1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/* -*- Mode: C++; c-file-style: "gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2009 The Boeing Company
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
//
// This script configures two nodes on an 802.11b physical layer, with
// 802.11b NICs in infrastructure mode, and by default, the station sends
// one packet of 1000 (application) bytes to the access point. The
// physical layer is configured
// to receive at a fixed RSS (regardless of the distance and transmit
// power); therefore, changing position of the nodes has no effect.
//
// There are a number of command-line options available to control
// the default behavior. The list of available command-line options
// can be listed with the following command:
// ./waf --run "wifi-simple-infra --help"
//
// For instance, for this configuration, the physical layer will
// stop successfully receiving packets when rss drops below -97 dBm.
// To see this effect, try running:
//
// ./waf --run "wifi-simple-infra --rss=-97 --numPackets=20"
// ./waf --run "wifi-simple-infra --rss=-98 --numPackets=20"
// ./waf --run "wifi-simple-infra --rss=-99 --numPackets=20"
//
// Note that all ns-3 attributes (not just the ones exposed in the below
// script) can be changed at command line; see the documentation.
//
// This script can also be helpful to put the Wifi layer into verbose
// logging mode; this command will turn on all wifi logging:
//
// ./waf --run "wifi-simple-infra --verbose=1"
//
// When you are done, you will notice two pcap trace files in your directory.
// If you have tcpdump installed, you can try this:
//
// tcpdump -r wifi-simple-infra-0-0.pcap -nn -tt
//
#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/mobility-module.h"
#include "ns3/config-store-module.h"
#include "ns3/wifi-module.h"
#include "ns3/internet-module.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
using namespace ns3;
NS_LOG_COMPONENT_DEFINE ("WifiSimpleInfra");
void ReceivePacket (Ptr<Socket> socket)
{
while (socket->Recv ())
{
NS_LOG_UNCOND ("Received one packet!");
}
}
static void GenerateTraffic (Ptr<Socket> socket, uint32_t pktSize,
uint32_t pktCount, Time pktInterval )
{
if (pktCount > 0)
{
socket->Send (Create<Packet> (pktSize));
Simulator::Schedule (pktInterval, &GenerateTraffic,
socket, pktSize,pktCount-1, pktInterval);
}
else
{
socket->Close ();
}
}
int main (int argc, char *argv[])
{
std::string phyMode ("DsssRate1Mbps");
double rss = -80; // -dBm
uint32_t packetSize = 1000; // bytes
uint32_t numPackets = 1;
double interval = 1.0; // seconds
bool verbose = false;
CommandLine cmd;
cmd.AddValue ("phyMode", "Wifi Phy mode", phyMode);
cmd.AddValue ("rss", "received signal strength", rss);
cmd.AddValue ("packetSize", "size of application packet sent", packetSize);
cmd.AddValue ("numPackets", "number of packets generated", numPackets);
cmd.AddValue ("interval", "interval (seconds) between packets", interval);
cmd.AddValue ("verbose", "turn on all WifiNetDevice log components", verbose);
cmd.Parse (argc, argv);
// Convert to time object
Time interPacketInterval = Seconds (interval);
// disable fragmentation for frames below 2200 bytes
Config::SetDefault ("ns3::WifiRemoteStationManager::FragmentationThreshold", StringValue ("2200"));
// turn off RTS/CTS for frames below 2200 bytes
Config::SetDefault ("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue ("2200"));
// Fix non-unicast data rate to be the same as that of unicast
Config::SetDefault ("ns3::WifiRemoteStationManager::NonUnicastMode",
StringValue (phyMode));
NodeContainer c;
c.Create (2);
// The below set of helpers will help us to put together the wifi NICs we want
WifiHelper wifi;
if (verbose)
{
wifi.EnableLogComponents (); // Turn on all Wifi logging
}
wifi.SetStandard (WIFI_PHY_STANDARD_80211b);
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
// This is one parameter that matters when using FixedRssLossModel
// set it to zero; otherwise, gain will be added
wifiPhy.Set ("RxGain", DoubleValue (0) );
// ns-3 supports RadioTap and Prism tracing extensions for 802.11b
wifiPhy.SetPcapDataLinkType (YansWifiPhyHelper::DLT_IEEE802_11_RADIO);
YansWifiChannelHelper wifiChannel;
wifiChannel.SetPropagationDelay ("ns3::ConstantSpeedPropagationDelayModel");
// The below FixedRssLossModel will cause the rss to be fixed regardless
// of the distance between the two stations, and the transmit power
wifiChannel.AddPropagationLoss ("ns3::FixedRssLossModel","Rss",DoubleValue (rss));
wifiPhy.SetChannel (wifiChannel.Create ());
// Add a mac and disable rate control
WifiMacHelper wifiMac;
wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager",
"DataMode",StringValue (phyMode),
"ControlMode",StringValue (phyMode));
// Setup the rest of the mac
Ssid ssid = Ssid ("wifi-default");
// setup sta.
wifiMac.SetType ("ns3::StaWifiMac",
"Ssid", SsidValue (ssid));
NetDeviceContainer staDevice = wifi.Install (wifiPhy, wifiMac, c.Get (0));
NetDeviceContainer devices = staDevice;
// setup ap.
wifiMac.SetType ("ns3::ApWifiMac",
"Ssid", SsidValue (ssid));
NetDeviceContainer apDevice = wifi.Install (wifiPhy, wifiMac, c.Get (1));
devices.Add (apDevice);
// Note that with FixedRssLossModel, the positions below are not
// used for received signal strength.
MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
positionAlloc->Add (Vector (0.0, 0.0, 0.0));
positionAlloc->Add (Vector (5.0, 0.0, 0.0));
mobility.SetPositionAllocator (positionAlloc);
mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
mobility.Install (c);
InternetStackHelper internet;
internet.Install (c);
Ipv4AddressHelper ipv4;
NS_LOG_INFO ("Assign IP Addresses.");
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer i = ipv4.Assign (devices);
TypeId tid = TypeId::LookupByName ("ns3::UdpSocketFactory");
Ptr<Socket> recvSink = Socket::CreateSocket (c.Get (0), tid);
InetSocketAddress local = InetSocketAddress (Ipv4Address::GetAny (), 80);
recvSink->Bind (local);
recvSink->SetRecvCallback (MakeCallback (&ReceivePacket));
Ptr<Socket> source = Socket::CreateSocket (c.Get (1), tid);
InetSocketAddress remote = InetSocketAddress (Ipv4Address ("255.255.255.255"), 80);
source->SetAllowBroadcast (true);
source->Connect (remote);
// Tracing
wifiPhy.EnablePcap ("wifi-simple-infra", devices);
// Output what we are doing
NS_LOG_UNCOND ("Testing " << numPackets << " packets sent with receiver rss " << rss );
Simulator::ScheduleWithContext (source->GetNode ()->GetId (),
Seconds (1.0), &GenerateTraffic,
source, packetSize, numPackets, interPacketInterval);
Simulator::Stop (Seconds (30.0));
Simulator::Run ();
Simulator::Destroy ();
return 0;
}
|