File: dctcp-example.cc

package info (click to toggle)
ns3 3.46-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 105,864 kB
  • sloc: cpp: 624,863; python: 14,863; ansic: 6,772; makefile: 1,950; sh: 987; javascript: 167; perl: 102
file content (580 lines) | stat: -rw-r--r-- 22,427 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/*
 * Copyright (c) 2017-20 NITK Surathkal
 * Copyright (c) 2020 Tom Henderson (better alignment with experiment)
 *
 * SPDX-License-Identifier: GPL-2.0-only
 *
 * Authors: Shravya K.S. <shravya.ks0@gmail.com>
 *          Apoorva Bhargava <apoorvabhargava13@gmail.com>
 *          Shikha Bakshi <shikhabakshi912@gmail.com>
 *          Mohit P. Tahiliani <tahiliani@nitk.edu.in>
 *          Tom Henderson <tomh@tomh.org>
 */

// The network topology used in this example is based on Fig. 17 described in
// Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
// Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan.
// "Data Center TCP (DCTCP)." In ACM SIGCOMM Computer Communication Review,
// Vol. 40, No. 4, pp. 63-74. ACM, 2010.

// The topology is roughly as follows
//
//  S1         S3
//  |           |  (1 Gbps)
//  T1 ------- T2 -- R1
//  |           |  (1 Gbps)
//  S2         R2
//
// The link between switch T1 and T2 is 10 Gbps.  All other
// links are 1 Gbps.  In the SIGCOMM paper, there is a Scorpion switch
// between T1 and T2, but it doesn't contribute another bottleneck.
//
// S1 and S3 each have 10 senders sending to receiver R1 (20 total)
// S2 (20 senders) sends traffic to R2 (20 receivers)
//
// This sets up two bottlenecks: 1) T1 -> T2 interface (30 senders
// using the 10 Gbps link) and 2) T2 -> R1 (20 senders using 1 Gbps link)
//
// RED queues configured for ECN marking are used at the bottlenecks.
//
// Figure 17 published results are that each sender in S1 gets 46 Mbps
// and each in S3 gets 54 Mbps, while each S2 sender gets 475 Mbps, and
// that these are within 10% of their fair-share throughputs (Jain index
// of 0.99).
//
// This program runs the program by default for five seconds.  The first
// second is devoted to flow startup (all 40 TCP flows are stagger started
// during this period).  There is a three second convergence time where
// no measurement data is taken, and then there is a one second measurement
// interval to gather raw throughput for each flow.  These time intervals
// can be changed at the command line.
//
// The program outputs six files.  The first three:
// * dctcp-example-s1-r1-throughput.dat
// * dctcp-example-s2-r2-throughput.dat
// * dctcp-example-s3-r1-throughput.dat
// provide per-flow throughputs (in Mb/s) for each of the forty flows, summed
// over the measurement window.  The fourth file,
// * dctcp-example-fairness.dat
// provides average throughputs for the three flow paths, and computes
// Jain's fairness index for each flow group (i.e. across each group of
// 10, 20, and 10 flows).  It also sums the throughputs across each bottleneck.
// The fifth and sixth:
// * dctcp-example-t1-length.dat
// * dctcp-example-t2-length.dat
// report on the bottleneck queue length (in packets and microseconds
// of delay) at 10 ms intervals during the measurement window.
//
// By default, the throughput averages are 23 Mbps for S1 senders, 471 Mbps
// for S2 senders, and 74 Mbps for S3 senders, and the Jain index is greater
// than 0.99 for each group of flows.  The average queue delay is about 1ms
// for the T2->R2 bottleneck, and about 200us for the T1->T2 bottleneck.
//
// The RED parameters (min_th and max_th) are set to the same values as
// reported in the paper, but we observed that throughput distributions
// and queue delays are very sensitive to these parameters, as was also
// observed in the paper; it is likely that the paper's throughput results
// could be achieved by further tuning of the RED parameters.  However,
// the default results show that DCTCP is able to achieve high link
// utilization and low queueing delay and fairness across competing flows
// sharing the same path.

