1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
# /*
# * This program is free software; you can redistribute it and/or modify
# * it under the terms of the GNU General Public License version 2 as
# * published by the Free Software Foundation;
# *
# * This program is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# * GNU General Public License for more details.
# *
# * You should have received a copy of the GNU General Public License
# * along with this program; if not, write to the Free Software
# * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
# *
# */
#
# This ns-3 example demonstrates the use of helper functions to ease
# the construction of simulation scenarios.
#
# The simulation topology consists of a mixed wired and wireless
# scenario in which a hierarchical mobility model is used.
#
# The simulation layout consists of N backbone routers interconnected
# by an ad hoc wifi network.
# Each backbone router also has a local 802.11 network and is connected
# to a local LAN. An additional set of(K-1) nodes are connected to
# this backbone. Finally, a local LAN is connected to each router
# on the backbone, with L-1 additional hosts.
#
# The nodes are populated with TCP/IP stacks, and OLSR unicast routing
# on the backbone. An example UDP transfer is shown. The simulator
# be configured to output tcpdumps or traces from different nodes.
#
#
# +--------------------------------------------------------+
# | |
# | 802.11 ad hoc, ns-2 mobility |
# | |
# +--------------------------------------------------------+
# | o o o(N backbone routers) |
# +--------+ +--------+
# wired LAN | mobile | wired LAN | mobile |
# -----------| router | -----------| router |
# --------- ---------
# | |
# +----------------+ +----------------+
# | 802.11 | | 802.11 |
# | net | | net |
# | K-1 hosts | | K-1 hosts |
# +----------------+ +----------------+
#
import ns.applications
import ns.core
import ns.csma
import ns.internet
import ns.mobility
import ns.network
import ns.olsr
import ns.wifi
# #
# # This function will be used below as a trace sink
# #
# static void
# CourseChangeCallback(std.string path, Ptr<const MobilityModel> model)
# {
# Vector position = model.GetPosition();
# std.cout << "CourseChange " << path << " x=" << position.x << ", y=" << position.y << ", z=" << position.z << std.endl;
# }
def main(argv):
#
# First, we initialize a few local variables that control some
# simulation parameters.
#
cmd = ns.core.CommandLine()
cmd.backboneNodes = 10
cmd.infraNodes = 2
cmd.lanNodes = 2
cmd.stopTime = 20
#
# Simulation defaults are typically set next, before command line
# arguments are parsed.
#
ns.core.Config.SetDefault("ns3::OnOffApplication::PacketSize", ns.core.StringValue("1472"))
ns.core.Config.SetDefault("ns3::OnOffApplication::DataRate", ns.core.StringValue("100kb/s"))
#
# For convenience, we add the local variables to the command line argument
# system so that they can be overridden with flags such as
# "--backboneNodes=20"
#
cmd.AddValue("backboneNodes", "number of backbone nodes")
cmd.AddValue("infraNodes", "number of leaf nodes")
cmd.AddValue("lanNodes", "number of LAN nodes")
cmd.AddValue("stopTime", "simulation stop time(seconds)")
#
# The system global variables and the local values added to the argument
# system can be overridden by command line arguments by using this call.
#
cmd.Parse(argv)
backboneNodes = int(cmd.backboneNodes)
infraNodes = int(cmd.infraNodes)
lanNodes = int(cmd.lanNodes)
stopTime = int(cmd.stopTime)
if (stopTime < 10):
print "Use a simulation stop time >= 10 seconds"
exit(1)
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # /
# #
# Construct the backbone #
# #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # /
#
# Create a container to manage the nodes of the adhoc(backbone) network.
# Later we'll create the rest of the nodes we'll need.
#
backbone = ns.network.NodeContainer()
backbone.Create(backboneNodes)
#
# Create the backbone wifi net devices and install them into the nodes in
# our container
#
wifi = ns.wifi.WifiHelper()
mac = ns.wifi.WifiMacHelper()
mac.SetType("ns3::AdhocWifiMac")
wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager",
"DataMode", ns.core.StringValue("OfdmRate54Mbps"))
wifiPhy = ns.wifi.YansWifiPhyHelper.Default()
wifiChannel = ns.wifi.YansWifiChannelHelper.Default()
wifiPhy.SetChannel(wifiChannel.Create())
backboneDevices = wifi.Install(wifiPhy, mac, backbone)
#
# Add the IPv4 protocol stack to the nodes in our container
#
print "Enabling OLSR routing on all backbone nodes"
internet = ns.internet.InternetStackHelper()
olsr = ns.olsr.OlsrHelper()
internet.SetRoutingHelper(olsr); # has effect on the next Install ()
internet.Install(backbone);
