Veremos as mesmas mensagens do "fifth", mas dois novos arquivos aparecero no diretrio base de sua distribuio do |ns3|.
::
sixth.cwnd sixth.pcap
..
Since "sixth.cwnd" is an ASCII text file, you can view it with ``cat``
or your favorite file viewer.
Como "sixth.cwnd" um arquivo texto ASCII, voc pode visualizar usando *cat* ou um editor de texto.
::
1.20919 536 1072
1.21511 1072 1608
...
9.30922 8893 8925
9.31754 8925 8957
..
You have a tab separated file with a timestamp, an old congestion window and a
new congestion window suitable for directly importing into your plot program.
There are no extraneous prints in the file, no parsing or editing is required.
Cada linha tem um marcador de tempo, o valor da janela de congestionamento e o valor da nova janela de congestionamento separados por tabulao, para importar diretamente para seu programa de plotagem de grficos.
No h nenhuma outra informao alm da rastreada, logo no necessrio processamento ou edio do arquivo.
..
Since "sixth.pcap" is a pcap file, you can view it with ``tcpdump``.
Como "sixth.pcap" um arquivo pcap, voc pode visualizar usando o ``tcpdump`` ou ``wireshark``.
::
reading from file ../../sixth.pcap, link-type PPP (PPP)
1.251507 IP 10.1.1.1.49153 > 10.1.1.2.8080: . 17689:18225(536) ack 1 win 65535
1.411478 IP 10.1.1.1.49153 > 10.1.1.2.8080: . 33808:34312(504) ack 1 win 65535
...
7.393557 IP 10.1.1.1.49153 > 10.1.1.2.8080: . 781568:782072(504) ack 1 win 65535
8.141483 IP 10.1.1.1.49153 > 10.1.1.2.8080: . 874632:875168(536) ack 1 win 65535
..
You have a pcap file with the packets that were dropped in the simulation. There
are no other packets present in the file and there is nothing else present to
make life difficult.
Voc tem um arquivo pcap com os pacotes que foram descartados na simulao. No h nenhum outro pacote presente no arquivo e nada mais para dificultar sua anlise.
..
It's been a long journey, but we are now at a point where we can appreciate the
|ns3| tracing system. We have pulled important events out of the middle
of a TCP implementation and a device driver. We stored those events directly in
files usable with commonly known tools. We did this without modifying any of the
core code involved, and we did this in only 18 lines of code:
Foi uma longa jornada, mas agora entendemos porque o sistema de rastreamento interessante. Ns obtemos e armazenamos importantes eventos da implementao do TCP e do `driver` de dispositivo. E no modificamos nenhuma linha do cdigo do ncleo do |ns3|, e ainda fizemos isso com apenas 18 linhas de cdigo:
::
static void
CwndChange (Ptr<OutputStreamWrapper> stream, uint32_t oldCwnd, uint32_t newCwnd)
{
NS_LOG_UNCOND (Simulator::Now ().GetSeconds () << "\t" << newCwnd);
*stream->GetStream () << Simulator::Now ().GetSeconds () << "\t" <<
oldCwnd << "\t" << newCwnd << std::endl;
}
...
AsciiTraceHelper asciiTraceHelper;
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("sixth.cwnd");
ns3TcpSocket->TraceConnectWithoutContext ("CongestionWindow",
MakeBoundCallback (&CwndChange, stream));
...
static void
RxDrop (Ptr<PcapFileWrapper> file, Ptr<const Packet> p)
{
NS_LOG_UNCOND ("RxDrop at " << Simulator::Now ().GetSeconds ());
file->Write(Simulator::Now(), p);
}
...
PcapHelper pcapHelper;
Ptr<PcapFileWrapper> file = pcapHelper.CreateFile ("sixth.pcap", "w",
PcapHelper::DLT_PPP);
devices.Get (1)->TraceConnectWithoutContext("PhyRxDrop",
MakeBoundCallback (&RxDrop, file));
..
Using Trace Helpers
Usando Classes Assistentes para Rastreamento
********************************************
..
The |ns3| trace helpers provide a rich environment for configuring and
selecting different trace events and writing them to files. In previous
sections, primarily "Building Topologies," we have seen several varieties
of the trace helper methods designed for use inside other (device) helpers.
As classes assistentes (*trace helpers*) de rastreamento do |ns3| proveem um ambiente rico para configurar, selecionar e escrever diferentes eventos de rastreamento para arquivos. Nas sees anteriores, primeiramente em "Construindo Topologias", ns vimos diversas formas de mtodos assistentes para rastreamento projetados para uso dentro de outras classes assistentes.
..
Perhaps you will recall seeing some of these variations:
Segue alguns desses mtodos j estudados:
::
pointToPoint.EnablePcapAll ("second");
pointToPoint.EnablePcap ("second", p2pNodes.Get (0)->GetId (), 0);
csma.EnablePcap ("third", csmaDevices.Get (0), true);
pointToPoint.EnableAsciiAll (ascii.CreateFileStream ("myfirst.tr"));
..
What may not be obvious, though, is that there is a consistent model for all of
the trace-related methods found in the system. We will now take a little time
and take a look at the "big picture".
O que no parece claro que h um modelo consistente para todos os mtodos relacionados rastreamento encontrados no sistema. Apresentaremos uma viso geral desse modelo.
..
There are currently two primary use cases of the tracing helpers in |ns3|:
Device helpers and protocol helpers. Device helpers look at the problem
of specifying which traces should be enabled through a node, device pair. For
example, you may want to specify that pcap tracing should be enabled on a
particular device on a specific node. This follows from the |ns3| device
conceptual model, and also the conceptual models of the various device helpers.
Following naturally from this, the files created follow a
<prefix>-<node>-<device> naming convention.
H dois casos de uso primrios de classes assistentes em |ns3|: Classes assistentes de dispositivo e classes assistentes de protocolo. Classes assistentes de dispositivo tratam o problema de especificar quais rastreamentos deveriam ser habilitados no domnio do n de rede. Por exemplo, poderamos querer especificar que o rastreamento pcap deveria ser ativado em um dispositivo particular de um n especfico. Isto o que define o modelo conceitual de dispositivo no |ns3| e tambm os modelos conceituais de vrias classes assistentes de dispositivos. Baseado nisso, os arquivos criados seguem a conveno de nome `<prefixo>-<n>-<dispositivo>`.
..
Protocol helpers look at the problem of specifying which traces should be
enabled through a protocol and interface pair. This follows from the |ns3|
protocol stack conceptual model, and also the conceptual models of internet
stack helpers. Naturally, the trace files should follow a
<prefix>-<protocol>-<interface> naming convention.
As classes assistentes de protocolos tratam o problema de especificar quais rastreamentos deveriam ser ativados no protocolo e interface. Isto definido pelo modelo conceitual de pilha de protocolo do |ns3| e tambm pelos modelos conceituais de classes assistentes de pilha de rede. Baseado nisso, os arquivos criados seguem a conveno de nome `<prefixo>-<protocolo>-<interface>`.
..
The trace helpers therefore fall naturally into a two-dimensional taxonomy.
There are subtleties that prevent all four classes from behaving identically,
but we do strive to make them all work as similarly as possible; and whenever
possible there are analogs for all methods in all classes.
As classes assistentes consequentemente encaixam-se em uma taxinomia bi-dimensional. H pequenos detalhes que evitam todas as classes comportarem-se da mesma forma, mas fizemos parecer que trabalham to similarmente quanto possvel e quase sempre h similares para todos mtodos em todas as classes.
::
| pcap | ascii |
---------------------------------------------------+------+-------|
Classe Assistente de Dispositivo (*Device Helper*) | | |
---------------------------------------------------+------+-------|
Classe Assistente de Protocolo (*Protocol Helper*) | | |
---------------------------------------------------+------+-------|
..
We use an approach called a ``mixin`` to add tracing functionality to our
helper classes. A ``mixin`` is a class that provides functionality to that
is inherited by a subclass. Inheriting from a mixin is not considered a form
of specialization but is really a way to collect functionality.
Usamos uma abordagem chamada ``mixin`` para adicionar funcionalidade de rastreamento para nossas classes assistentes. Uma ``mixin`` uma classe que prov funcionalidade para aquela que herdada por uma subclasse. Herdar de um ``mixin`` no considerado uma forma de especializao mas realmente uma maneira de colecionar funcionalidade.
..
Let's take a quick look at all four of these cases and their respective
``mixins``.
Vamos verificar rapidamente os quatro casos e seus respectivos ``mixins``.
..
Pcap Tracing Device Helpers
Classes Assistentes de Dispositivo para Rastreamento Pcap
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
..