#include "ns3/applications-module.h"
#include "ns3/core-module.h"
#include "ns3/internet-module.h"
#include "ns3/network-module.h"
#include "ns3/point-to-point-module.h"
#include "ns3/traffic-control-module.h"

#include <iomanip>
#include <iostream>

using namespace ns3;

std::stringstream filePlotQueue1;
std::stringstream filePlotQueue2;
std::ofstream rxS1R1Throughput;
std::ofstream rxS2R2Throughput;
std::ofstream rxS3R1Throughput;
std::ofstream fairnessIndex;
std::ofstream t1QueueLength;
std::ofstream t2QueueLength;
std::vector<uint64_t> rxS1R1Bytes;
std::vector<uint64_t> rxS2R2Bytes;
std::vector<uint64_t> rxS3R1Bytes;

void
PrintProgress(Time interval)
{
    std::cout << "Progress to " << std::fixed << std::setprecision(1)
              << Simulator::Now().GetSeconds() << " seconds simulation time" << std::endl;
    Simulator::Schedule(interval, &PrintProgress, interval);
}

void
TraceS1R1Sink(std::size_t index, Ptr<const Packet> p, const Address& a)
{
    rxS1R1Bytes[index] += p->GetSize();
}

void
TraceS2R2Sink(std::size_t index, Ptr<const Packet> p, const Address& a)
{
    rxS2R2Bytes[index] += p->GetSize();
}

void
TraceS3R1Sink(std::size_t index, Ptr<const Packet> p, const Address& a)
{
    rxS3R1Bytes[index] += p->GetSize();
}

void
InitializeCounters()
{
    for (std::size_t i = 0; i < 10; i++)
    {
        rxS1R1Bytes[i] = 0;
    }
    for (std::size_t i = 0; i < 20; i++)
    {
        rxS2R2Bytes[i] = 0;
    }
    for (std::size_t i = 0; i < 10; i++)
    {
        rxS3R1Bytes[i] = 0;
    }
}

void
PrintThroughput(Time measurementWindow)
{
    for (std::size_t i = 0; i < 10; i++)
    {
        rxS1R1Throughput << measurementWindow.GetSeconds() << "s " << i << " "
                         << (rxS1R1Bytes[i] * 8) / (measurementWindow.GetSeconds()) / 1e6
                         << std::endl;
    }
    for (std::size_t i = 0; i < 20; i++)
    {
        rxS2R2Throughput << Simulator::Now().GetSeconds() << "s " << i << " "
                         << (rxS2R2Bytes[i] * 8) / (measurementWindow.GetSeconds()) / 1e6
                         << std::endl;
    }
    for (std::size_t i = 0; i < 10; i++)
    {
        rxS3R1Throughput << Simulator::Now().GetSeconds() << "s " << i << " "
                         << (rxS3R1Bytes[i] * 8) / (measurementWindow.GetSeconds()) / 1e6
                         << std::endl;
    }
}

// Jain's fairness index:  https://en.wikipedia.org/wiki/Fairness_measure
void
PrintFairness(Time measurementWindow)
{
    double average = 0;
    uint64_t sumSquares = 0;
    uint64_t sum = 0;
    double fairness = 0;
    for (std::size_t i = 0; i < 10; i++)
    {
        sum += rxS1R1Bytes[i];
        sumSquares += (rxS1R1Bytes[i] * rxS1R1Bytes[i]);
    }
    average = ((sum / 10) * 8 / measurementWindow.GetSeconds()) / 1e6;
    fairness = static_cast<double>(sum * sum) / (10 * sumSquares);
    fairnessIndex << "Average throughput for S1-R1 flows: " << std::fixed << std::setprecision(2)
                  << average << " Mbps; fairness: " << std::fixed << std::setprecision(3)
                  << fairness << std::endl;
    average = 0;
    sumSquares = 0;
    sum = 0;
    fairness = 0;
    for (std::size_t i = 0; i < 20; i++)
    {
        sum += rxS2R2Bytes[i];
        sumSquares += (rxS2R2Bytes[i] * rxS2R2Bytes[i]);
    }
    average = ((sum / 20) * 8 / measurementWindow.GetSeconds()) / 1e6;
    fairness = static_cast<double>(sum * sum) / (20 * sumSquares);
    fairnessIndex << "Average throughput for S2-R2 flows: " << std::fixed << std::setprecision(2)
                  << average << " Mbps; fairness: " << std::fixed << std::setprecision(3)
                  << fairness << std::endl;
    average = 0;
    sumSquares = 0;
    sum = 0;
    fairness = 0;
    for (std::size_t i = 0; i < 10; i++)
    {
        sum += rxS3R1Bytes[i];
        sumSquares += (rxS3R1Bytes[i] * rxS3R1Bytes[i]);
    }
    average = ((sum / 10) * 8 / measurementWindow.GetSeconds()) / 1e6;
    fairness = static_cast<double>(sum * sum) / (10 * sumSquares);
    fairnessIndex << "Average throughput for S3-R1 flows: " << std::fixed << std::setprecision(2)
                  << average << " Mbps; fairness: " << std::fixed << std::setprecision(3)
                  << fairness << std::endl;
    sum = 0;
    for (std::size_t i = 0; i < 10; i++)
    {
        sum += rxS1R1Bytes[i];
    }
    for (std::size_t i = 0; i < 20; i++)
    {
        sum += rxS2R2Bytes[i];
    }
    fairnessIndex << "Aggregate user-level throughput for flows through T1: "
                  << static_cast<double>(sum * 8) / 1e9 << " Gbps" << std::endl;
    sum = 0;
    for (std::size_t i = 0; i < 10; i++)
    {
        sum += rxS3R1Bytes[i];
    }
    for (std::size_t i = 0; i < 10; i++)
    {
        sum += rxS1R1Bytes[i];
    }
    fairnessIndex << "Aggregate user-level throughput for flows to R1: "
                  << static_cast<double>(sum * 8) / 1e9 << " Gbps" << std::endl;
}

