1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2010 IITP RAS
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Authors: Pavel Boyko <boyko@iitp.ru>
*/
/*
* Classical hidden terminal problem and its RTS/CTS solution.
*
* Topology: [node 0] <-- -50 dB --> [node 1] <-- -50 dB --> [node 2]
*
* This example illustrates the use of
* - Wifi in ad-hoc mode
* - Matrix propagation loss model
* - Use of OnOffApplication to generate CBR stream
* - IP flow monitor
*/
#include "ns3/core-module.h"
#include "ns3/propagation-module.h"
#include "ns3/network-module.h"
#include "ns3/applications-module.h"
#include "ns3/mobility-module.h"
#include "ns3/internet-module.h"
#include "ns3/flow-monitor-module.h"
#include "ns3/wifi-module.h"
using namespace ns3;
/// Run single 10 seconds experiment with enabled or disabled RTS/CTS mechanism
void experiment (bool enableCtsRts)
{
// 0. Enable or disable CTS/RTS
UintegerValue ctsThr = (enableCtsRts ? UintegerValue (100) : UintegerValue (2200));
Config::SetDefault ("ns3::WifiRemoteStationManager::RtsCtsThreshold", ctsThr);
// 1. Create 3 nodes
NodeContainer nodes;
nodes.Create (3);
// 2. Place nodes somehow, this is required by every wireless simulation
for (size_t i = 0; i < 3; ++i)
{
nodes.Get (i)->AggregateObject (CreateObject<ConstantPositionMobilityModel> ());
}
// 3. Create propagation loss matrix
Ptr<MatrixPropagationLossModel> lossModel = CreateObject<MatrixPropagationLossModel> ();
lossModel->SetDefaultLoss (200); // set default loss to 200 dB (no link)
lossModel->SetLoss (nodes.Get (0)->GetObject<MobilityModel>(), nodes.Get (1)->GetObject<MobilityModel>(), 50); // set symmetric loss 0 <-> 1 to 50 dB
lossModel->SetLoss (nodes.Get (2)->GetObject<MobilityModel>(), nodes.Get (1)->GetObject<MobilityModel>(), 50); // set symmetric loss 2 <-> 1 to 50 dB
// 4. Create & setup wifi channel
Ptr<YansWifiChannel> wifiChannel = CreateObject <YansWifiChannel> ();
wifiChannel->SetPropagationLossModel (lossModel);
wifiChannel->SetPropagationDelayModel (CreateObject <ConstantSpeedPropagationDelayModel> ());
// 5. Install wireless devices
WifiHelper wifi;
wifi.SetStandard (WIFI_PHY_STANDARD_80211b);
wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager",
"DataMode",StringValue ("DsssRate2Mbps"),
"ControlMode",StringValue ("DsssRate1Mbps"));
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
wifiPhy.SetChannel (wifiChannel);
WifiMacHelper wifiMac;
wifiMac.SetType ("ns3::AdhocWifiMac"); // use ad-hoc MAC
NetDeviceContainer devices = wifi.Install (wifiPhy, wifiMac, nodes);
// uncomment the following to have athstats output
// AthstatsHelper athstats;
// athstats.EnableAthstats(enableCtsRts ? "rtscts-athstats-node" : "basic-athstats-node" , nodes);
// uncomment the following to have pcap output
// wifiPhy.EnablePcap (enableCtsRts ? "rtscts-pcap-node" : "basic-pcap-node" , nodes);
// 6. Install TCP/IP stack & assign IP addresses
InternetStackHelper internet;
internet.Install (nodes);
Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.0.0.0", "255.0.0.0");
ipv4.Assign (devices);
// 7. Install applications: two CBR streams each saturating the channel
ApplicationContainer cbrApps;
uint16_t cbrPort = 12345;
OnOffHelper onOffHelper ("ns3::UdpSocketFactory", InetSocketAddress (Ipv4Address ("10.0.0.2"), cbrPort));
onOffHelper.SetAttribute ("PacketSize", UintegerValue (1400));
onOffHelper.SetAttribute ("OnTime", StringValue ("ns3::ConstantRandomVariable[Constant=1]"));
onOffHelper.SetAttribute ("OffTime", StringValue ("ns3::ConstantRandomVariable[Constant=0]"));
// flow 1: node 0 -> node 1
onOffHelper.SetAttribute ("DataRate", StringValue ("3000000bps"));
onOffHelper.SetAttribute ("StartTime", TimeValue (Seconds (1.000000)));
cbrApps.Add (onOffHelper.Install (nodes.Get (0)));
// flow 2: node 2 -> node 1
/** \internal
* The slightly different start times and data rates are a workaround
* for \bugid{388} and \bugid{912}
*/
onOffHelper.SetAttribute ("DataRate", StringValue ("3001100bps"));
onOffHelper.SetAttribute ("StartTime", TimeValue (Seconds (1.001)));
cbrApps.Add (onOffHelper.Install (nodes.Get (2)));
/** \internal
* We also use separate UDP applications that will send a single
* packet before the CBR flows start.
