1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/*
* SPDX-License-Identifier: GPL-2.0-only
*/
#include "tutorial-app.h"
#include "ns3/applications-module.h"
#include "ns3/core-module.h"
#include "ns3/internet-module.h"
#include "ns3/network-module.h"
#include "ns3/point-to-point-module.h"
#include "ns3/stats-module.h"
#include <fstream>
using namespace ns3;
NS_LOG_COMPONENT_DEFINE("SeventhScriptExample");
// ===========================================================================
//
// node 0 node 1
// +----------------+ +----------------+
// | ns-3 TCP | | ns-3 TCP |
// +----------------+ +----------------+
// | 10.1.1.1 | | 10.1.1.2 |
// +----------------+ +----------------+
// | point-to-point | | point-to-point |
// +----------------+ +----------------+
// | |
// +---------------------+
// 5 Mbps, 2 ms
//
//
// We want to look at changes in the ns-3 TCP congestion window. We need
// to crank up a flow and hook the CongestionWindow attribute on the socket
// of the sender. Normally one would use an on-off application to generate a
// flow, but this has a couple of problems. First, the socket of the on-off
// application is not created until Application Start time, so we wouldn't be
// able to hook the socket (now) at configuration time. Second, even if we
// could arrange a call after start time, the socket is not public so we
// couldn't get at it.
//
// So, we can cook up a simple version of the on-off application that does what
// we want. On the plus side we don't need all of the complexity of the on-off
// application. On the minus side, we don't have a helper, so we have to get
// a little more involved in the details, but this is trivial.
//
// So first, we create a socket and do the trace connect on it; then we pass
// this socket into the constructor of our simple application which we then
// install in the source node.
//
// NOTE: If this example gets modified, do not forget to update the .png figure
// in src/stats/docs/seventh-packet-byte-count.png
// ===========================================================================
//
/**
* Congestion window change callback
*
* @param stream The output stream file.
* @param oldCwnd Old congestion window.
* @param newCwnd New congestion window.
*/
static void
CwndChange(Ptr<OutputStreamWrapper> stream, uint32_t oldCwnd, uint32_t newCwnd)
{
NS_LOG_UNCOND(Simulator::Now().GetSeconds() << "\t" << newCwnd);
*stream->GetStream() << Simulator::Now().GetSeconds() << "\t" << oldCwnd << "\t" << newCwnd
<< std::endl;
}
/**
* Rx drop callback
*
* @param file The output PCAP file.
* @param p The dropped packet.
*/
static void
RxDrop(Ptr<PcapFileWrapper> file, Ptr<const Packet> p)
{
NS_LOG_UNCOND("RxDrop at " << Simulator::Now().GetSeconds());
file->Write(Simulator::Now(), p);
}
int
main(int argc, char* argv[])
{
bool useV6 = false;
CommandLine cmd(__FILE__);
cmd.AddValue("useIpv6", "Use Ipv6", useV6);
cmd.Parse(argc, argv);
NodeContainer nodes;
nodes.Create(2);
PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute("DataRate", StringValue("5Mbps"));
pointToPoint.SetChannelAttribute("Delay", StringValue("2ms"));
NetDeviceContainer devices;
devices = pointToPoint.Install(nodes);
Ptr<RateErrorModel> em = CreateObject<RateErrorModel>();
em->SetAttribute("ErrorRate", DoubleValue(0.00001));
devices.Get(1)->SetAttribute("ReceiveErrorModel", PointerValue(em));
InternetStackHelper stack;
stack.Install(nodes);
uint16_t sinkPort = 8080;
Address sinkAddress;
Address anyAddress;
std::string probeType;
std::string tracePath;
if (!useV6)
{
Ipv4AddressHelper address;
address.SetBase("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer interfaces = address.Assign(devices);
sinkAddress = InetSocketAddress(interfaces.GetAddress(1), sinkPort);
anyAddress = InetSocketAddress(Ipv4Address::GetAny(), sinkPort);
probeType = "ns3::Ipv4PacketProbe";
tracePath = "/NodeList/*/$ns3::Ipv4L3Protocol/Tx";
}
else
{
Ipv6AddressHelper address;
address.SetBase("2001:0000:f00d:cafe::", Ipv6Prefix(64));
Ipv6InterfaceContainer interfaces = address.Assign(devices);
sinkAddress = Inet6SocketAddress(interfaces.GetAddress(1, 1), sinkPort);
anyAddress = Inet6SocketAddress(Ipv6Address::GetAny(), sinkPort);
probeType = "ns3::Ipv6PacketProbe";
tracePath = "/NodeList/*/$ns3::Ipv6L3Protocol/Tx";
}
PacketSinkHelper packetSinkHelper("ns3::TcpSocketFactory", anyAddress);
ApplicationContainer sinkApps = packetSinkHelper.Install(nodes.Get(1));
sinkApps.Start(Seconds(0.));
sinkApps.Stop(Seconds(20.));
Ptr<Socket> ns3TcpSocket = Socket::CreateSocket(nodes.Get(0), TcpSocketFactory::GetTypeId());
Ptr<TutorialApp> app = CreateObject<TutorialApp>();
app->Setup(ns3TcpSocket, sinkAddress, 1040, 1000, DataRate("1Mbps"));
nodes.Get(0)->AddApplication(app);
app->SetStartTime(Seconds(1.));
app->SetStopTime(Seconds(20.));
AsciiTraceHelper asciiTraceHelper;
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream("seventh.cwnd");
ns3TcpSocket->TraceConnectWithoutContext("CongestionWindow",
MakeBoundCallback(&CwndChange, stream));
PcapHelper pcapHelper;
Ptr<PcapFileWrapper> file =
pcapHelper.CreateFile("seventh.pcap", std::ios::out, PcapHelper::DLT_PPP);
devices.Get(1)->TraceConnectWithoutContext("PhyRxDrop", MakeBoundCallback(&RxDrop, file));
// Use GnuplotHelper to plot the packet byte count over time
GnuplotHelper plotHelper;
// Configure the plot. The first argument is the file name prefix
// for the output files generated. The second, third, and fourth
// arguments are, respectively, the plot title, x-axis, and y-axis labels
plotHelper.ConfigurePlot("seventh-packet-byte-count",
"Packet Byte Count vs. Time",
"Time (Seconds)",
"Packet Byte Count");
// Specify the probe type, trace source path (in configuration namespace), and
// probe output trace source ("OutputBytes") to plot. The fourth argument
// specifies the name of the data series label on the plot. The last
// argument formats the plot by specifying where the key should be placed.
plotHelper.PlotProbe(probeType,
tracePath,
"OutputBytes",
"Packet Byte Count",
GnuplotAggregator::KEY_BELOW);
// Use FileHelper to write out the packet byte count over time
FileHelper fileHelper;
// Configure the file to be written, and the formatting of output data.
fileHelper.ConfigureFile("seventh-packet-byte-count", FileAggregator::FORMATTED);
// Set the labels for this formatted output file.
fileHelper.Set2dFormat("Time (Seconds) = %.3e\tPacket Byte Count = %.0f");
// Specify the probe type, trace source path (in configuration namespace), and
// probe output trace source ("OutputBytes") to write.
fileHelper.WriteProbe(probeType, tracePath, "OutputBytes");
Simulator::Stop(Seconds(20));
Simulator::Run();
Simulator::Destroy();
return 0;
}
|