The goal of these helpers is to make it easy to add a consistent pcap trace
facility to an |ns3| device. We want all of the various flavors of
pcap tracing to work the same across all devices, so the methods of these
helpers are inherited by device helpers. Take a look at
``src/network/helper/trace-helper.h`` if you want to follow the discussion while
looking at real code.
O objetivo destes assistentes simplificar a adio de um utilitrio de rastreamento pcap consistente para um dispositivo |ns3|. Queremos que opere da mesma forma entre todos os dispositivos, logo os mtodos destes assistentes so herdados por classes assistentes de dispositivo. Observe o arquivo ``src/network/helper/trace-helper.h`` para entender a discusso do cdigo a seguir.
..
The class ``PcapHelperForDevice`` is a ``mixin`` provides the high level
functionality for using pcap tracing in an |ns3| device. Every device
must implement a single virtual method inherited from this class.
A classe ``PcapHelperForDevice`` um ``mixin`` que prov a funcionalidade de alto nvel para usar rastreamento pcap em um dispositivo |ns3|. Todo dispositivo deve implementar um nico mtodo virtual herdado dessa classe.
::
virtual void EnablePcapInternal (std::string prefix, Ptr<NetDevice> nd,
bool promiscuous, bool explicitFilename) = 0;
..
The signature of this method reflects the device-centric view of the situation
at this level. All of the public methods inherited from class
``PcapUserHelperForDevice`` reduce to calling this single device-dependent
implementation method. For example, the lowest level pcap method,
A assinatura deste mtodo reflete a viso do dispositivo da situao neste nvel. Todos os mtodos pblicos herdados da classe ``PcapUserHelperForDevice`` so reduzidos a chamada da implementao deste simples mtodo dependente de dispositivo. Por exemplo, o nvel mais baixo do mtodo pcap,
::
void EnablePcap (std::string prefix, Ptr<NetDevice> nd, bool promiscuous = false,
bool explicitFilename = false);
..
will call the device implementation of ``EnablePcapInternal`` directly. All
other public pcap tracing methods build on this implementation to provide
additional user-level functionality. What this means to the user is that all
device helpers in the system will have all of the pcap trace methods available;
and these methods will all work in the same way across devices if the device
implements ``EnablePcapInternal`` correctly.
chamaremos diretamente a implementao do dispositivo de ``EnablePcapInternal``. Todos os outros mtodos de rastreamento pcap pblicos desta implementao so para prover funcionalidade adicional em nvel de usurio. Para o usurio, isto significa que todas as classes assistentes de dispositivo no sistema tero todos os mtodos de rastreamento pcap disponveis; e estes mtodos trabalharo da mesma forma entre dispositivos se o dispositivo implementar corretamente ``EnablePcapInternal``.
..
Pcap Tracing Device Helper Methods
Mtodos da Classe Assistente de Dispositivo para Rastreamento Pcap
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
void EnablePcap (std::string prefix, Ptr<NetDevice> nd,
bool promiscuous = false, bool explicitFilename = false);
void EnablePcap (std::string prefix, std::string ndName,
bool promiscuous = false, bool explicitFilename = false);
void EnablePcap (std::string prefix, NetDeviceContainer d,
bool promiscuous = false);
void EnablePcap (std::string prefix, NodeContainer n,
bool promiscuous = false);
void EnablePcap (std::string prefix, uint32_t nodeid, uint32_t deviceid,
bool promiscuous = false);
void EnablePcapAll (std::string prefix, bool promiscuous = false);
..
In each of the methods shown above, there is a default parameter called
``promiscuous`` that defaults to false. This parameter indicates that the
trace should not be gathered in promiscuous mode. If you do want your traces
to include all traffic seen by the device (and if the device supports a
promiscuous mode) simply add a true parameter to any of the calls above. For example,
Em cada mtodo apresentado existe um parmetro padro chamado ``promiscuous`` que definido para o valor "false". Este parmetro indica que o rastreamento no deveria coletar dados em modo promscuo. Se quisermos incluir todo trfego visto pelo dispositivo devemos modificar o valor para "true". Por exemplo,
::
Ptr<NetDevice> nd;
...
helper.EnablePcap ("prefix", nd, true);
..
will enable promiscuous mode captures on the ``NetDevice`` specified by ``nd``.
ativar o modo de captura promscuo no ``NetDevice`` especificado por ``nd``.
..
The first two methods also include a default parameter called ``explicitFilename``
that will be discussed below.
Os dois primeiros mtodos tambm incluem um parmetro padro chamado ``explicitFilename`` que ser abordado a seguir.
..
You are encouraged to peruse the Doxygen for class ``PcapHelperForDevice``
to find the details of these methods; but to summarize ...
interessante procurar maiores detalhes dos mtodos da classe ``PcapHelperForDevice`` no Doxygen; mas para resumir ...
..
You can enable pcap tracing on a particular node/net-device pair by providing a
``Ptr<NetDevice>`` to an ``EnablePcap`` method. The ``Ptr<Node>`` is
implicit since the net device must belong to exactly one ``Node``.
For example,
Podemos ativar o rastreamento pcap em um par n/dispositivo-rede especfico provendo um ``Ptr<NetDevice>`` para um mtodo ``EnablePcap``. O ``Ptr<Node>`` implcito, pois o dispositivo de rede deve estar em um ``Node``. Por exemplo,
::
Ptr<NetDevice> nd;
...
helper.EnablePcap ("prefix", nd);
..
You can enable pcap tracing on a particular node/net-device pair by providing a
``std::string`` representing an object name service string to an
``EnablePcap`` method. The ``Ptr<NetDevice>`` is looked up from the name
string. Again, the ``<Node>`` is implicit since the named net device must
belong to exactly one ``Node``. For example,
Podemos ativar o rastreamento pcap em um par n/dispositivo-rede passando uma ``std::string`` que representa um nome de servio para um mtodo ``EnablePcap``. O ``Ptr<NetDevice>`` buscado a partir do nome da `string`.
Novamente, o ``Ptr<Node>`` implcito pois o dispositivo de rede deve estar em um ``Node``.
::
Names::Add ("server" ...);
Names::Add ("server/eth0" ...);
...
helper.EnablePcap ("prefix", "server/eth0");
..
You can enable pcap tracing on a collection of node/net-device pairs by
providing a ``NetDeviceContainer``. For each ``NetDevice`` in the container
the type is checked. For each device of the proper type (the same type as is
managed by the device helper), tracing is enabled. Again, the ``<Node>`` is
implicit since the found net device must belong to exactly one ``Node``.
For example,
Podemos ativar o rastreamento pcap em uma coleo de pares ns/dispositivos usando um ``NetDeviceContainer``. Para cada ``NetDevice`` no continer o tipo verificado. Para cada dispositivo com o tipo adequado, o rastreamento ser ativado. Por exemplo,
::
NetDeviceContainer d = ...;
...
helper.EnablePcap ("prefix", d);
..
You can enable pcap tracing on a collection of node/net-device pairs by
providing a ``NodeContainer``. For each ``Node`` in the ``NodeContainer``
its attached ``NetDevices`` are iterated. For each ``NetDevice`` attached
to each node in the container, the type of that device is checked. For each
device of the proper type (the same type as is managed by the device helper),
tracing is enabled.
Podemos ativar o rastreamento em uma coleo de pares n/dispositivo-rede usando um ``NodeContainer``. Para cada ``Node`` no ``NodeContainer`` seus ``NetDevices`` so percorridos e verificados segundo o tipo. Para cada dispositivo com o tipo adequado, o rastreamento ativado.
::
NodeContainer n;
...
helper.EnablePcap ("prefix", n);
..
You can enable pcap tracing on the basis of node ID and device ID as well as
with explicit ``Ptr``. Each ``Node`` in the system has an integer node ID
and each device connected to a node has an integer device ID.
Podemos ativar o rastreamento pcap usando o nmero identificador (`ID`) do n e do dispositivo. Todo ``Node`` no sistema tem um valor inteiro indicando o `ID` do n e todo dispositivo conectado ao n tem um valor inteiro indicando o `ID` do dispositivo.
::
helper.EnablePcap ("prefix", 21, 1);
..
Finally, you can enable pcap tracing for all devices in the system, with the
same type as that managed by the device helper.
Por fim, podemos ativar rastreamento pcap para todos os dispositivos no sistema, desde que o tipo seja o mesmo gerenciado pela classe assistentes de dispositivo.
::
helper.EnablePcapAll ("prefix");
..
Pcap Tracing Device Helper Filename Selection
Seleo de um Nome de Arquivo para o Rastreamento Pcap da Classe Assistente de Dispositivo
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
..