* This is a workaround for the lack of perfect ARP, see \bugid{187}
*/
uint16_t echoPort = 9;
UdpEchoClientHelper echoClientHelper (Ipv4Address ("10.0.0.2"), echoPort);
echoClientHelper.SetAttribute ("MaxPackets", UintegerValue (1));
echoClientHelper.SetAttribute ("Interval", TimeValue (Seconds (0.1)));
echoClientHelper.SetAttribute ("PacketSize", UintegerValue (10));
ApplicationContainer pingApps;
// again using different start times to workaround Bug 388 and Bug 912
echoClientHelper.SetAttribute ("StartTime", TimeValue (Seconds (0.001)));
pingApps.Add (echoClientHelper.Install (nodes.Get (0)));
echoClientHelper.SetAttribute ("StartTime", TimeValue (Seconds (0.006)));
pingApps.Add (echoClientHelper.Install (nodes.Get (2)));
// 8. Install FlowMonitor on all nodes
FlowMonitorHelper flowmon;
Ptr<FlowMonitor> monitor = flowmon.InstallAll ();
// 9. Run simulation for 10 seconds
Simulator::Stop (Seconds (10));
Simulator::Run ();
// 10. Print per flow statistics
monitor->CheckForLostPackets ();
Ptr<Ipv4FlowClassifier> classifier = DynamicCast<Ipv4FlowClassifier> (flowmon.GetClassifier ());
FlowMonitor::FlowStatsContainer stats = monitor->GetFlowStats ();
for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i = stats.begin (); i != stats.end (); ++i)
{
// first 2 FlowIds are for ECHO apps, we don't want to display them
//
// Duration for throughput measurement is 9.0 seconds, since
// StartTime of the OnOffApplication is at about "second 1"
// and
// Simulator::Stops at "second 10".
if (i->first > 2)
{
Ipv4FlowClassifier::FiveTuple t = classifier->FindFlow (i->first);
std::cout << "Flow " << i->first - 2 << " (" << t.sourceAddress << " -> " << t.destinationAddress << ")\n";
std::cout << " Tx Packets: " << i->second.txPackets << "\n";
std::cout << " Tx Bytes: " << i->second.txBytes << "\n";
std::cout << " TxOffered: " << i->second.txBytes * 8.0 / 9.0 / 1000 / 1000 << " Mbps\n";
std::cout << " Rx Packets: " << i->second.rxPackets << "\n";
std::cout << " Rx Bytes: " << i->second.rxBytes << "\n";
std::cout << " Throughput: " << i->second.rxBytes * 8.0 / 9.0 / 1000 / 1000 << " Mbps\n";
}
}
// 11. Cleanup
Simulator::Destroy ();
}
int main (int argc, char **argv)
{
CommandLine cmd;
cmd.Parse (argc, argv);
std::cout << "Hidden station experiment with RTS/CTS disabled:\n" << std::flush;
experiment (false);
std::cout << "------------------------------------------------\n";
std::cout << "Hidden station experiment with RTS/CTS enabled:\n";
experiment (true);
return 0;
}
|