1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2014 Universidad de la República - Uruguay
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Matias Richart <mrichart@fing.edu.uy>
*/
/**
* This example program is designed to illustrate the behavior of two
* power/rate-adaptive WiFi rate controls; namely, ns3::ParfWifiManager
* and ns3::AparfWifiManager.
*
* The output of this is typically two plot files, named throughput-parf.plt
* (or throughput-aparf.plt, if Aparf is used) and power-parf.plt If
* Gnuplot program is available, one can use it to convert the plt file
* into an eps file, by running:
* \code{.sh}
* gnuplot throughput-parf.plt
* \endcode
* Also, to enable logging of rate and power changes to the terminal, set this
* environment variable:
* \code{.sh}
* export NS_LOG=PowerAdaptationDistance=level_info
* \endcode
*
* This simulation consist of 2 nodes, one AP and one STA.
* The AP generates UDP traffic with a CBR of 54 Mbps to the STA.
* The AP can use any power and rate control mechanism and the STA uses
* only Minstrel rate control.
* The STA can be configured to move away from (or towards to) the AP.
* By default, the AP is at coordinate (0,0,0) and the STA starts at
* coordinate (5,0,0) (meters) and moves away on the x axis by 1 meter every
* second.
*
* The output consists of:
* - A plot of average throughput vs. distance.
* - A plot of average transmit power vs. distance.
* - (if logging is enabled) the changes of power and rate to standard output.
*
* The Average Transmit Power is defined as an average of the power
* consumed per measurement interval, expressed in milliwatts. The
* power level for each frame transmission is reported by the simulator,
* and the energy consumed is obtained by multiplying the power by the
* frame duration. At every 'stepTime' (defaulting to 1 second), the
* total energy for the collection period is divided by the step time
* and converted from dbm to milliwatt units, and this average is
* plotted against time.
*
* When neither Parf nor Aparf is selected as the rate control, the
* generation of the plot of average transmit power vs distance is suppressed
* since the other Wifi rate controls do not support the necessary callbacks
* for computing the average power.
*
* To display all the possible arguments and their defaults:
* \code{.sh}
* ./waf --run "power-adaptation-distance --help"
* \endcode
*
* Example usage (selecting Aparf rather than Parf):
* \code{.sh}
* ./waf --run "power-adaptation-distance --manager=ns3::AparfWifiManager --outputFileName=aparf"
* \endcode
*
* Another example (moving towards the AP):
* \code{.sh}
* ./waf --run "power-adaptation-distance --manager=ns3::AparfWifiManager --outputFileName=aparf --stepsSize=-1 --STA1_x=200"
* \endcode
*
* To enable the log of rate and power changes:
* \code{.sh}
* export NS_LOG=PowerAdaptationDistance=level_info
* \endcode
*/
#include <sstream>
#include <fstream>
#include <math.h>
#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/internet-module.h"
#include "ns3/mobility-module.h"
#include "ns3/wifi-module.h"
#include "ns3/applications-module.h"
#include "ns3/stats-module.h"
#include "ns3/flow-monitor-module.h"
using namespace ns3;
using namespace std;
NS_LOG_COMPONENT_DEFINE ("PowerAdaptationDistance");
// packet size generated at the AP
static const uint32_t packetSize = 1420;
class NodeStatistics
{
public:
NodeStatistics (NetDeviceContainer aps, NetDeviceContainer stas);
void CheckStatistics (double time);
void PhyCallback (std::string path, Ptr<const Packet> packet);
void RxCallback (std::string path, Ptr<const Packet> packet, const Address &from);
void PowerCallback (std::string path, uint8_t power, Mac48Address dest);
void RateCallback (std::string path, uint32_t rate, Mac48Address dest);
