File: power-adaptation-distance.cc

package info (click to toggle)
ns3 3.26%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 117,520 kB
  • ctags: 72,063
  • sloc: cpp: 462,724; python: 364,339; perl: 8,720; ansic: 7,153; xml: 3,401; makefile: 1,981; sh: 628
file content (473 lines) | stat: -rw-r--r-- 16,971 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
 * Copyright (c) 2014 Universidad de la República - Uruguay
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation;
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * Author: Matias Richart <mrichart@fing.edu.uy>
 */

/**
 * This example program is designed to illustrate the behavior of two
 * power/rate-adaptive WiFi rate controls; namely, ns3::ParfWifiManager
 * and ns3::AparfWifiManager.
 *
 * The output of this is typically two plot files, named throughput-parf.plt
 * (or throughput-aparf.plt, if Aparf is used) and power-parf.plt If 
 * Gnuplot program is available, one can use it to convert the plt file
 * into an eps file, by running:
 * \code{.sh}
 *   gnuplot throughput-parf.plt
 * \endcode
 * Also, to enable logging of rate and power changes to the terminal, set this
 * environment variable:
 * \code{.sh}
 *   export NS_LOG=PowerAdaptationDistance=level_info
 * \endcode
 *
 * This simulation consist of 2 nodes, one AP and one STA.
 * The AP generates UDP traffic with a CBR of 54 Mbps to the STA.
 * The AP can use any power and rate control mechanism and the STA uses 
 * only Minstrel rate control.
 * The STA can be configured to move away from (or towards to) the AP.
 * By default, the AP is at coordinate (0,0,0) and the STA starts at 
 * coordinate (5,0,0) (meters) and moves away on the x axis by 1 meter every
 * second.
 *
 * The output consists of:
 * - A plot of average throughput vs. distance.
 * - A plot of average transmit power vs. distance.
 * - (if logging is enabled) the changes of power and rate to standard output.
 *
 * The Average Transmit Power is defined as an average of the power
 * consumed per measurement interval, expressed in milliwatts.  The
 * power level for each frame transmission is reported by the simulator, 
 * and the energy consumed is obtained by multiplying the power by the
 * frame duration.  At every 'stepTime' (defaulting to 1 second), the
 * total energy for the collection period is divided by the step time 
 * and converted from dbm to milliwatt units, and this average is 
 * plotted against time.
 *
 * When neither Parf nor Aparf is selected as the rate control, the
 * generation of the plot of average transmit power vs distance is suppressed
 * since the other Wifi rate controls do not support the necessary callbacks
 * for computing the average power.
 *
 * To display all the possible arguments and their defaults:
 * \code{.sh}
 *   ./waf --run "power-adaptation-distance --help"
 * \endcode
 * 
 * Example usage (selecting Aparf rather than Parf):
 * \code{.sh}
 *   ./waf --run "power-adaptation-distance --manager=ns3::AparfWifiManager --outputFileName=aparf"
 * \endcode
 *
 * Another example (moving towards the AP):
 * \code{.sh}
 *   ./waf --run "power-adaptation-distance --manager=ns3::AparfWifiManager --outputFileName=aparf --stepsSize=-1 --STA1_x=200"
 * \endcode
 *
 * To enable the log of rate and power changes:
 * \code{.sh}
 *   export NS_LOG=PowerAdaptationDistance=level_info
 * \endcode
 */

#include <sstream>
#include <fstream>
#include <math.h>

#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/internet-module.h"
#include "ns3/mobility-module.h"
#include "ns3/wifi-module.h"
#include "ns3/applications-module.h"
#include "ns3/stats-module.h"
#include "ns3/flow-monitor-module.h"

using namespace ns3;
using namespace std;

NS_LOG_COMPONENT_DEFINE ("PowerAdaptationDistance");