void
CheckT1QueueSize(Ptr<QueueDisc> queue)
{
    // 1500 byte packets
    uint32_t qSize = queue->GetNPackets();
    Time backlog = Seconds(static_cast<double>(qSize * 1500 * 8) / 1e10); // 10 Gb/s
    // report size in units of packets and ms
    t1QueueLength << std::fixed << std::setprecision(2) << Simulator::Now().GetSeconds() << " "
                  << qSize << " " << backlog.GetMicroSeconds() << std::endl;
    // check queue size every 1/100 of a second
    Simulator::Schedule(MilliSeconds(10), &CheckT1QueueSize, queue);
}

void
CheckT2QueueSize(Ptr<QueueDisc> queue)
{
    uint32_t qSize = queue->GetNPackets();
    Time backlog = Seconds(static_cast<double>(qSize * 1500 * 8) / 1e9); // 1 Gb/s
    // report size in units of packets and ms
    t2QueueLength << std::fixed << std::setprecision(2) << Simulator::Now().GetSeconds() << " "
                  << qSize << " " << backlog.GetMicroSeconds() << std::endl;
    // check queue size every 1/100 of a second
    Simulator::Schedule(MilliSeconds(10), &CheckT2QueueSize, queue);
}

int
main(int argc, char* argv[])
{
    std::string outputFilePath = ".";
    std::string tcpTypeId = "TcpDctcp";
    Time flowStartupWindow = Seconds(1);
    Time convergenceTime = Seconds(3);
    Time measurementWindow = Seconds(1);
    bool enableSwitchEcn = true;
    Time progressInterval = MilliSeconds(100);

    CommandLine cmd(__FILE__);
    cmd.AddValue("tcpTypeId", "ns-3 TCP TypeId", tcpTypeId);
    cmd.AddValue("flowStartupWindow",
                 "startup time window (TCP staggered starts)",
                 flowStartupWindow);
    cmd.AddValue("convergenceTime", "convergence time", convergenceTime);
    cmd.AddValue("measurementWindow", "measurement window", measurementWindow);
    cmd.AddValue("enableSwitchEcn", "enable ECN at switches", enableSwitchEcn);
    cmd.Parse(argc, argv);

    Config::SetDefault("ns3::TcpL4Protocol::SocketType", StringValue("ns3::" + tcpTypeId));

    Time startTime{0};
    Time stopTime = flowStartupWindow + convergenceTime + measurementWindow;

    rxS1R1Bytes.reserve(10);
    rxS2R2Bytes.reserve(20);
    rxS3R1Bytes.reserve(10);

    NodeContainer S1;
    NodeContainer S2;
    NodeContainer S3;
    NodeContainer R2;
    Ptr<Node> T1 = CreateObject<Node>();
    Ptr<Node> T2 = CreateObject<Node>();
    Ptr<Node> R1 = CreateObject<Node>();
    S1.Create(10);
    S2.Create(20);
    S3.Create(10);
    R2.Create(20);

    Config::SetDefault("ns3::TcpSocket::SegmentSize", UintegerValue(1448));
    Config::SetDefault("ns3::TcpSocket::DelAckCount", UintegerValue(2));
    GlobalValue::Bind("ChecksumEnabled", BooleanValue(false));