# re-initialize for non-olsr routing.
# internet.Reset()
#
# Assign IPv4 addresses to the device drivers(actually to the associated
# IPv4 interfaces) we just created.
#
ipAddrs = ns.internet.Ipv4AddressHelper()
ipAddrs.SetBase(ns.network.Ipv4Address("192.168.0.0"), ns.network.Ipv4Mask("255.255.255.0"))
ipAddrs.Assign(backboneDevices)
#
# The ad-hoc network nodes need a mobility model so we aggregate one to
# each of the nodes we just finished building.
#
mobility = ns.mobility.MobilityHelper()
mobility.SetPositionAllocator("ns3::GridPositionAllocator",
"MinX", ns.core.DoubleValue(20.0),
"MinY", ns.core.DoubleValue(20.0),
"DeltaX", ns.core.DoubleValue(20.0),
"DeltaY", ns.core.DoubleValue(20.0),
"GridWidth", ns.core.UintegerValue(5),
"LayoutType", ns.core.StringValue("RowFirst"))
mobility.SetMobilityModel("ns3::RandomDirection2dMobilityModel",
"Bounds", ns.mobility.RectangleValue(ns.mobility.Rectangle(-500, 500, -500, 500)),
"Speed", ns.core.StringValue ("ns3::ConstantRandomVariable[Constant=2]"),
"Pause", ns.core.StringValue ("ns3::ConstantRandomVariable[Constant=0.2]"))
mobility.Install(backbone)
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # /
# #
# Construct the LANs #
# #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # /
# Reset the address base-- all of the CSMA networks will be in
# the "172.16 address space
ipAddrs.SetBase(ns.network.Ipv4Address("172.16.0.0"), ns.network.Ipv4Mask("255.255.255.0"))
for i in range(backboneNodes):
print "Configuring local area network for backbone node ", i
#
# Create a container to manage the nodes of the LAN. We need
# two containers here; one with all of the new nodes, and one
# with all of the nodes including new and existing nodes
#
newLanNodes = ns.network.NodeContainer()
newLanNodes.Create(lanNodes - 1)
# Now, create the container with all nodes on this link
lan = ns.network.NodeContainer(ns.network.NodeContainer(backbone.Get(i)), newLanNodes)
#
# Create the CSMA net devices and install them into the nodes in our
# collection.
#
csma = ns.csma.CsmaHelper()
csma.SetChannelAttribute("DataRate", ns.network.DataRateValue(ns.network.DataRate(5000000)))
csma.SetChannelAttribute("Delay", ns.core.TimeValue(ns.core.MilliSeconds(2)))
lanDevices = csma.Install(lan)
#
# Add the IPv4 protocol stack to the new LAN nodes
#
internet.Install(newLanNodes)
#
# Assign IPv4 addresses to the device drivers(actually to the
# associated IPv4 interfaces) we just created.
#
ipAddrs.Assign(lanDevices)
#
# Assign a new network prefix for the next LAN, according to the
# network mask initialized above
#
ipAddrs.NewNetwork()
#
# The new LAN nodes need a mobility model so we aggregate one
# to each of the nodes we just finished building.
#
mobilityLan = ns.mobility.MobilityHelper()
positionAlloc = ns.mobility.ListPositionAllocator()
for j in range(newLanNodes.GetN()):
positionAlloc.Add(ns.core.Vector(0.0, (j*10 + 10), 0.0))
mobilityLan.SetPositionAllocator(positionAlloc)
mobilityLan.PushReferenceMobilityModel(backbone.Get(i))
mobilityLan.SetMobilityModel("ns3::ConstantPositionMobilityModel")
mobilityLan.Install(newLanNodes);
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # /
# #
# Construct the mobile networks #
# #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # /
# Reset the address base-- all of the 802.11 networks will be in
# the "10.0" address space
ipAddrs.SetBase(ns.network.Ipv4Address("10.0.0.0"), ns.network.Ipv4Mask("255.255.255.0"))
for i in range(backboneNodes):
print "Configuring wireless network for backbone node ", i
#
# Create a container to manage the nodes of the LAN. We need
# two containers here; one with all of the new nodes, and one
# with all of the nodes including new and existing nodes
#
stas = ns.network.NodeContainer()
stas.Create(infraNodes - 1)
# Now, create the container with all nodes on this link
infra = ns.network.NodeContainer(ns.network.NodeContainer(backbone.Get(i)), stas)
#
# Create another ad hoc network and devices
#
ssid = ns.wifi.Ssid('wifi-infra' + str(i))
wifiInfra = ns.wifi.WifiHelper.Default()
wifiPhy.SetChannel(wifiChannel.Create())
wifiInfra.SetRemoteStationManager('ns3::ArfWifiManager')
macInfra = ns.wifi.WifiMacHelper();
macInfra.SetType("ns3::StaWifiMac",
"Ssid", ns.wifi.SsidValue(ssid),
"ActiveProbing", ns.core.BooleanValue(False))
# setup stas
staDevices = wifiInfra.Install(wifiPhy, macInfra, stas)