// packet size generated at the AP
static const uint32_t packetSize = 1420;

class NodeStatistics
{
public:
  NodeStatistics (NetDeviceContainer aps, NetDeviceContainer stas);

  void CheckStatistics (double time);

  void PhyCallback (std::string path, Ptr<const Packet> packet);
  void RxCallback (std::string path, Ptr<const Packet> packet, const Address &from);
  void PowerCallback (std::string path, uint8_t power, Mac48Address dest);
  void RateCallback (std::string path, uint32_t rate, Mac48Address dest);
  void SetPosition (Ptr<Node> node, Vector position);
  void AdvancePosition (Ptr<Node> node, int stepsSize, int stepsTime);
  Vector GetPosition (Ptr<Node> node);

  Gnuplot2dDataset GetDatafile ();
  Gnuplot2dDataset GetPowerDatafile ();

private:
  typedef std::vector<std::pair<Time,WifiMode> > TxTime;
  void SetupPhy (Ptr<WifiPhy> phy);
  Time GetCalcTxTime (WifiMode mode);

  std::map<Mac48Address, double> actualPower;
  std::map<Mac48Address, WifiMode> actualMode;
  uint32_t m_bytesTotal;
  double totalEnergy;
  double totalTime;
  Ptr<WifiPhy> myPhy;
  TxTime timeTable;
  Gnuplot2dDataset m_output;
  Gnuplot2dDataset m_output_power;
};

NodeStatistics::NodeStatistics (NetDeviceContainer aps, NetDeviceContainer stas)
{
  Ptr<NetDevice> device = aps.Get (0);
  Ptr<WifiNetDevice> wifiDevice = DynamicCast<WifiNetDevice> (device);
  Ptr<WifiPhy> phy = wifiDevice->GetPhy ();
  myPhy = phy;
  SetupPhy (phy);
  for (uint32_t j = 0; j < stas.GetN (); j++)
    {
      Ptr<NetDevice> staDevice = stas.Get (j);
      Ptr<WifiNetDevice> wifiStaDevice = DynamicCast<WifiNetDevice> (staDevice);
      Mac48Address addr = wifiStaDevice->GetMac ()->GetAddress ();
      actualPower[addr] = 17;
      actualMode[addr] = phy->GetMode (0);
    }
  actualMode[Mac48Address ("ff:ff:ff:ff:ff:ff")] = phy->GetMode (0);
  totalEnergy = 0;
  totalTime = 0;
  m_bytesTotal = 0;
  m_output.SetTitle ("Throughput Mbits/s");
  m_output_power.SetTitle ("Average Transmit Power");
}

void
NodeStatistics::SetupPhy (Ptr<WifiPhy> phy)
{
  uint32_t nModes = phy->GetNModes ();
  for (uint32_t i = 0; i < nModes; i++)
    {
      WifiMode mode = phy->GetMode (i);
      WifiTxVector txVector;
      txVector.SetMode (mode);
      timeTable.push_back (std::make_pair (phy->CalculateTxDuration (packetSize, txVector, WIFI_PREAMBLE_LONG, phy->GetFrequency ()), mode));
    }
}

Time
NodeStatistics::GetCalcTxTime (WifiMode mode)
{
  for (TxTime::const_iterator i = timeTable.begin (); i != timeTable.end (); i++)
    {
      if (mode == i->second)
        {
          return i->first;
        }
    }
  NS_ASSERT (false);
  return Seconds (0);
}

void
NodeStatistics::PhyCallback (std::string path, Ptr<const Packet> packet)
{
  WifiMacHeader head;
  packet->PeekHeader (head);
  Mac48Address dest = head.GetAddr1 ();

  if (head.GetType() == WIFI_MAC_DATA)
    {
      totalEnergy += pow (10.0, actualPower[dest] / 10.0) * GetCalcTxTime (actualMode[dest]).GetSeconds ();
      totalTime += GetCalcTxTime (actualMode[dest]).GetSeconds ();
    }
}