    // Set default parameters for RED queue disc
    Config::SetDefault("ns3::RedQueueDisc::UseEcn", BooleanValue(enableSwitchEcn));
    // ARED may be used but the queueing delays will increase; it is disabled
    // here because the SIGCOMM paper did not mention it
    // Config::SetDefault ("ns3::RedQueueDisc::ARED", BooleanValue (true));
    // Config::SetDefault ("ns3::RedQueueDisc::Gentle", BooleanValue (true));
    Config::SetDefault("ns3::RedQueueDisc::UseHardDrop", BooleanValue(false));
    Config::SetDefault("ns3::RedQueueDisc::MeanPktSize", UintegerValue(1500));
    // Triumph and Scorpion switches used in DCTCP Paper have 4 MB of buffer
    // If every packet is 1500 bytes, 2666 packets can be stored in 4 MB
    Config::SetDefault("ns3::RedQueueDisc::MaxSize", QueueSizeValue(QueueSize("2666p")));
    // DCTCP tracks instantaneous queue length only; so set QW = 1
    Config::SetDefault("ns3::RedQueueDisc::QW", DoubleValue(1));
    Config::SetDefault("ns3::RedQueueDisc::MinTh", DoubleValue(20));
    Config::SetDefault("ns3::RedQueueDisc::MaxTh", DoubleValue(60));

    PointToPointHelper pointToPointSR;
    pointToPointSR.SetDeviceAttribute("DataRate", StringValue("1Gbps"));
    pointToPointSR.SetChannelAttribute("Delay", StringValue("10us"));

    PointToPointHelper pointToPointT;
    pointToPointT.SetDeviceAttribute("DataRate", StringValue("10Gbps"));
    pointToPointT.SetChannelAttribute("Delay", StringValue("10us"));

    // Create a total of 62 links.
    std::vector<NetDeviceContainer> S1T1;
    S1T1.reserve(10);
    std::vector<NetDeviceContainer> S2T1;
    S2T1.reserve(20);
    std::vector<NetDeviceContainer> S3T2;
    S3T2.reserve(10);
    std::vector<NetDeviceContainer> R2T2;
    R2T2.reserve(20);
    NetDeviceContainer T1T2 = pointToPointT.Install(T1, T2);
    NetDeviceContainer R1T2 = pointToPointSR.Install(R1, T2);

    for (std::size_t i = 0; i < 10; i++)
    {
        Ptr<Node> n = S1.Get(i);
        S1T1.push_back(pointToPointSR.Install(n, T1));
    }
    for (std::size_t i = 0; i < 20; i++)
    {
        Ptr<Node> n = S2.Get(i);
        S2T1.push_back(pointToPointSR.Install(n, T1));
    }
    for (std::size_t i = 0; i < 10; i++)
    {
        Ptr<Node> n = S3.Get(i);
        S3T2.push_back(pointToPointSR.Install(n, T2));
    }
    for (std::size_t i = 0; i < 20; i++)
    {
        Ptr<Node> n = R2.Get(i);
        R2T2.push_back(pointToPointSR.Install(n, T2));
    }

    InternetStackHelper stack;
    stack.InstallAll();

    TrafficControlHelper tchRed10;
    // MinTh = 50, MaxTh = 150 recommended in ACM SIGCOMM 2010 DCTCP Paper
    // This yields a target (MinTh) queue depth of 60us at 10 Gb/s
    tchRed10.SetRootQueueDisc("ns3::RedQueueDisc",
                              "LinkBandwidth",
                              StringValue("10Gbps"),
                              "LinkDelay",
                              StringValue("10us"),
                              "MinTh",
                              DoubleValue(50),
                              "MaxTh",
                              DoubleValue(150));
    QueueDiscContainer queueDiscs1 = tchRed10.Install(T1T2);

    TrafficControlHelper tchRed1;
    // MinTh = 20, MaxTh = 60 recommended in ACM SIGCOMM 2010 DCTCP Paper
    // This yields a target queue depth of 250us at 1 Gb/s
    tchRed1.SetRootQueueDisc("ns3::RedQueueDisc",
                             "LinkBandwidth",
                             StringValue("1Gbps"),
                             "LinkDelay",
                             StringValue("10us"),
                             "MinTh",
                             DoubleValue(20),
                             "MaxTh",
                             DoubleValue(60));
    QueueDiscContainer queueDiscs2 = tchRed1.Install(R1T2.Get(1));
    for (std::size_t i = 0; i < 10; i++)
    {
        tchRed1.Install(S1T1[i].Get(1));
    }
    for (std::size_t i = 0; i < 20; i++)
    {
        tchRed1.Install(S2T1[i].Get(1));
    }
    for (std::size_t i = 0; i < 10; i++)
    {
        tchRed1.Install(S3T2[i].Get(1));
    }
    for (std::size_t i = 0; i < 20; i++)
    {
        tchRed1.Install(R2T2[i].Get(1));
    }