void SetPosition (Ptr<Node> node, Vector position);
void AdvancePosition (Ptr<Node> node, int stepsSize, int stepsTime);
Vector GetPosition (Ptr<Node> node);
Gnuplot2dDataset GetDatafile ();
Gnuplot2dDataset GetPowerDatafile ();
private:
typedef std::vector<std::pair<Time,WifiMode> > TxTime;
void SetupPhy (Ptr<WifiPhy> phy);
Time GetCalcTxTime (WifiMode mode);
std::map<Mac48Address, double> actualPower;
std::map<Mac48Address, WifiMode> actualMode;
uint32_t m_bytesTotal;
double totalEnergy;
double totalTime;
Ptr<WifiPhy> myPhy;
TxTime timeTable;
Gnuplot2dDataset m_output;
Gnuplot2dDataset m_output_power;
};
NodeStatistics::NodeStatistics (NetDeviceContainer aps, NetDeviceContainer stas)
{
Ptr<NetDevice> device = aps.Get (0);
Ptr<WifiNetDevice> wifiDevice = DynamicCast<WifiNetDevice> (device);
Ptr<WifiPhy> phy = wifiDevice->GetPhy ();
myPhy = phy;
SetupPhy (phy);
for (uint32_t j = 0; j < stas.GetN (); j++)
{
Ptr<NetDevice> staDevice = stas.Get (j);
Ptr<WifiNetDevice> wifiStaDevice = DynamicCast<WifiNetDevice> (staDevice);
Mac48Address addr = wifiStaDevice->GetMac ()->GetAddress ();
actualPower[addr] = 17;
actualMode[addr] = phy->GetMode (0);
}
actualMode[Mac48Address ("ff:ff:ff:ff:ff:ff")] = phy->GetMode (0);
totalEnergy = 0;
totalTime = 0;
m_bytesTotal = 0;
m_output.SetTitle ("Throughput Mbits/s");
m_output_power.SetTitle ("Average Transmit Power");
}
void
NodeStatistics::SetupPhy (Ptr<WifiPhy> phy)
{
uint32_t nModes = phy->GetNModes ();
for (uint32_t i = 0; i < nModes; i++)
{
WifiMode mode = phy->GetMode (i);
WifiTxVector txVector;
txVector.SetMode (mode);
timeTable.push_back (std::make_pair (phy->CalculateTxDuration (packetSize, txVector, WIFI_PREAMBLE_LONG, phy->GetFrequency ()), mode));
}
}
Time
NodeStatistics::GetCalcTxTime (WifiMode mode)
{
for (TxTime::const_iterator i = timeTable.begin (); i != timeTable.end (); i++)
{
if (mode == i->second)
{
return i->first;
}
}
NS_ASSERT (false);
return Seconds (0);
}
void
NodeStatistics::PhyCallback (std::string path, Ptr<const Packet> packet)
{
WifiMacHeader head;
packet->PeekHeader (head);
Mac48Address dest = head.GetAddr1 ();
if (head.GetType() == WIFI_MAC_DATA)
{
totalEnergy += pow (10.0, actualPower[dest] / 10.0) * GetCalcTxTime (actualMode[dest]).GetSeconds ();
totalTime += GetCalcTxTime (actualMode[dest]).GetSeconds ();
}
}
void
NodeStatistics::PowerCallback (std::string path, uint8_t power, Mac48Address dest)
{
double txPowerBaseDbm = myPhy->GetTxPowerStart ();
double txPowerEndDbm = myPhy->GetTxPowerEnd ();
uint32_t nTxPower = myPhy->GetNTxPower ();
double dbm;
if (nTxPower > 1)
{
dbm = txPowerBaseDbm + power * (txPowerEndDbm - txPowerBaseDbm) / (nTxPower - 1);
}
else
{
NS_ASSERT_MSG (txPowerBaseDbm == txPowerEndDbm, "cannot have TxPowerEnd != TxPowerStart with TxPowerLevels == 1");
dbm = txPowerBaseDbm;
}
actualPower[dest] = dbm;
}
void
NodeStatistics::RateCallback (std::string path, uint32_t rate, Mac48Address dest)
{
actualMode[dest] = myPhy->GetMode (rate);
}
void
NodeStatistics::RxCallback (std::string path, Ptr<const Packet> packet, const Address &from)
{
m_bytesTotal += packet->GetSize ();
}
void
NodeStatistics::CheckStatistics (double time)
{
}
void
NodeStatistics::SetPosition (Ptr<Node> node, Vector position)
{
Ptr<MobilityModel> mobility = node->GetObject<MobilityModel> ();
mobility->SetPosition (position);
}
Vector
NodeStatistics::GetPosition (Ptr<Node> node)
{
Ptr<MobilityModel> mobility = node->GetObject<MobilityModel> ();
return mobility->GetPosition ();
}
void
NodeStatistics::AdvancePosition (Ptr<Node> node, int stepsSize, int stepsTime)
{
Vector pos = GetPosition (node);
double mbs = ((m_bytesTotal * 8.0) / (1000000 * stepsTime));
m_bytesTotal = 0;
double atp = totalEnergy / stepsTime;