void
NodeStatistics::PowerCallback (std::string path, uint8_t power, Mac48Address dest)
{
  double   txPowerBaseDbm = myPhy->GetTxPowerStart ();
  double   txPowerEndDbm = myPhy->GetTxPowerEnd ();
  uint32_t nTxPower = myPhy->GetNTxPower ();
  double dbm;
  if (nTxPower > 1)
    {
      dbm = txPowerBaseDbm + power * (txPowerEndDbm - txPowerBaseDbm) / (nTxPower - 1);
    }
  else
    {
      NS_ASSERT_MSG (txPowerBaseDbm == txPowerEndDbm, "cannot have TxPowerEnd != TxPowerStart with TxPowerLevels == 1");
      dbm = txPowerBaseDbm;
    }
  actualPower[dest] = dbm;
}

void
NodeStatistics::RateCallback (std::string path, uint32_t rate, Mac48Address dest)
{
  actualMode[dest] = myPhy->GetMode (rate);
}

void
NodeStatistics::RxCallback (std::string path, Ptr<const Packet> packet, const Address &from)
{
  m_bytesTotal += packet->GetSize ();
}

void
NodeStatistics::CheckStatistics (double time)
{

}

void
NodeStatistics::SetPosition (Ptr<Node> node, Vector position)
{
  Ptr<MobilityModel> mobility = node->GetObject<MobilityModel> ();
  mobility->SetPosition (position);
}

Vector
NodeStatistics::GetPosition (Ptr<Node> node)
{
  Ptr<MobilityModel> mobility = node->GetObject<MobilityModel> ();
  return mobility->GetPosition ();
}

void
NodeStatistics::AdvancePosition (Ptr<Node> node, int stepsSize, int stepsTime)
{
  Vector pos = GetPosition (node);
  double mbs = ((m_bytesTotal * 8.0) / (1000000 * stepsTime));
  m_bytesTotal = 0;
  double atp = totalEnergy / stepsTime;
  totalEnergy = 0;
  totalTime = 0;
  m_output_power.Add (pos.x, atp);
  m_output.Add (pos.x, mbs);
  pos.x += stepsSize;
  SetPosition (node, pos);
  NS_LOG_INFO ("At time " << Simulator::Now ().GetSeconds () << " sec; setting new position to " << pos);
  Simulator::Schedule (Seconds (stepsTime), &NodeStatistics::AdvancePosition, this, node, stepsSize, stepsTime);
}

Gnuplot2dDataset
NodeStatistics::GetDatafile ()
{
  return m_output;
}

Gnuplot2dDataset
NodeStatistics::GetPowerDatafile ()
{
  return m_output_power;
}

void PowerCallback (std::string path, uint8_t power, Mac48Address dest)
{
  NS_LOG_INFO ((Simulator::Now ()).GetSeconds () << " " << dest << " Power " << (int)power);
}

void RateCallback (std::string path, uint32_t rate, Mac48Address dest)
{
  NS_LOG_INFO ((Simulator::Now ()).GetSeconds () << " " << dest << " Rate " <<  rate);
}

int main (int argc, char *argv[])
{
  double maxPower = 17;
  double minPower = 0;
  uint32_t powerLevels = 18;

  uint32_t rtsThreshold = 2346;
  std::string manager = "ns3::ParfWifiManager";
  std::string outputFileName = "parf";
  int ap1_x = 0;
  int ap1_y = 0;
  int sta1_x = 5;
  int sta1_y = 0;
  uint32_t steps = 200;
  uint32_t stepsSize = 1;
  uint32_t stepsTime = 1;