    Ipv4AddressHelper address;
    std::vector<Ipv4InterfaceContainer> ipS1T1;
    ipS1T1.reserve(10);
    std::vector<Ipv4InterfaceContainer> ipS2T1;
    ipS2T1.reserve(20);
    std::vector<Ipv4InterfaceContainer> ipS3T2;
    ipS3T2.reserve(10);
    std::vector<Ipv4InterfaceContainer> ipR2T2;
    ipR2T2.reserve(20);
    address.SetBase("172.16.1.0", "255.255.255.0");
    Ipv4InterfaceContainer ipT1T2 = address.Assign(T1T2);
    address.SetBase("192.168.0.0", "255.255.255.0");
    Ipv4InterfaceContainer ipR1T2 = address.Assign(R1T2);
    address.SetBase("10.1.1.0", "255.255.255.0");
    for (std::size_t i = 0; i < 10; i++)
    {
        ipS1T1.push_back(address.Assign(S1T1[i]));
        address.NewNetwork();
    }
    address.SetBase("10.2.1.0", "255.255.255.0");
    for (std::size_t i = 0; i < 20; i++)
    {
        ipS2T1.push_back(address.Assign(S2T1[i]));
        address.NewNetwork();
    }
    address.SetBase("10.3.1.0", "255.255.255.0");
    for (std::size_t i = 0; i < 10; i++)
    {
        ipS3T2.push_back(address.Assign(S3T2[i]));
        address.NewNetwork();
    }
    address.SetBase("10.4.1.0", "255.255.255.0");
    for (std::size_t i = 0; i < 20; i++)
    {
        ipR2T2.push_back(address.Assign(R2T2[i]));
        address.NewNetwork();
    }

    Ipv4GlobalRoutingHelper::PopulateRoutingTables();

    // Each sender in S2 sends to a receiver in R2
    std::vector<Ptr<PacketSink>> r2Sinks;
    r2Sinks.reserve(20);
    for (std::size_t i = 0; i < 20; i++)
    {
        uint16_t port = 50000 + i;
        Address sinkLocalAddress(InetSocketAddress(Ipv4Address::GetAny(), port));
        PacketSinkHelper sinkHelper("ns3::TcpSocketFactory", sinkLocalAddress);
        ApplicationContainer sinkApp = sinkHelper.Install(R2.Get(i));
        Ptr<PacketSink> packetSink = sinkApp.Get(0)->GetObject<PacketSink>();
        r2Sinks.push_back(packetSink);
        sinkApp.Start(startTime);
        sinkApp.Stop(stopTime);

        OnOffHelper clientHelper1("ns3::TcpSocketFactory", Address());
        clientHelper1.SetAttribute("OnTime",
                                   StringValue("ns3::ConstantRandomVariable[Constant=1]"));
        clientHelper1.SetAttribute("OffTime",
                                   StringValue("ns3::ConstantRandomVariable[Constant=0]"));
        clientHelper1.SetAttribute("DataRate", DataRateValue(DataRate("1Gbps")));
        clientHelper1.SetAttribute("PacketSize", UintegerValue(1000));

        ApplicationContainer clientApps1;
        AddressValue remoteAddress(InetSocketAddress(ipR2T2[i].GetAddress(0), port));
        clientHelper1.SetAttribute("Remote", remoteAddress);
        clientApps1.Add(clientHelper1.Install(S2.Get(i)));
        clientApps1.Start(i * flowStartupWindow / 20 + startTime + MilliSeconds(i * 5));
        clientApps1.Stop(stopTime);
    }

    // Each sender in S1 and S3 sends to R1
    std::vector<Ptr<PacketSink>> s1r1Sinks;
    std::vector<Ptr<PacketSink>> s3r1Sinks;
    s1r1Sinks.reserve(10);
    s3r1Sinks.reserve(10);
    for (std::size_t i = 0; i < 20; i++)
    {
        uint16_t port = 50000 + i;
        Address sinkLocalAddress(InetSocketAddress(Ipv4Address::GetAny(), port));
        PacketSinkHelper sinkHelper("ns3::TcpSocketFactory", sinkLocalAddress);
        ApplicationContainer sinkApp = sinkHelper.Install(R1);
        Ptr<PacketSink> packetSink = sinkApp.Get(0)->GetObject<PacketSink>();
        if (i < 10)
        {
            s1r1Sinks.push_back(packetSink);
        }
        else
        {
            s3r1Sinks.push_back(packetSink);
        }
        sinkApp.Start(startTime);
        sinkApp.Stop(stopTime);