# setup ap.
macInfra.SetType("ns3::ApWifiMac",
"Ssid", ns.wifi.SsidValue(ssid),
"BeaconGeneration", ns.core.BooleanValue(True),
"BeaconInterval", ns.core.TimeValue(ns.core.Seconds(2.5)))
apDevices = wifiInfra.Install(wifiPhy, macInfra, backbone.Get(i))
# Collect all of these new devices
infraDevices = ns.network.NetDeviceContainer(apDevices, staDevices)
# Add the IPv4 protocol stack to the nodes in our container
#
internet.Install(stas)
#
# Assign IPv4 addresses to the device drivers(actually to the associated
# IPv4 interfaces) we just created.
#
ipAddrs.Assign(infraDevices)
#
# Assign a new network prefix for each mobile network, according to
# the network mask initialized above
#
ipAddrs.NewNetwork()
#
# The new wireless nodes need a mobility model so we aggregate one
# to each of the nodes we just finished building.
#
subnetAlloc = ns.mobility.ListPositionAllocator()
for j in range(infra.GetN()):
subnetAlloc.Add(ns.core.Vector(0.0, j, 0.0))
mobility.PushReferenceMobilityModel(backbone.Get(i))
mobility.SetPositionAllocator(subnetAlloc)
mobility.SetMobilityModel("ns3::RandomDirection2dMobilityModel",
"Bounds", ns.mobility.RectangleValue(ns.mobility.Rectangle(-10, 10, -10, 10)),
"Speed", ns.core.StringValue ("ns3::ConstantRandomVariable[Constant=3]"),
"Pause", ns.core.StringValue ("ns3::ConstantRandomVariable[Constant=0.4]"))
mobility.Install(stas)
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # /
# #
# Application configuration #
# #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # /
# Create the OnOff application to send UDP datagrams of size
# 210 bytes at a rate of 448 Kb/s, between two nodes
print "Create Applications."
port = 9 # Discard port(RFC 863)
appSource = ns.network.NodeList.GetNode(backboneNodes)
lastNodeIndex = backboneNodes + backboneNodes*(lanNodes - 1) + backboneNodes*(infraNodes - 1) - 1
appSink = ns.network.NodeList.GetNode(lastNodeIndex)
# Let's fetch the IP address of the last node, which is on Ipv4Interface 1
remoteAddr = appSink.GetObject(ns.internet.Ipv4.GetTypeId()).GetAddress(1,0).GetLocal()
onoff = ns.applications.OnOffHelper("ns3::UdpSocketFactory",
ns.network.Address(ns.network.InetSocketAddress(remoteAddr, port)))
apps = onoff.Install(ns.network.NodeContainer(appSource))
apps.Start(ns.core.Seconds(3))
apps.Stop(ns.core.Seconds(stopTime - 1))
# Create a packet sink to receive these packets
sink = ns.applications.PacketSinkHelper("ns3::UdpSocketFactory",
ns.network.InetSocketAddress(ns.network.Ipv4Address.GetAny(), port))
apps = sink.Install(ns.network.NodeContainer(appSink))
apps.Start(ns.core.Seconds(3))
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # /
# #
# Tracing configuration #
# #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # /
print "Configure Tracing."
csma = ns.csma.CsmaHelper()
#
# Let's set up some ns-2-like ascii traces, using another helper class
#
ascii = ns.network.AsciiTraceHelper();
stream = ascii.CreateFileStream("mixed-wireless.tr");
wifiPhy.EnableAsciiAll(stream);
csma.EnableAsciiAll(stream);
internet.EnableAsciiIpv4All(stream);
# Csma captures in non-promiscuous mode
csma.EnablePcapAll("mixed-wireless", False)
# Let's do a pcap trace on the backbone devices
wifiPhy.EnablePcap("mixed-wireless", backboneDevices)
wifiPhy.EnablePcap("mixed-wireless", appSink.GetId(), 0)
# #ifdef ENABLE_FOR_TRACING_EXAMPLE
# Config.Connect("/NodeList/*/$MobilityModel/CourseChange",
# MakeCallback(&CourseChangeCallback))
# #endif
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# #
# Run simulation #
# #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
print "Run Simulation."
ns.core.Simulator.Stop(ns.core.Seconds(stopTime))
ns.core.Simulator.Run()
ns.core.Simulator.Destroy()
if __name__ == '__main__':
import sys
main(sys.argv)
|