totalEnergy = 0;
totalTime = 0;
m_output_power.Add (pos.x, atp);
m_output.Add (pos.x, mbs);
pos.x += stepsSize;
SetPosition (node, pos);
NS_LOG_INFO ("At time " << Simulator::Now ().GetSeconds () << " sec; setting new position to " << pos);
Simulator::Schedule (Seconds (stepsTime), &NodeStatistics::AdvancePosition, this, node, stepsSize, stepsTime);
}
Gnuplot2dDataset
NodeStatistics::GetDatafile ()
{
return m_output;
}
Gnuplot2dDataset
NodeStatistics::GetPowerDatafile ()
{
return m_output_power;
}
void PowerCallback (std::string path, uint8_t power, Mac48Address dest)
{
NS_LOG_INFO ((Simulator::Now ()).GetSeconds () << " " << dest << " Power " << (int)power);
}
void RateCallback (std::string path, uint32_t rate, Mac48Address dest)
{
NS_LOG_INFO ((Simulator::Now ()).GetSeconds () << " " << dest << " Rate " << rate);
}
int main (int argc, char *argv[])
{
double maxPower = 17;
double minPower = 0;
uint32_t powerLevels = 18;
uint32_t rtsThreshold = 2346;
std::string manager = "ns3::ParfWifiManager";
std::string outputFileName = "parf";
int ap1_x = 0;
int ap1_y = 0;
int sta1_x = 5;
int sta1_y = 0;
uint32_t steps = 200;
uint32_t stepsSize = 1;
uint32_t stepsTime = 1;
CommandLine cmd;
cmd.AddValue ("manager", "PRC Manager", manager);
cmd.AddValue ("rtsThreshold", "RTS threshold", rtsThreshold);
cmd.AddValue ("outputFileName", "Output filename", outputFileName);
cmd.AddValue ("steps", "How many different distances to try", steps);
cmd.AddValue ("stepsTime", "Time on each step", stepsTime);
cmd.AddValue ("stepsSize", "Distance between steps", stepsSize);
cmd.AddValue ("maxPower", "Maximum available transmission level (dbm).", maxPower);
cmd.AddValue ("minPower", "Minimum available transmission level (dbm).", minPower);
cmd.AddValue ("powerLevels", "Number of transmission power levels available between "
"TxPowerStart and TxPowerEnd included.", powerLevels);
cmd.AddValue ("AP1_x", "Position of AP1 in x coordinate", ap1_x);
cmd.AddValue ("AP1_y", "Position of AP1 in y coordinate", ap1_y);
cmd.AddValue ("STA1_x", "Position of STA1 in x coordinate", sta1_x);
cmd.AddValue ("STA1_y", "Position of STA1 in y coordinate", sta1_y);
cmd.Parse (argc, argv);
if (steps == 0)
{
std::cout << "Exiting without running simulation; steps value of 0" << std::endl;
}
uint32_t simuTime = (steps + 1) * stepsTime;
// Define the APs
NodeContainer wifiApNodes;
wifiApNodes.Create (1);
//Define the STAs
NodeContainer wifiStaNodes;
wifiStaNodes.Create (1);
WifiHelper wifi;
wifi.SetStandard (WIFI_PHY_STANDARD_80211a);
WifiMacHelper wifiMac;
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();
wifiPhy.SetChannel (wifiChannel.Create ());
NetDeviceContainer wifiApDevices;
NetDeviceContainer wifiStaDevices;
NetDeviceContainer wifiDevices;
//Configure the STA node
wifi.SetRemoteStationManager ("ns3::MinstrelWifiManager", "RtsCtsThreshold", UintegerValue (rtsThreshold));
wifiPhy.Set ("TxPowerStart", DoubleValue (maxPower));
wifiPhy.Set ("TxPowerEnd", DoubleValue (maxPower));
Ssid ssid = Ssid ("AP");
wifiMac.SetType ("ns3::StaWifiMac",
"Ssid", SsidValue (ssid));
wifiStaDevices.Add (wifi.Install (wifiPhy, wifiMac, wifiStaNodes.Get (0)));
//Configure the AP node
wifi.SetRemoteStationManager (manager, "DefaultTxPowerLevel", UintegerValue (maxPower), "RtsCtsThreshold", UintegerValue (rtsThreshold));
wifiPhy.Set ("TxPowerStart", DoubleValue (minPower));
wifiPhy.Set ("TxPowerEnd", DoubleValue (maxPower));
wifiPhy.Set ("TxPowerLevels", UintegerValue (powerLevels));
ssid = Ssid ("AP");
wifiMac.SetType ("ns3::ApWifiMac",
"Ssid", SsidValue (ssid));
wifiApDevices.Add (wifi.Install (wifiPhy, wifiMac, wifiApNodes.Get (0)));
wifiDevices.Add (wifiStaDevices);
wifiDevices.Add (wifiApDevices);
// Configure the mobility.
MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
//Initial position of AP and STA
positionAlloc->Add (Vector (ap1_x, ap1_y, 0.0));
NS_LOG_INFO ("Setting initial AP position to " << Vector (ap1_x, ap1_y, 0.0));
positionAlloc->Add (Vector (sta1_x, sta1_y, 0.0));
NS_LOG_INFO ("Setting initial STA position to " << Vector (sta1_x, sta1_y, 0.0));
mobility.SetPositionAllocator (positionAlloc);
mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
mobility.Install (wifiApNodes.Get (0));
mobility.Install (wifiStaNodes.Get (0));
//Statistics counter
NodeStatistics statistics = NodeStatistics (wifiApDevices, wifiStaDevices);
//Move the STA by stepsSize meters every stepsTime seconds
Simulator::Schedule (Seconds (0.5 + stepsTime), &NodeStatistics::AdvancePosition, &statistics, wifiStaNodes.Get (0), stepsSize, stepsTime);
//Configure the IP stack
InternetStackHelper stack;
stack.Install (wifiApNodes);
stack.Install (wifiStaNodes);
Ipv4AddressHelper address;
address.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer i = address.Assign (wifiDevices);
Ipv4Address sinkAddress = i.GetAddress (0);
uint16_t port = 9;
//Configure the CBR generator
PacketSinkHelper sink ("ns3::UdpSocketFactory", InetSocketAddress (sinkAddress, port));
ApplicationContainer apps_sink = sink.Install (wifiStaNodes.Get (0));
OnOffHelper onoff ("ns3::UdpSocketFactory", InetSocketAddress (sinkAddress, port));
onoff.SetConstantRate (DataRate ("54Mb/s"), packetSize);
onoff.SetAttribute ("StartTime", TimeValue (Seconds (0.5)));
onoff.SetAttribute ("StopTime", TimeValue (Seconds (simuTime)));
ApplicationContainer apps_source = onoff.Install (wifiApNodes.Get (0));
apps_sink.Start (Seconds (0.5));
apps_sink.Stop (Seconds (simuTime));
//------------------------------------------------------------
//-- Setup stats and data collection
//--------------------------------------------
//Register packet receptions to calculate throughput
Config::Connect ("/NodeList/1/ApplicationList/*/$ns3::PacketSink/Rx",
MakeCallback (&NodeStatistics::RxCallback, &statistics));
//Register power and rate changes to calculate the Average Transmit Power
Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/PowerChange",
MakeCallback (&NodeStatistics::PowerCallback, &statistics));
Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/RateChange",
MakeCallback (&NodeStatistics::RateCallback, &statistics));
Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/Phy/PhyTxBegin",
MakeCallback (&NodeStatistics::PhyCallback, &statistics));
//Callbacks to print every change of power and rate
Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/PowerChange",
MakeCallback (PowerCallback));
Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/RateChange",
MakeCallback (RateCallback));
Simulator::Stop (Seconds (simuTime));
Simulator::Run ();
std::ofstream outfile (("throughput-" + outputFileName + ".plt").c_str ());
Gnuplot gnuplot = Gnuplot (("throughput-" + outputFileName + ".eps").c_str (), "Throughput");
gnuplot.SetTerminal ("post eps color enhanced");
gnuplot.SetLegend ("Time (seconds)", "Throughput (Mb/s)");
gnuplot.SetTitle ("Throughput (AP to STA) vs time");
gnuplot.AddDataset (statistics.GetDatafile ());
gnuplot.GenerateOutput (outfile);
if (manager.compare ("ns3::ParfWifiManager") == 0 ||
manager.compare ("ns3::AparfWifiManager") == 0)
{
std::ofstream outfile2 (("power-" + outputFileName + ".plt").c_str ());
gnuplot = Gnuplot (("power-" + outputFileName + ".eps").c_str (), "Average Transmit Power");
gnuplot.SetTerminal ("post eps color enhanced");
gnuplot.SetLegend ("Time (seconds)", "Power (mW)");
gnuplot.SetTitle ("Average transmit power (AP to STA) vs time");
gnuplot.AddDataset (statistics.GetPowerDatafile ());
gnuplot.GenerateOutput (outfile2);
}
Simulator::Destroy ();
return 0;
}
|