Implicit in the method descriptions above is the construction of a complete
filename by the implementation method. By convention, pcap traces in the
|ns3| system are of the form "<prefix>-<node id>-<device id>.pcap"
Implcito nas descries de mtodos anteriores a construo do nome de arquivo por meio do mtodo da implementao. Por conveno, rastreamento pcap no |ns3| usa a forma "<prefixo>-<id do n>-<id do dispositivo>.pcap"
..
As previously mentioned, every node in the system will have a system-assigned
node id; and every device will have an interface index (also called a device id)
relative to its node. By default, then, a pcap trace file created as a result
of enabling tracing on the first device of node 21 using the prefix "prefix"
would be "prefix-21-1.pcap".
Como mencionado, todo n no sistema ter um `id` de n associado; e todo dispositivo ter um ndice de interface (tambm chamado de id do dispositivo) relativo ao seu n. Por padro, ento, um arquivo pcap criado como um resultado de ativar rastreamento no primeiro dispositivo do n 21 usando o prefixo "prefix" seria "prefix-21-1.pcap".
..
You can always use the |ns3| object name service to make this more clear.
For example, if you use the object name service to assign the name "server"
to node 21, the resulting pcap trace file name will automatically become,
"prefix-server-1.pcap" and if you also assign the name "eth0" to the
device, your pcap file name will automatically pick this up and be called
"prefix-server-eth0.pcap".
Sempre podemos usar o servio de nome de objeto do |ns3| para tornar isso mais claro. Por exemplo, se voc usa o servio para associar o nome "server" ao n 21, o arquivo pcap resultante automaticamente ser, "prefix-server-1.pcap" e se voc tambm associar o nome "eth0" ao dispositivo, seu nome do arquivo pcap automaticamente ser denominado "prefix-server-eth0.pcap".
..
Finally, two of the methods shown above,
Finalmente, dois dos mtodos mostrados,
::
void EnablePcap (std::string prefix, Ptr<NetDevice> nd,
bool promiscuous = false, bool explicitFilename = false);
void EnablePcap (std::string prefix, std::string ndName,
bool promiscuous = false, bool explicitFilename = false);
..
have a default parameter called ``explicitFilename``. When set to true,
this parameter disables the automatic filename completion mechanism and allows
you to create an explicit filename. This option is only available in the
methods which enable pcap tracing on a single device.
tem um parmetro padro ``explicitFilename``. Quando modificado para verdadeiro, este parmetro desabilita o mecanismo automtico de completar o nome do arquivo e permite criarmos um nome de arquivo abertamente. Esta opo est disponvel nos mtodos que ativam o rastreamento pcap em um nico dispositivo.
..
For example, in order to arrange for a device helper to create a single
promiscuous pcap capture file of a specific name ("my-pcap-file.pcap") on a
given device, one could:
Por exemplo, com a finalidade providenciar uma classe assistente de dispositivo para criar um nico arquivo de captura pcap no modo promscuo com um nome especfico ("my-pcap-file.pcap") em um determinado dispositivo:
::
Ptr<NetDevice> nd;
...
helper.EnablePcap ("my-pcap-file.pcap", nd, true, true);
..
The first ``true`` parameter enables promiscuous mode traces and the second
tells the helper to interpret the ``prefix`` parameter as a complete filename.
O primeiro parmetro ``true`` habilita o modo de rastreamento promscuo e o segundo faz com que o parmetro ``prefix`` seja interpretado como um nome de arquivo completo.
..
Ascii Tracing Device Helpers
Classes Assistentes de Dispositivo para Rastreamento ASCII
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
..
The behavior of the ascii trace helper ``mixin`` is substantially similar to
the pcap version. Take a look at ``src/network/helper/trace-helper.h`` if you want to
follow the discussion while looking at real code.
O comportamento do assistente de rastreamento ASCII ``mixin`` similar a verso do pcap. Acesse o arquivo ``src/network/helper/trace-helper.h`` para compreender melhor o funcionamento dessa classe assistente.
..
The class ``AsciiTraceHelperForDevice`` adds the high level functionality for
using ascii tracing to a device helper class. As in the pcap case, every device
must implement a single virtual method inherited from the ascii trace ``mixin``.
A classe ``AsciiTraceHelperForDevice`` adiciona funcionalidade em alto nvel para usar o rastreamento ASCII para uma classe assistente de dispositivo. Como no caso do pcap, todo dispositivo deve implementar um mtodo herdado do rastreador ASCII ``mixin``.
::
virtual void EnableAsciiInternal (Ptr<OutputStreamWrapper> stream,
std::string prefix, Ptr<NetDevice> nd, bool explicitFilename) = 0;
..
The signature of this method reflects the device-centric view of the situation
at this level; and also the fact that the helper may be writing to a shared
output stream. All of the public ascii-trace-related methods inherited from
class ``AsciiTraceHelperForDevice`` reduce to calling this single device-
dependent implementation method. For example, the lowest level ascii trace
methods,
A assinatura deste mtodo reflete a viso do dispositivo da situao neste nvel; e tambm o fato que o assistente pode ser escrito para um fluxo de sada compartilhado. Todos os mtodos pblicos associados ao rastreamento ASCII herdam da classe ``AsciiTraceHelperForDevice`` resumem-se a chamada deste nico mtodo dependente de implementao. Por exemplo, os mtodos de rastreamento ASCII de mais baixo nvel,
::
void EnableAscii (std::string prefix, Ptr<NetDevice> nd,
bool explicitFilename = false);
void EnableAscii (Ptr<OutputStreamWrapper> stream, Ptr<NetDevice> nd);
..
will call the device implementation of ``EnableAsciiInternal`` directly,
providing either a valid prefix or stream. All other public ascii tracing
methods will build on these low-level functions to provide additional user-level
functionality. What this means to the user is that all device helpers in the
system will have all of the ascii trace methods available; and these methods
will all work in the same way across devices if the devices implement
``EnablAsciiInternal`` correctly.
chamaro uma implementao de ``EnableAsciiInternal`` diretamente, passando um prefixo ou fluxo vlido. Todos os outros mtodos pblicos sero construdos a partir destas funes de baixo nvel para fornecer funcionalidades adicionais em nvel de usurio. Para o usurio, isso significa que todos os assistentes de
dispositivo no sistema tero todos os mtodos de rastreamento ASCII disponveis e estes mtodos trabalharo do mesmo modo em todos os dispositivos se estes implementarem ``EnableAsciiInternal``.
..
Ascii Tracing Device Helper Methods
Mtodos da Classe Assistente de Dispositivo para Rastreamento ASCII
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
void EnableAscii (std::string prefix, Ptr<NetDevice> nd,
bool explicitFilename = false);
void EnableAscii (Ptr<OutputStreamWrapper> stream, Ptr<NetDevice> nd);
void EnableAscii (std::string prefix, std::string ndName,
bool explicitFilename = false);
void EnableAscii (Ptr<OutputStreamWrapper> stream, std::string ndName);
void EnableAscii (std::string prefix, NetDeviceContainer d);
void EnableAscii (Ptr<OutputStreamWrapper> stream, NetDeviceContainer d);
void EnableAscii (std::string prefix, NodeContainer n);
void EnableAscii (Ptr<OutputStreamWrapper> stream, NodeContainer n);
void EnableAsciiAll (std::string prefix);
void EnableAsciiAll (Ptr<OutputStreamWrapper> stream);
void EnableAscii (std::string prefix, uint32_t nodeid, uint32_t deviceid,
bool explicitFilename);
void EnableAscii (Ptr<OutputStreamWrapper> stream, uint32_t nodeid,
uint32_t deviceid);
..
You are encouraged to peruse the Doxygen for class ``AsciiTraceHelperForDevice``
to find the details of these methods; but to summarize ...
Para maiores detalhes sobre os mtodos interessante consultar a documentao para a classe ``AsciiTraceHelperForDevice``; mas para resumir ...
..
There are twice as many methods available for ascii tracing as there were for
pcap tracing. This is because, in addition to the pcap-style model where traces
from each unique node/device pair are written to a unique file, we support a model
in which trace information for many node/device pairs is written to a common file.
This means that the <prefix>-<node>-<device> file name generation mechanism is
replaced by a mechanism to refer to a common file; and the number of API methods
is doubled to allow all combinations.
H duas vezes mais mtodos disponveis para rastreamento ASCII que para rastreamento pcap. Isto ocorre pois para o modelo pcap os rastreamentos de cada par n/dispositivo-rede so escritos para um nico arquivo, enquanto que no ASCII todo as as informaes so escritas para um arquivo comum. Isto significa que o mecanismo de gerao de nomes de arquivos `<prefixo>-<n>-<dispositivo>` substitudo por um mecanismo para referenciar um arquivo comum; e o nmero de mtodos da API duplicado para permitir todas as combinaes.