        OnOffHelper clientHelper1("ns3::TcpSocketFactory", Address());
        clientHelper1.SetAttribute("OnTime",
                                   StringValue("ns3::ConstantRandomVariable[Constant=1]"));
        clientHelper1.SetAttribute("OffTime",
                                   StringValue("ns3::ConstantRandomVariable[Constant=0]"));
        clientHelper1.SetAttribute("DataRate", DataRateValue(DataRate("1Gbps")));
        clientHelper1.SetAttribute("PacketSize", UintegerValue(1000));

        ApplicationContainer clientApps1;
        AddressValue remoteAddress(InetSocketAddress(ipR1T2.GetAddress(0), port));
        clientHelper1.SetAttribute("Remote", remoteAddress);
        if (i < 10)
        {
            clientApps1.Add(clientHelper1.Install(S1.Get(i)));
            clientApps1.Start(i * flowStartupWindow / 10 + startTime + MilliSeconds(i * 5));
        }
        else
        {
            clientApps1.Add(clientHelper1.Install(S3.Get(i - 10)));
            clientApps1.Start((i - 10) * flowStartupWindow / 10 + startTime + MilliSeconds(i * 5));
        }

        clientApps1.Stop(stopTime);
    }

    rxS1R1Throughput.open("dctcp-example-s1-r1-throughput.dat", std::ios::out);
    rxS1R1Throughput << "#Time(s) flow thruput(Mb/s)" << std::endl;
    rxS2R2Throughput.open("dctcp-example-s2-r2-throughput.dat", std::ios::out);
    rxS2R2Throughput << "#Time(s) flow thruput(Mb/s)" << std::endl;
    rxS3R1Throughput.open("dctcp-example-s3-r1-throughput.dat", std::ios::out);
    rxS3R1Throughput << "#Time(s) flow thruput(Mb/s)" << std::endl;
    fairnessIndex.open("dctcp-example-fairness.dat", std::ios::out);
    t1QueueLength.open("dctcp-example-t1-length.dat", std::ios::out);
    t1QueueLength << "#Time(s) qlen(pkts) qlen(us)" << std::endl;
    t2QueueLength.open("dctcp-example-t2-length.dat", std::ios::out);
    t2QueueLength << "#Time(s) qlen(pkts) qlen(us)" << std::endl;
    for (std::size_t i = 0; i < 10; i++)
    {
        s1r1Sinks[i]->TraceConnectWithoutContext("Rx", MakeBoundCallback(&TraceS1R1Sink, i));
    }
    for (std::size_t i = 0; i < 20; i++)
    {
        r2Sinks[i]->TraceConnectWithoutContext("Rx", MakeBoundCallback(&TraceS2R2Sink, i));
    }
    for (std::size_t i = 0; i < 10; i++)
    {
        s3r1Sinks[i]->TraceConnectWithoutContext("Rx", MakeBoundCallback(&TraceS3R1Sink, i));
    }
    Simulator::Schedule(flowStartupWindow + convergenceTime, &InitializeCounters);
    Simulator::Schedule(flowStartupWindow + convergenceTime + measurementWindow,
                        &PrintThroughput,
                        measurementWindow);
    Simulator::Schedule(flowStartupWindow + convergenceTime + measurementWindow,
                        &PrintFairness,
                        measurementWindow);
    Simulator::Schedule(progressInterval, &PrintProgress, progressInterval);
    Simulator::Schedule(flowStartupWindow + convergenceTime, &CheckT1QueueSize, queueDiscs1.Get(0));
    Simulator::Schedule(flowStartupWindow + convergenceTime, &CheckT2QueueSize, queueDiscs2.Get(0));
    Simulator::Stop(stopTime + TimeStep(1));

    Simulator::Run();

    rxS1R1Throughput.close();
    rxS2R2Throughput.close();
    rxS3R1Throughput.close();
    fairnessIndex.close();
    t1QueueLength.close();
    t2QueueLength.close();
    Simulator::Destroy();
    return 0;
}