  CommandLine cmd;
  cmd.AddValue ("manager", "PRC Manager", manager);
  cmd.AddValue ("rtsThreshold", "RTS threshold", rtsThreshold);
  cmd.AddValue ("outputFileName", "Output filename", outputFileName);
  cmd.AddValue ("steps", "How many different distances to try", steps);
  cmd.AddValue ("stepsTime", "Time on each step", stepsTime);
  cmd.AddValue ("stepsSize", "Distance between steps", stepsSize);
  cmd.AddValue ("maxPower", "Maximum available transmission level (dbm).", maxPower);
  cmd.AddValue ("minPower", "Minimum available transmission level (dbm).", minPower);
  cmd.AddValue ("powerLevels", "Number of transmission power levels available between "
                "TxPowerStart and TxPowerEnd included.", powerLevels);
  cmd.AddValue ("AP1_x", "Position of AP1 in x coordinate", ap1_x);
  cmd.AddValue ("AP1_y", "Position of AP1 in y coordinate", ap1_y);
  cmd.AddValue ("STA1_x", "Position of STA1 in x coordinate", sta1_x);
  cmd.AddValue ("STA1_y", "Position of STA1 in y coordinate", sta1_y);
  cmd.Parse (argc, argv);

  if (steps == 0)
    {
      std::cout << "Exiting without running simulation; steps value of 0" << std::endl;
    }

  uint32_t simuTime = (steps + 1) * stepsTime;

  // Define the APs
  NodeContainer wifiApNodes;
  wifiApNodes.Create (1);

  //Define the STAs
  NodeContainer wifiStaNodes;
  wifiStaNodes.Create (1);

  WifiHelper wifi;
  wifi.SetStandard (WIFI_PHY_STANDARD_80211a);
  WifiMacHelper wifiMac;
  YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
  YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();

  wifiPhy.SetChannel (wifiChannel.Create ());

  NetDeviceContainer wifiApDevices;
  NetDeviceContainer wifiStaDevices;
  NetDeviceContainer wifiDevices;

  //Configure the STA node
  wifi.SetRemoteStationManager ("ns3::MinstrelWifiManager", "RtsCtsThreshold", UintegerValue (rtsThreshold));
  wifiPhy.Set ("TxPowerStart", DoubleValue (maxPower));
  wifiPhy.Set ("TxPowerEnd", DoubleValue (maxPower));

  Ssid ssid = Ssid ("AP");
  wifiMac.SetType ("ns3::StaWifiMac",
                   "Ssid", SsidValue (ssid));
  wifiStaDevices.Add (wifi.Install (wifiPhy, wifiMac, wifiStaNodes.Get (0)));

  //Configure the AP node
  wifi.SetRemoteStationManager (manager, "DefaultTxPowerLevel", UintegerValue (maxPower), "RtsCtsThreshold", UintegerValue (rtsThreshold));
  wifiPhy.Set ("TxPowerStart", DoubleValue (minPower));
  wifiPhy.Set ("TxPowerEnd", DoubleValue (maxPower));
  wifiPhy.Set ("TxPowerLevels", UintegerValue (powerLevels));

  ssid = Ssid ("AP");
  wifiMac.SetType ("ns3::ApWifiMac",
                   "Ssid", SsidValue (ssid));
  wifiApDevices.Add (wifi.Install (wifiPhy, wifiMac, wifiApNodes.Get (0)));

  wifiDevices.Add (wifiStaDevices);
  wifiDevices.Add (wifiApDevices);

  // Configure the mobility.
  MobilityHelper mobility;
  Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
  //Initial position of AP and STA
  positionAlloc->Add (Vector (ap1_x, ap1_y, 0.0));
  NS_LOG_INFO ("Setting initial AP position to " << Vector (ap1_x, ap1_y, 0.0));
  positionAlloc->Add (Vector (sta1_x, sta1_y, 0.0));
  NS_LOG_INFO ("Setting initial STA position to " << Vector (sta1_x, sta1_y, 0.0));
  mobility.SetPositionAllocator (positionAlloc);
  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
  mobility.Install (wifiApNodes.Get (0));
  mobility.Install (wifiStaNodes.Get (0));
 