..
Just as in pcap tracing, you can enable ascii tracing on a particular
node/net-device pair by providing a ``Ptr<NetDevice>`` to an ``EnableAscii``
method. The ``Ptr<Node>`` is implicit since the net device must belong to
exactly one ``Node``. For example,
Assim como no rastreamento pcap, podemos ativar o rastreamento ASCII em um par n/dispositivo-rede passando um ``Ptr<NetDevice>`` para um mtodo ``EnableAscii``. O ``Ptr<Node>`` implcito pois o dispositivo de rede deve pertencer a exatamente um ``Node``. Por exemplo,
::
Ptr<NetDevice> nd;
...
helper.EnableAscii ("prefix", nd);
..
The first four methods also include a default parameter called ``explicitFilename``
that operate similar to equivalent parameters in the pcap case.
Os primeiros quatro mtodos tambm incluem um parmetro padro ``explicitFilename`` que opera similar aos parmetros no caso do pcap.
..
In this case, no trace contexts are written to the ascii trace file since they
would be redundant. The system will pick the file name to be created using
the same rules as described in the pcap section, except that the file will
have the suffix ".tr" instead of ".pcap".
Neste caso, nenhum contexto de rastreamento escrito para o arquivo ASCII pois seriam redundantes. O sistema pegar o nome do arquivo para ser criado usando as mesmas regras como descritas na seo pcap, exceto que o arquivo ter o extenso ".tr" ao invs de ".pcap".
..
If you want to enable ascii tracing on more than one net device and have all
traces sent to a single file, you can do that as well by using an object to
refer to a single file. We have already seen this in the "cwnd" example
above:
Para habilitar o rastreamento ASCII em mais de um dispositivo de rede e ter todos os dados de rastreamento enviados para um nico arquivo, pode-se usar um objeto para referenciar um nico arquivo. Ns j verificamos isso no exemplo "cwnd":
::
Ptr<NetDevice> nd1;
Ptr<NetDevice> nd2;
...
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream
("trace-file-name.tr");
...
helper.EnableAscii (stream, nd1);
helper.EnableAscii (stream, nd2);
..
In this case, trace contexts are written to the ascii trace file since they
are required to disambiguate traces from the two devices. Note that since the
user is completely specifying the file name, the string should include the ",tr"
for consistency.
Neste caso, os contextos so escritos para o arquivo ASCII quando necessrio distinguir os dados de rastreamento de dois dispositivos. interessante usar no nome do arquivo a extenso ".tr" por motivos de consistncia.
..
You can enable ascii tracing on a particular node/net-device pair by providing a
``std::string`` representing an object name service string to an
``EnablePcap`` method. The ``Ptr<NetDevice>`` is looked up from the name
string. Again, the ``<Node>`` is implicit since the named net device must
belong to exactly one ``Node``. For example,
Podemos habilitar o rastreamento ASCII em um par n/dispositivo-rede especfico passando ao mtodo ``EnableAscii`` uma ``std::string`` representando um nome no servio de nomes de objetos. O ``Ptr<NetDevice>`` obtido a partir do nome. Novamente, o ``<Node>`` implcito pois o dispositivo de rede deve pertencer a exatamente um ``Node``. Por exemplo,
::
Names::Add ("client" ...);
Names::Add ("client/eth0" ...);
Names::Add ("server" ...);
Names::Add ("server/eth0" ...);
...
helper.EnableAscii ("prefix", "client/eth0");
helper.EnableAscii ("prefix", "server/eth0");
..
This would result in two files named "prefix-client-eth0.tr" and
"prefix-server-eth0.tr" with traces for each device in the respective trace
file. Since all of the EnableAscii functions are overloaded to take a stream wrapper,
you can use that form as well:
Isto resultaria em dois nomes de arquivos - "prefix-client-eth0.tr" e "prefix-server-eth0.tr" - com os rastreamentos de cada dispositivo em seu arquivo respectivo. Como todas as funes do ``EnableAscii`` so sobrecarregadas para suportar um *stream wrapper*, podemos usar da seguinte forma tambm:
::
Names::Add ("client" ...);
Names::Add ("client/eth0" ...);
Names::Add ("server" ...);
Names::Add ("server/eth0" ...);
...
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream
("trace-file-name.tr");
...
helper.EnableAscii (stream, "client/eth0");
helper.EnableAscii (stream, "server/eth0");
..
This would result in a single trace file called "trace-file-name.tr" that
contains all of the trace events for both devices. The events would be
disambiguated by trace context strings.
Isto resultaria em um nico arquivo chamado "trace-file-name.tr" que contm todosos eventos rastreados para ambos os dispositivos. Os eventos seriam diferenciados por `strings` de contexto.
..
You can enable ascii tracing on a collection of node/net-device pairs by
providing a ``NetDeviceContainer``. For each ``NetDevice`` in the container
the type is checked. For each device of the proper type (the same type as is
managed by the device helper), tracing is enabled. Again, the ``<Node>`` is
implicit since the found net device must belong to exactly one ``Node``.
For example,
Podemos habilitar o rastreamento ASCII em um coleo de pares n/dispositivo-rede fornecendo um ``NetDeviceContainer``. Para cada ``NetDevice`` no continer o tipo verificado. Para cada dispositivo de um tipo adequado (o mesmo tipo que gerenciado por uma classe assistente de dispositivo), o rastreamento habilitado. Novamente, o ``<Node>`` implcito pois o dispositivo de rede encontrado deve pertencer a exatamente um ``Node``.
::
NetDeviceContainer d = ...;
...
helper.EnableAscii ("prefix", d);
..
This would result in a number of ascii trace files being created, each of which
follows the <prefix>-<node id>-<device id>.tr convention. Combining all of the
traces into a single file is accomplished similarly to the examples above:
Isto resultaria em vrios arquivos de rastreamento ASCII sendo criados, cada um seguindo a conveno ``<prefixo>-<id do n>-<id do dispositivo>.tr``.
Para obtermos um nico arquivo teramos:
::
NetDeviceContainer d = ...;
...
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream
("trace-file-name.tr");
...
helper.EnableAscii (stream, d);
..
You can enable ascii tracing on a collection of node/net-device pairs by
providing a ``NodeContainer``. For each ``Node`` in the ``NodeContainer``
its attached ``NetDevices`` are iterated. For each ``NetDevice`` attached
to each node in the container, the type of that device is checked. For each
device of the proper type (the same type as is managed by the device helper),
tracing is enabled.
Podemos habilitar o rastreamento ASCII em um coleo de pares n/dispositivo-rede fornecendo um ``NodeContainer``. Para cada ``Node`` no ``NodeContainer``, os seus ``NetDevices`` so percorridos. Para cada ``NetDevice`` associado a cada n no continer, o tipo do dispositivo verificado. Para cada dispositivo do tipo adequado (o mesmo tipo que gerenciado pelo assistente de dispositivo), o rastreamento habilitado.
::
NodeContainer n;
...
helper.EnableAscii ("prefix", n);
..
This would result in a number of ascii trace files being created, each of which
follows the <prefix>-<node id>-<device id>.tr convention. Combining all of the
traces into a single file is accomplished similarly to the examples above:
Isto resultaria em vrios arquivos ASCII sendo criados, cada um seguindo a conveno ``<prefixo>-<id do n>-<id do dispositivo>.tr``.
..
You can enable pcap tracing on the basis of node ID and device ID as well as
with explicit ``Ptr``. Each ``Node`` in the system has an integer node ID
and each device connected to a node has an integer device ID.
Podemos habilitar o rastreamento pcap na base da `ID` do n e `ID` do dispositivo to bem como com um ``Ptr``. Cada ``Node`` no sistema possui um nmero identificador inteiro associado ao n e cada dispositivo conectado possui um nmero identificador inteiro associado ao dispositivo.
::
helper.EnableAscii ("prefix", 21, 1);
..
Of course, the traces can be combined into a single file as shown above.
Os rastreamentos podem ser combinados em um nico arquivo como mostrado acima.
..
Finally, you can enable pcap tracing for all devices in the system, with the
same type as that managed by the device helper.
Finalmente, podemos habilitar o rastreamento ASCII para todos os dispositivos no sistema.
::
helper.EnableAsciiAll ("prefix");
..
This would result in a number of ascii trace files being created, one for
every device in the system of the type managed by the helper. All of these
files will follow the <prefix>-<node id>-<device id>.tr convention. Combining
all of the traces into a single file is accomplished similarly to the examples
above.
Isto resultaria em vrios arquivos ASCII sendo criados, um para cada dispositivo no sistema do tipo gerenciado pelo assistente. Todos estes arquivos seguiriam a conveno ``<prefixo>-<id do n>-<id do dispositivo>.tr``.
..
Ascii Tracing Device Helper Filename Selection
Selecionando Nome de Arquivo para as Sadas ASCII
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
..
Implicit in the prefix-style method descriptions above is the construction of the
complete filenames by the implementation method. By convention, ascii traces
in the |ns3| system are of the form "<prefix>-<node id>-<device id>.tr"
Implcito nas descries de mtodos anteriores a construo do nome de arquivo por meio do mtodo da implementao. Por conveno, rastreamento ASCII no |ns3| usa a forma "``<prefixo>-<id do n>-<id do dispositivo>.tr``".
..
As previously mentioned, every node in the system will have a system-assigned
node id; and every device will have an interface index (also called a device id)
relative to its node. By default, then, an ascii trace file created as a result
of enabling tracing on the first device of node 21, using the prefix "prefix",
would be "prefix-21-1.tr".
Como mencionado, todo n no sistema ter um `id` de n associado; e todo dispositivo ter um ndice de interface (tambm chamado de id do dispositivo) relativo ao seu n. Por padro, ento, um arquivo ASCII criado como um resultado de ativar rastreamento no primeiro dispositivo do n 21 usando o prefixo "prefix" seria "prefix-21-1.tr".
..
You can always use the |ns3| object name service to make this more clear.
For example, if you use the object name service to assign the name "server"
to node 21, the resulting ascii trace file name will automatically become,
"prefix-server-1.tr" and if you also assign the name "eth0" to the
device, your ascii trace file name will automatically pick this up and be called
"prefix-server-eth0.tr".
Sempre podemos usar o servio de nome de objeto do |ns3| para tornar isso mais claro. Por exemplo, se usarmos o servio para associar o nome ``server`` ao n 21, o arquivo ASCII resultante automaticamente ser, ``prefix-server-1.tr`` e se tambm associarmos o nome ``eth0`` ao dispositivo, o nome do arquivo ASCII automaticamente ser denominado ``prefix-server-eth0.tr``.
..
Several of the methods have a default parameter called ``explicitFilename``.
When set to true, this parameter disables the automatic filename completion
mechanism and allows you to create an explicit filename. This option is only
available in the methods which take a prefix and enable tracing on a single device.
Diversos mtodos tem um parmetro padro ``explicitFilename``. Quando modificado para verdadeiro, este parmetro desabilita o mecanismo automtico de completar o nome do arquivo e permite criarmos um nome de arquivo abertamente. Esta opo est disponvel nos mtodos que possuam um prefixo e ativem o rastreamento em um nico dispositivo.
..
Pcap Tracing Protocol Helpers
Classes Assistentes de Protocolo para Rastreamento Pcap
++++++++++++++++++++++++++++++++++++++++++++++++++++++++
..
The goal of these ``mixins`` is to make it easy to add a consistent pcap trace
facility to protocols. We want all of the various flavors of pcap tracing to
work the same across all protocols, so the methods of these helpers are
inherited by stack helpers. Take a look at ``src/network/helper/trace-helper.h``
if you want to follow the discussion while looking at real code.
O objetivo destes ``mixins`` facilitar a adio de um mecanismo consistente para da facilidade de rastreamento para protocolos. Queremos que todos os mecanismos de rastreamento para todos os protocolos operem de mesma forma, logo os mtodos dessas classe assistentes so herdados por assistentes de pilha. Acesse ``src/network/helper/trace-helper.h`` para acompanhar o contedo discutido nesta seo.
..
In this section we will be illustrating the methods as applied to the protocol
``Ipv4``. To specify traces in similar protocols, just substitute the
appropriate type. For example, use a ``Ptr<Ipv6>`` instead of a
``Ptr<Ipv4>`` and call ``EnablePcapIpv6`` instead of ``EnablePcapIpv4``.
Nesta seo ilustraremos os mtodos aplicados ao protocolo ``Ipv4``. Para especificar rastreamentos em protocolos similares, basta substituir pelo tipo apropriado. Por exemplo, use um ``Ptr<Ipv6>`` ao invs de um ``Ptr<Ipv4>`` e chame um ``EnablePcapIpv6`` ao invs de ``EnablePcapIpv4``.
..
The class ``PcapHelperForIpv4`` provides the high level functionality for
using pcap tracing in the ``Ipv4`` protocol. Each protocol helper enabling these
methods must implement a single virtual method inherited from this class. There
will be a separate implementation for ``Ipv6``, for example, but the only
difference will be in the method names and signatures. Different method names
are required to disambiguate class ``Ipv4`` from ``Ipv6`` which are both
derived from class ``Object``, and methods that share the same signature.
A classe ``PcapHelperForIpv4`` prov funcionalidade de alto nvel para usar rastreamento no protocolo ``Ipv4``. Cada classe assistente de protocolo devem implementar um mtodo herdado desta. Haver uma implementao separada para ``Ipv6``, por exemplo, mas a diferena ser apenas nos nomes dos mtodos e assinaturas. Nomes de mtodos diferentes so necessrio para distinguir a classe ``Ipv4`` da ``Ipv6``, pois ambas so derivadas da classe ``Object``, logo os mtodos compartilham a mesma assinatura.
::
virtual void EnablePcapIpv4Internal (std::string prefix, Ptr<Ipv4> ipv4,
uint32_t interface, bool explicitFilename) = 0;
..
The signature of this method reflects the protocol and interface-centric view
of the situation at this level. All of the public methods inherited from class
``PcapHelperForIpv4`` reduce to calling this single device-dependent
implementation method. For example, the lowest level pcap method,
A assinatura desse mtodo reflete a viso do protocolo e interface da situao neste nvel. Todos os mtodos herdados da classe ``PcapHelperForIpv4`` resumem-se a chamada deste nico mtodo dependente de dispositivo. Por exemplo, o mtodo do pcap de mais baixo nvel,
::
void EnablePcapIpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface,
bool explicitFilename = false);
..
will call the device implementation of ``EnablePcapIpv4Internal`` directly.
All other public pcap tracing methods build on this implementation to provide
additional user-level functionality. What this means to the user is that all
protocol helpers in the system will have all of the pcap trace methods
available; and these methods will all work in the same way across
protocols if the helper implements ``EnablePcapIpv4Internal`` correctly.
chamar a implementao de dispositivo de ``EnablePcapIpv4Internal`` diretamente. Todos os outros mtodos pblicos de rastreamento pcap so construdos a partir desta implementao para prover funcionalidades adicionais em nvel do usurio. Para o usurio, isto significa que todas as classes assistentes de dispositivo no sistema tero todos os mtodos de rastreamento pcap disponveis; e estes mtodos trabalharo da mesma forma entre dispositivos se o dispositivo implementar corretamente ``EnablePcapIpv4Internal``.
..
Pcap Tracing Protocol Helper Methods
Mtodos da Classe Assistente de Protocolo para Rastreamento Pcap
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
..
These methods are designed to be in one-to-one correspondence with the ``Node``-
and ``NetDevice``- centric versions of the device versions. Instead of
``Node`` and ``NetDevice`` pair constraints, we use protocol and interface
constraints.
Estes mtodos so projetados para terem correspondncia de um-para-um com o ``Node`` e ``NetDevice``. Ao invs de restries de pares ``Node`` e ``NetDevice``, usamos restries de protocolo e interface.
..
Note that just like in the device version, there are six methods:
Note que como na verso de dispositivo, h seis mtodos:
::
void EnablePcapIpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface,
bool explicitFilename = false);
void EnablePcapIpv4 (std::string prefix, std::string ipv4Name,
uint32_t interface, bool explicitFilename = false);
void EnablePcapIpv4 (std::string prefix, Ipv4InterfaceContainer c);
void EnablePcapIpv4 (std::string prefix, NodeContainer n);
void EnablePcapIpv4 (std::string prefix, uint32_t nodeid, uint32_t interface,
bool explicitFilename);
void EnablePcapIpv4All (std::string prefix);
..
You are encouraged to peruse the Doxygen for class ``PcapHelperForIpv4``
to find the details of these methods; but to summarize ...
Para maiores detalhes sobre estes mtodos interessante consultar na documentao da classe ``PcapHelperForIpv4``, mas para resumir ...
..