  //Statistics counter
  NodeStatistics statistics = NodeStatistics (wifiApDevices, wifiStaDevices);

  //Move the STA by stepsSize meters every stepsTime seconds
  Simulator::Schedule (Seconds (0.5 + stepsTime), &NodeStatistics::AdvancePosition, &statistics, wifiStaNodes.Get (0), stepsSize, stepsTime);

  //Configure the IP stack
  InternetStackHelper stack;
  stack.Install (wifiApNodes);
  stack.Install (wifiStaNodes);
  Ipv4AddressHelper address;
  address.SetBase ("10.1.1.0", "255.255.255.0");
  Ipv4InterfaceContainer i = address.Assign (wifiDevices);
  Ipv4Address sinkAddress = i.GetAddress (0);
  uint16_t port = 9;

  //Configure the CBR generator
  PacketSinkHelper sink ("ns3::UdpSocketFactory", InetSocketAddress (sinkAddress, port));
  ApplicationContainer apps_sink = sink.Install (wifiStaNodes.Get (0));

  OnOffHelper onoff ("ns3::UdpSocketFactory", InetSocketAddress (sinkAddress, port));
  onoff.SetConstantRate (DataRate ("54Mb/s"), packetSize);
  onoff.SetAttribute ("StartTime", TimeValue (Seconds (0.5)));
  onoff.SetAttribute ("StopTime", TimeValue (Seconds (simuTime)));
  ApplicationContainer apps_source = onoff.Install (wifiApNodes.Get (0));

  apps_sink.Start (Seconds (0.5));
  apps_sink.Stop (Seconds (simuTime));

  //------------------------------------------------------------
  //-- Setup stats and data collection
  //--------------------------------------------

  //Register packet receptions to calculate throughput
  Config::Connect ("/NodeList/1/ApplicationList/*/$ns3::PacketSink/Rx",
                   MakeCallback (&NodeStatistics::RxCallback, &statistics));

  //Register power and rate changes to calculate the Average Transmit Power
  Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/PowerChange",
                   MakeCallback (&NodeStatistics::PowerCallback, &statistics));
  Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/RateChange",
                   MakeCallback (&NodeStatistics::RateCallback, &statistics));

  Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/Phy/PhyTxBegin",
                   MakeCallback (&NodeStatistics::PhyCallback, &statistics));

  //Callbacks to print every change of power and rate
  Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/PowerChange",
                   MakeCallback (PowerCallback));
  Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/RateChange",
                   MakeCallback (RateCallback));

  Simulator::Stop (Seconds (simuTime));
  Simulator::Run ();

  std::ofstream outfile (("throughput-" + outputFileName + ".plt").c_str ());
  Gnuplot gnuplot = Gnuplot (("throughput-" + outputFileName + ".eps").c_str (), "Throughput");
  gnuplot.SetTerminal ("post eps color enhanced");
  gnuplot.SetLegend ("Time (seconds)", "Throughput (Mb/s)");
  gnuplot.SetTitle ("Throughput (AP to STA) vs time");
  gnuplot.AddDataset (statistics.GetDatafile ());
  gnuplot.GenerateOutput (outfile);

  if (manager.compare ("ns3::ParfWifiManager") == 0 ||
      manager.compare ("ns3::AparfWifiManager") == 0)
    {
      std::ofstream outfile2 (("power-" + outputFileName + ".plt").c_str ());
      gnuplot = Gnuplot (("power-" + outputFileName + ".eps").c_str (), "Average Transmit Power");
      gnuplot.SetTerminal ("post eps color enhanced");
      gnuplot.SetLegend ("Time (seconds)", "Power (mW)");
      gnuplot.SetTitle ("Average transmit power (AP to STA) vs time");
      gnuplot.AddDataset (statistics.GetPowerDatafile ());
      gnuplot.GenerateOutput (outfile2);
    }

  Simulator::Destroy ();

  return 0;
}