You can enable pcap tracing on a particular protocol/interface pair by providing a
``Ptr<Ipv4>`` and ``interface`` to an ``EnablePcap`` method. For example,
Podemos habilitar o rastreamento pcap em um par protocolo/interface passando um ``Ptr<Ipv4>`` e ``interface`` para um mtodo ``EnablePcap``. Por exemplo,
::
Ptr<Ipv4> ipv4 = node->GetObject<Ipv4> ();
...
helper.EnablePcapIpv4 ("prefix", ipv4, 0);
..
You can enable pcap tracing on a particular node/net-device pair by providing a
``std::string`` representing an object name service string to an
``EnablePcap`` method. The ``Ptr<Ipv4>`` is looked up from the name
string. For example,
Podemos ativar o rastreamento pcap em um par protocolo/interface passando uma ``std::string`` que representa um nome de servio para um mtodo ``EnablePcapIpv4``. O ``Ptr<Ipv4>`` buscado a partir do nome da `string`.
Por exemplo,
::
Names::Add ("serverIPv4" ...);
...
helper.EnablePcapIpv4 ("prefix", "serverIpv4", 1);
..
You can enable pcap tracing on a collection of protocol/interface pairs by
providing an ``Ipv4InterfaceContainer``. For each ``Ipv4`` / interface
pair in the container the protocol type is checked. For each protocol of the
proper type (the same type as is managed by the device helper), tracing is
enabled for the corresponding interface. For example,
Podemos ativar o rastreamento pcap em uma coleo de pares protocolo/interface usando um ``Ipv4InterfaceContainer``. Para cada par``Ipv4``/interface no continer o tipo do protocolo verificado. Para cada protocolo do tipo adequado, o rastreamento ativado para a interface correspondente. Por exemplo,
::
NodeContainer nodes;
...
NetDeviceContainer devices = deviceHelper.Install (nodes);
...
Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);
...
helper.EnablePcapIpv4 ("prefix", interfaces);
..
You can enable pcap tracing on a collection of protocol/interface pairs by
providing a ``NodeContainer``. For each ``Node`` in the ``NodeContainer``
the appropriate protocol is found. For each protocol, its interfaces are
enumerated and tracing is enabled on the resulting pairs. For example,
Podemos ativar o rastreamento em uma coleo de pares protocolo/interface usando um ``NodeContainer``. Para cada ``Node`` no ``NodeContainer`` o protocolo apropriado encontrado. Para cada protocolo, suas interfaces so enumeradas e o rastreamento ativado nos pares resultantes. Por exemplo,
::
NodeContainer n;
...
helper.EnablePcapIpv4 ("prefix", n);
..
You can enable pcap tracing on the basis of node ID and interface as well. In
this case, the node-id is translated to a ``Ptr<Node>`` and the appropriate
protocol is looked up in the node. The resulting protocol and interface are
used to specify the resulting trace source.
Pode ativar o rastreamento pcap usando o nmero identificador do n e da interface. Neste caso, o `ID` do n traduzido para um ``Ptr<Node>`` e o protocolo apropriado buscado no n. O protocolo e interface resultante so usados para especificar a origem do rastreamento resultante.
::
helper.EnablePcapIpv4 ("prefix", 21, 1);
..
Finally, you can enable pcap tracing for all interfaces in the system, with
associated protocol being the same type as that managed by the device helper.
Por fim, podemos ativar rastreamento pcap para todas as interfaces no sistema, desde que o protocolo seja do mesmo tipo gerenciado pela classe assistente.
::
helper.EnablePcapIpv4All ("prefix");
..
Pcap Tracing Protocol Helper Filename Selection
Seleo de um Nome de Arquivo para o Rastreamento Pcap da Classe Assistente de Protocolo
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
..
Implicit in all of the method descriptions above is the construction of the
complete filenames by the implementation method. By convention, pcap traces
taken for devices in the |ns3| system are of the form
"<prefix>-<node id>-<device id>.pcap". In the case of protocol traces,
there is a one-to-one correspondence between protocols and ``Nodes``.
This is because protocol ``Objects`` are aggregated to ``Node Objects``.
Since there is no global protocol id in the system, we use the corresponding
node id in file naming. Therefore there is a possibility for file name
collisions in automatically chosen trace file names. For this reason, the
file name convention is changed for protocol traces.
Implcito nas descries de mtodos anterior a construo do nome de arquivo por meio do mtodo da implementao. Por conveno, rastreamento pcap no |ns3| usa a forma ``<prefixo>-<id do n>-<id do dispositivo>.pcap``. No caso de rastreamento de protocolos, h uma correspondncia de um-para-um entre protocolos e ``Nodes``. Isto porque ``Objects`` de protocolo so agregados a `Node Objects``. Como no h um `id` global de protocolo no sistema, usamos o `ID` do n na nomeao do arquivo. Consequentemente h possibilidade de coliso de nomes quando usamos o sistema automtico de nomes. Por esta razo, a conveno de nome de arquivo modificada para rastreamentos de protocolos.
..
As previously mentioned, every node in the system will have a system-assigned
node id. Since there is a one-to-one correspondence between protocol instances
and node instances we use the node id. Each interface has an interface id
relative to its protocol. We use the convention
"<prefix>-n<node id>-i<interface id>.pcap" for trace file naming in protocol
helpers.
Como mencionado, todo n no sistema ter um `id` de n associado. Como h uma correspondncia de um-para-um entre instncias de protocolo e instncias de n, usamos o `id` de n. Cada interface tem um `id` de interface relativo ao seu protocolo. Usamos a conveno "<prefixo>-n<id do n>-i<id da interface>.pcap" para especificar o nome do arquivo de rastreamento para as classes assistentes de protocolo.
..
Therefore, by default, a pcap trace file created as a result of enabling tracing
on interface 1 of the Ipv4 protocol of node 21 using the prefix "prefix"
would be "prefix-n21-i1.pcap".
Consequentemente, por padro, uma arquivo pcap criado como um resultado da ativao de rastreamento na interface 1 do protocolo ipv4 do n 21 usando o prefixo ``prefix`` seria ``prefix-n21-i1.pcap``.
..
You can always use the |ns3| object name service to make this more clear.
For example, if you use the object name service to assign the name "serverIpv4"
to the Ptr<Ipv4> on node 21, the resulting pcap trace file name will
automatically become, "prefix-nserverIpv4-i1.pcap".
Sempre podemos usar o servio de nomes de objetos do |ns3| para tornar isso mais claro. Por exemplo, se usamos o servio de nomes para associar o nome "serverIpv4" ao Ptr<Ipv4> no n 21, o nome de arquivo resultante seria ``prefix-nserverIpv4-i1.pcap``.
..
Several of the methods have a default parameter called ``explicitFilename``.
When set to true, this parameter disables the automatic filename completion
mechanism and allows you to create an explicit filename. This option is only
available in the methods which take a prefix and enable tracing on a single device.
Diversos mtodos tem um parmetro padro ``explicitFilename``. Quando modificado para verdadeiro, este parmetro desabilita o mecanismo automtico de completar o nome do arquivo e permite criarmos um nome de arquivo abertamente. Esta opo est disponvel nos mtodos que ativam o rastreamento pcap em um nico dispositivo.
..
Ascii Tracing Protocol Helpers
Classes Assistentes de Protocolo para Rastreamento ASCII
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
..
The behavior of the ascii trace helpers is substantially similar to the pcap
case. Take a look at ``src/network/helper/trace-helper.h`` if you want to
follow the discussion while looking at real code.
O comportamento dos assistentes de rastreamento ASCII similar ao do pcap. Acesse o arquivo ``src/network/helper/trace-helper.h`` para compreender melhor o funcionamento dessa classe assistente.
..
In this section we will be illustrating the methods as applied to the protocol
``Ipv4``. To specify traces in similar protocols, just substitute the
appropriate type. For example, use a ``Ptr<Ipv6>`` instead of a
``Ptr<Ipv4>`` and call ``EnableAsciiIpv6`` instead of ``EnableAsciiIpv4``.
Nesta seo apresentamos os mtodos aplicados ao protocolo ``Ipv4``. Para protocolos similares apenas substitua para o tipo apropriado. Por exemplo, use um ``Ptr<Ipv6>`` ao invs de um ``Ptr<Ipv4>`` e chame ``EnableAsciiIpv6`` ao invs de ``EnableAsciiIpv4``.
..
The class ``AsciiTraceHelperForIpv4`` adds the high level functionality
for using ascii tracing to a protocol helper. Each protocol that enables these
methods must implement a single virtual method inherited from this class.
A classe ``AsciiTraceHelperForIpv4`` adiciona funcionalidade de alto nvel para usar rastreamento ASCII para um assistente de protocolo. Todo protocolo que usa estes mtodos deve implementar um mtodo herdado desta classe.
::
virtual void EnableAsciiIpv4Internal (Ptr<OutputStreamWrapper> stream,
std::string prefix,
Ptr<Ipv4> ipv4,
uint32_t interface,
bool explicitFilename) = 0;
..
The signature of this method reflects the protocol- and interface-centric view
of the situation at this level; and also the fact that the helper may be writing
to a shared output stream. All of the public methods inherited from class
``PcapAndAsciiTraceHelperForIpv4`` reduce to calling this single device-
dependent implementation method. For example, the lowest level ascii trace
methods,
A assinatura deste mtodo reflete a viso central do protocolo e interface da situao neste nvel; e tambm o fato que o assistente pode ser escrito para um fluxo de sada compartilhado. Todos os mtodos pblicos herdados desta classe ``PcapAndAsciiTraceHelperForIpv4`` resumem-se a chamada deste nico mtodo dependente de implementao. Por exemplo, os mtodos de rastreamento ASCII de mais baixo nvel,
::
void EnableAsciiIpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface,
bool explicitFilename = false);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, Ptr<Ipv4> ipv4,
uint32_t interface);
..
will call the device implementation of ``EnableAsciiIpv4Internal`` directly,
providing either the prefix or the stream. All other public ascii tracing
methods will build on these low-level functions to provide additional user-level
functionality. What this means to the user is that all device helpers in the
system will have all of the ascii trace methods available; and these methods
will all work in the same way across protocols if the protocols implement
``EnablAsciiIpv4Internal`` correctly.
chamaro uma implementao de ``EnableAsciiIpv4Internal`` diretamente, passando um prefixo ou fluxo vlido. Todos os outros mtodos pblicos sero construdos a partir destas funes de baixo nvel para fornecer funcionalidades adicionais em nvel de usurio. Para o usurio, isso significa que todos os assistentes de protocolos no sistema tero todos os mtodos de rastreamento ASCII disponveis e estes mtodos trabalharo do mesmo modo em todos os protocolos se estes implementarem ``EnableAsciiIpv4Internal``.
..
Ascii Tracing Protocol Helper Methods
Mtodos da Classe Assistente de Protocolo para Rastreamento ASCII
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
void EnableAsciiIpv4 (std::string prefix, Ptr<Ipv4> ipv4, uint32_t interface,
bool explicitFilename = false);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, Ptr<Ipv4> ipv4,
uint32_t interface);
void EnableAsciiIpv4 (std::string prefix, std::string ipv4Name, uint32_t interface,
bool explicitFilename = false);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, std::string ipv4Name,
uint32_t interface);
void EnableAsciiIpv4 (std::string prefix, Ipv4InterfaceContainer c);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, Ipv4InterfaceContainer c);
void EnableAsciiIpv4 (std::string prefix, NodeContainer n);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, NodeContainer n);
void EnableAsciiIpv4All (std::string prefix);
void EnableAsciiIpv4All (Ptr<OutputStreamWrapper> stream);
void EnableAsciiIpv4 (std::string prefix, uint32_t nodeid, uint32_t deviceid,
bool explicitFilename);
void EnableAsciiIpv4 (Ptr<OutputStreamWrapper> stream, uint32_t nodeid,
uint32_t interface);
..
You are encouraged to peruse the Doxygen for class ``PcapAndAsciiHelperForIpv4``
to find the details of these methods; but to summarize ...
Para maiores detalhes sobre os mtodos consulte na documentao a classe ``PcapAndAsciiHelperForIpv4``; mas para resumir ...
..
There are twice as many methods available for ascii tracing as there were for
pcap tracing. This is because, in addition to the pcap-style model where traces
from each unique protocol/interface pair are written to a unique file, we
support a model in which trace information for many protocol/interface pairs is
written to a common file. This means that the <prefix>-n<node id>-<interface>
file name generation mechanism is replaced by a mechanism to refer to a common
file; and the number of API methods is doubled to allow all combinations.
H duas vezes mais mtodos disponveis para rastreamento ASCII que para rastreamento pcap. Isto ocorre pois para o modelo pcap os rastreamentos de cada par protocolo/interface so escritos para um nico arquivo, enquanto que no ASCII todo as as informaes so escritas para um arquivo comum. Isto significa que o mecanismo de gerao de nomes de arquivos "<prefixo>-n<id do n>-i<interface>" substitudo por um mecanismo para referenciar um arquivo comum; e o nmero de mtodos da API duplicado para permitir todas as combinaes.
..
Just as in pcap tracing, you can enable ascii tracing on a particular
protocol/interface pair by providing a ``Ptr<Ipv4>`` and an ``interface``
to an ``EnableAscii`` method.
For example,
Assim, como no rastreamento pcap, podemos ativar o rastreamento ASCII em um par protocolo/interface passando um ``Ptr<Ipv4>`` e uma ``interface`` para um mtodo ``EnableAsciiIpv4``. Por exemplo,
::
Ptr<Ipv4> ipv4;
...
helper.EnableAsciiIpv4 ("prefix", ipv4, 1);
..
In this case, no trace contexts are written to the ascii trace file since they
would be redundant. The system will pick the file name to be created using
the same rules as described in the pcap section, except that the file will
have the suffix ".tr" instead of ".pcap".
Neste caso, nenhum contexto de rastreamento escrito para o arquivo ASCII pois seriam redundantes. O sistema pegar o nome do arquivo para ser criado usando as mesmas regras como descritas na seo pcap, exceto que o arquivo ter o extenso ``.tr`` ao invs de ``.pcap``.
..
If you want to enable ascii tracing on more than one interface and have all
traces sent to a single file, you can do that as well by using an object to
refer to a single file. We have already something similar to this in the
"cwnd" example above:
Para habilitar o rastreamento ASCII em mais de uma interface e ter todos os dados de rastreamento enviados para um nico arquivo, pode-se usar um objeto para referenciar um nico arquivo. Ns j verificamos isso no exemplo "cwnd":
::
Ptr<Ipv4> protocol1 = node1->GetObject<Ipv4> ();
Ptr<Ipv4> protocol2 = node2->GetObject<Ipv4> ();
...
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream
("trace-file-name.tr");
...
helper.EnableAsciiIpv4 (stream, protocol1, 1);
helper.EnableAsciiIpv4 (stream, protocol2, 1);
..
In this case, trace contexts are written to the ascii trace file since they
are required to disambiguate traces from the two interfaces. Note that since
the user is completely specifying the file name, the string should include the
",tr" for consistency.
Neste caso, os contextos so escritos para o arquivo ASCII quando necessrio distinguir os dados de rastreamento de duas interfaces. interessante usar no nome do arquivo a extenso ``.tr`` por motivos de consistncia.
..
You can enable ascii tracing on a particular protocol by providing a
``std::string`` representing an object name service string to an
``EnablePcap`` method. The ``Ptr<Ipv4>`` is looked up from the name
string. The ``<Node>`` in the resulting filenames is implicit since there
is a one-to-one correspondence between protocol instances and nodes,
For example,
Pode habilitar o rastreamento ASCII em protocolo especfico passando ao mtodo ``EnableAsciiIpv4`` uma ``std::string`` representando um nome no servio de nomes de objetos. O ``Ptr<Ipv4>`` obtido a partir do nome. O ``<Node>`` implcito, pois h uma correspondncia de um-para-um entre instancias de protocolos e ns. Por exemplo,
::
Names::Add ("node1Ipv4" ...);
Names::Add ("node2Ipv4" ...);
...
helper.EnableAsciiIpv4 ("prefix", "node1Ipv4", 1);
helper.EnableAsciiIpv4 ("prefix", "node2Ipv4", 1);
..
This would result in two files named "prefix-nnode1Ipv4-i1.tr" and
"prefix-nnode2Ipv4-i1.tr" with traces for each interface in the respective
trace file. Since all of the EnableAscii functions are overloaded to take a
stream wrapper, you can use that form as well:
Isto resultaria em dois nomes de arquivos ``prefix-nnode1Ipv4-i1.tr`` e ``prefix-nnode2Ipv4-i1.tr``, com os rastreamentos de cada interface em seu arquivo respectivo. Como todas as funes do ``EnableAsciiIpv4`` so sobrecarregadas para suportar um *stream wrapper*, podemos usar da seguinte forma tambm:
::
Names::Add ("node1Ipv4" ...);
Names::Add ("node2Ipv4" ...);
...
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream
("trace-file-name.tr");
...
helper.EnableAsciiIpv4 (stream, "node1Ipv4", 1);
helper.EnableAsciiIpv4 (stream, "node2Ipv4", 1);
..
This would result in a single trace file called "trace-file-name.tr" that
contains all of the trace events for both interfaces. The events would be
disambiguated by trace context strings.
Isto resultaria em um nico arquivo chamado ``trace-file-name.tr`` que contm todos os eventos rastreados para ambas as interfaces. Os eventos seriam diferenciados por `strings` de contexto.
..
You can enable ascii tracing on a collection of protocol/interface pairs by
providing an ``Ipv4InterfaceContainer``. For each protocol of the proper
type (the same type as is managed by the device helper), tracing is enabled
for the corresponding interface. Again, the ``<Node>`` is implicit since
there is a one-to-one correspondence between each protocol and its node.
For example,
Podemos habilitar o rastreamento ASCII em um coleo de pares protocolo/interface provendo um ``Ipv4InterfaceContainer``. Para cada protocolo no continer o tipo verificado. Para cada protocolo do tipo adequado (o mesmo tipo que gerenciado por uma classe assistente de protocolo), o rastreamento habilitado para a interface correspondente. Novamente, o ``<Node>`` implcito, pois h uma correspondncia de um-para-um entre protocolo e seu n. Por exemplo,
::
NodeContainer nodes;
...
NetDeviceContainer devices = deviceHelper.Install (nodes);
...
Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);
...
...
helper.EnableAsciiIpv4 ("prefix", interfaces);
..
This would result in a number of ascii trace files being created, each of which
follows the <prefix>-n<node id>-i<interface>.tr convention. Combining all of the
traces into a single file is accomplished similarly to the examples above:
Isto resultaria em vrios arquivos de rastreamento ASCII sendo criados, cada um seguindo a conveno ``<prefixo>-n<id do n>-i<interface>.tr``.
Para obtermos um nico arquivo teramos:
::
NodeContainer nodes;
...
NetDeviceContainer devices = deviceHelper.Install (nodes);
...
Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);
...
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream
("trace-file-name.tr");
...
helper.EnableAsciiIpv4 (stream, interfaces);
..
You can enable ascii tracing on a collection of protocol/interface pairs by
providing a ``NodeContainer``. For each ``Node`` in the ``NodeContainer``
the appropriate protocol is found. For each protocol, its interfaces are
enumerated and tracing is enabled on the resulting pairs. For example,
Podemos habilitar o rastreamento ASCII em uma coleo de pares protocolo/interface provendo um `NodeContainer``. Para cada ``Node`` no ``NodeContainer`` os protocolos apropriados so encontrados. Para cada protocolo, sua interface enumerada e o rastreamento habilitado nos pares. Por exemplo,
::
NodeContainer n;
...
helper.EnableAsciiIpv4 ("prefix", n);
..
You can enable pcap tracing on the basis of node ID and device ID as well. In
this case, the node-id is translated to a ``Ptr<Node>`` and the appropriate
protocol is looked up in the node. The resulting protocol and interface are
used to specify the resulting trace source.
Podemos habilitar o rastreamento pcap usando o nmero identificador do n e nmero identificador do dispositivo. Neste caso, o `ID` do n traduzido para um ``Ptr<Node>`` e o protocolo apropriado procurado no n de rede. O protocolo e interface resultantes so usados para especificar a origem do rastreamento.
::
helper.EnableAsciiIpv4 ("prefix", 21, 1);
..
Of course, the traces can be combined into a single file as shown above.
Os rastreamentos podem ser combinados em um nico arquivo como mostrado anteriormente.
..
Finally, you can enable ascii tracing for all interfaces in the system, with
associated protocol being the same type as that managed by the device helper.
Finalmente, podemos habilitar o rastreamento ASCII para todas as interfaces no sistema.
::
helper.EnableAsciiIpv4All ("prefix");
..
This would result in a number of ascii trace files being created, one for
every interface in the system related to a protocol of the type managed by the
helper. All of these files will follow the <prefix>-n<node id>-i<interface.tr
convention. Combining all of the traces into a single file is accomplished
similarly to the examples above.
Isto resultaria em vrios arquivos ASCII sendo criados, um para cada interface no sistema relacionada ao protocolo do tipo gerenciado pela classe assistente.Todos estes arquivos seguiriam a conveno
``<prefix>-n<id do node>-i<interface>.tr``.
..
Ascii Tracing Protocol Helper Filename Selection
Seleo de Nome de Arquivo para Rastreamento ASCII da Classe Assistente de Protocolo
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
..
Implicit in the prefix-style method descriptions above is the construction of the
complete filenames by the implementation method. By convention, ascii traces
in the |ns3| system are of the form "<prefix>-<node id>-<device id>.tr"
Implcito nas descries de mtodos anteriores a construo do nome do arquivo por meio do mtodo da implementao. Por conveno, rastreamento ASCII no sistema |ns3| so da forma ``<prefix>-<id node>-<id do dispositivo>.tr``.
..
As previously mentioned, every node in the system will have a system-assigned
node id. Since there is a one-to-one correspondence between protocols and nodes
we use to node-id to identify the protocol identity. Every interface on a
given protocol will have an interface index (also called simply an interface)
relative to its protocol. By default, then, an ascii trace file created as a result
of enabling tracing on the first device of node 21, using the prefix "prefix",
would be "prefix-n21-i1.tr". Use the prefix to disambiguate multiple protocols
per node.
Como mencionado, todo n no sistema ter um nmero identificador de n associado. Como h uma correspondncia de um-para-um entre instncias de protocolo e instncias de n, usamos o `ID` de n. Cada interface em um protocolo ter um ndice de interface (tambm chamando apenas de interface) relativo ao seu protocolo. Por padro, ento, um arquivo de rastreamento ASCII criado a partir do rastreamento no primeiro dispositivo do n 21, usando o prefixo "prefix", seria ``prefix-n21-i1.tr``. O uso de prefixo distingue mltiplos protocolos por n.
..
You can always use the |ns3| object name service to make this more clear.
For example, if you use the object name service to assign the name "serverIpv4"
to the protocol on node 21, and also specify interface one, the resulting ascii
trace file name will automatically become, "prefix-nserverIpv4-1.tr".
Sempre podemos usar o servio de nomes de objetos do |ns3| para tornar isso mais claro. Por exemplo, se usarmos o servio de nomes para associar o nome "serverIpv4" ao Ptr<Ipv4> no n 21, o nome de arquivo resultante seria ``prefix-nserverIpv4-i1.tr``.
..
Several of the methods have a default parameter called ``explicitFilename``.
When set to true, this parameter disables the automatic filename completion
mechanism and allows you to create an explicit filename. This option is only
available in the methods which take a prefix and enable tracing on a single device.
Diversos mtodos tem um parmetro padro ``explicitFilename``. Quando modificado para verdadeiro, este parmetro desabilita o mecanismo automtico de completar o nome do arquivo e permite criarmos um nome de arquivo abertamente. Esta opo est disponvel nos mtodos que ativam o rastreamento em um nico dispositivo.
..
Summary
Consideraes Finais
********************
..
|ns3| includes an extremely rich environment allowing users at several
levels to customize the kinds of information that can be extracted from
simulations.
O |ns3| inclui um ambiente completo para permitir usurios de diversos nveis personalizar os tipos de informao para serem extradas de suas simulaes.
..
There are high-level helper functions that allow users to simply control the
collection of pre-defined outputs to a fine granularity. There are mid-level
helper functions to allow more sophisticated users to customize how information
is extracted and saved; and there are low-level core functions to allow expert
users to alter the system to present new and previously unexported information
in a way that will be immediately accessible to users at higher levels.
Existem funes assistentes de alto nvel que permitem ao usurio o controle de um coleo de sadas predefinidas para uma granularidade mais fina. Existem funes assistentes de nvel intermedirio que permitem usurios mais sofisticados personalizar como as informaes so extradas e armazenadas; e existem funes de baixo nvel que permitem usurios avanados alterarem o sistema para apresentar novas ou informaes que no eram exportadas.
..
This is a very comprehensive system, and we realize that it is a lot to
digest, especially for new users or those not intimately familiar with C++
and its idioms. We do consider the tracing system a very important part of
|ns3| and so recommend becoming as familiar as possible with it. It is
probably the case that understanding the rest of the |ns3| system will
be quite simple once you have mastered the tracing system
Este um sistema muito abrangente e percebemos que muita informao para digerir, especialmente para novos usurios ou aqueles que no esto intimamente familiarizados com C++ e suas expresses idiomticas. Consideramos o sistema de rastreamento uma parte muito importante do |ns3|, assim recomendamos que familiarizem-se o mximo possvel com ele. Compreender o restante do sistema |ns3| bem simples, uma vez que dominamos o sistema de rastreamento.
|