1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
/*
* Copyright (c) 2006 INRIA
*
* SPDX-License-Identifier: GPL-2.0-only
*
* Author: Mathieu Lacage <mathieu.lacage@sophia.inria.fr>
*/
#include "ns3/core-module.h"
#include <cmath> // sqrt
#include <fstream>
#include <iomanip>
#include <iostream>
#include <string.h>
#include <vector>
using namespace ns3;
/** Flag to write debugging output. */
bool g_debug = false;
/** Name of this program. */
std::string g_me;
/** Log to std::cout */
#define LOG(x) std::cout << x << std::endl
/** Log with program name prefix. */
#define LOGME(x) LOG(g_me << x)
/** Log debugging output. */
#define DEB(x) \
if (g_debug) \
{ \
LOGME(x); \
}
/** Output field width for numeric data. */
int g_fwidth = 6;
/**
* Benchmark instance which can do a single run.
*
* The run is controlled by the event population size and
* total number of events, which are set at construction.
*
* The event distribution in time is set by SetRandomStream()
*/
class Bench
{
public:
/**
* Constructor
* @param [in] population The number of events to keep in the scheduler.
* @param [in] total The total number of events to execute.
*/
Bench(const uint64_t population, const uint64_t total)
: m_population(population),
m_total(total),
m_count(0)
{
}
/**
* Set the event delay interval random stream.
*
* @param [in] stream The random variable stream to be used to generate
* delays for future events.
*/
void SetRandomStream(Ptr<RandomVariableStream> stream)
{
m_rand = stream;
}
/**
* Set the number of events to populate the scheduler with.
* Each event executed schedules a new event, maintaining the population.
* @param [in] population The number of events to keep in the scheduler.
*/
void SetPopulation(const uint64_t population)
{
m_population = population;
}
/**
* Set the total number of events to execute.
* @param [in] total The total number of events to execute.
*/
void SetTotal(const uint64_t total)
{
m_total = total;
}
/** The output. */
struct Result
{
double init; /**< Time (s) for initialization. */
double simu; /**< Time (s) for simulation. */
uint64_t pop; /**< Event population. */
uint64_t events; /**< Number of events executed. */
};
/**
* Run the benchmark as configured.
*
* @returns The Result.
*/
Result Run();
private:
/**
* Event function. This checks for completion (total number of events
* executed) and schedules a new event if not complete.
*/
void Cb();
Ptr<RandomVariableStream> m_rand; /**< Stream for event delays. */
uint64_t m_population; /**< Event population size. */
uint64_t m_total; /**< Total number of events to execute. */
uint64_t m_count; /**< Count of events executed so far. */
};
Bench::Result
Bench::Run()
{
SystemWallClockMs timer;
double init;
double simu;
DEB("initializing");
m_count = 0;
timer.Start();
for (uint64_t i = 0; i < m_population; ++i)
{
Time at = NanoSeconds(m_rand->GetValue());
Simulator::Schedule(at, &Bench::Cb, this);
}
init = timer.End() / 1000.0;
DEB("initialization took " << init << "s");
DEB("running");
timer.Start();
Simulator::Run();
simu = timer.End() / 1000.0;
DEB("run took " << simu << "s");
Simulator::Destroy();
return Result{init, simu, m_population, m_count};
}
void
Bench::Cb()
{
if (m_count >= m_total)
{
Simulator::Stop();
return;
}
DEB("event at " << Simulator::Now().GetSeconds() << "s");
Time after = NanoSeconds(m_rand->GetValue());
Simulator::Schedule(after, &Bench::Cb, this);
++m_count;
}
/** Benchmark which performs an ensemble of runs. */
class BenchSuite
{
public:
/**
* Perform the runs for a single scheduler type.
*
* This will create and set the scheduler, then execute a priming run
* followed by the number of data runs requested.
*
* Output will be in the form of a table showing performance for each run.
*
* @param [in] factory Factory pre-configured to create the desired Scheduler.
* @param [in] pop The event population size.
* @param [in] total The total number of events to execute.
* @param [in] runs The number of replications.
* @param [in] eventStream The random stream of event delays.
* @param [in] calRev For the CalendarScheduler, whether the Reverse attribute was set.
*/
BenchSuite(ObjectFactory& factory,
uint64_t pop,
uint64_t total,
uint64_t runs,
Ptr<RandomVariableStream> eventStream,
bool calRev);
/** Write the results to \c LOG() */
void Log() const;
private:
/** Print the table header. */
void Header() const;
/** Statistics from a single phase, init or run. */
struct PhaseResult
{
double time; /**< Phase run time time (s). */
double rate; /**< Phase event rate (events/s). */
double period; /**< Phase period (s/event). */
};
/** Results from initialization and execution of a single run. */
struct Result
{
PhaseResult init; /**< Initialization phase results. */
PhaseResult run; /**< Run (simulation) phase results. */
/**
* Construct from the individual run result.
*
* @param [in] r The result from a single run.
* @returns The run result.
*/
static Result Bench(Bench::Result r);
/**
* Log this result.
*
* @tparam T The type of the label.
* @param label The label for the line.
*/
template <typename T>
void Log(T label) const;
}; // struct Result
std::string m_scheduler; /**< Descriptive string for the scheduler. */
std::vector<Result> m_results; /**< Store for the run results. */
}; // BenchSuite
/* static */
BenchSuite::Result
BenchSuite::Result::Bench(Bench::Result r)
{
return Result{{r.init, r.pop / r.init, r.init / r.pop},
{r.simu, r.events / r.simu, r.simu / r.events}};
}
template <typename T>
void
BenchSuite::Result::Log(T label) const
{
// Need std::left for string labels
LOG(std::left << std::setw(g_fwidth) << label << std::setw(g_fwidth) << init.time
<< std::setw(g_fwidth) << init.rate << std::setw(g_fwidth) << init.period
<< std::setw(g_fwidth) << run.time << std::setw(g_fwidth) << run.rate
<< std::setw(g_fwidth) << run.period);
}
BenchSuite::BenchSuite(ObjectFactory& factory,
uint64_t pop,
uint64_t total,
uint64_t runs,
Ptr<RandomVariableStream> eventStream,
bool calRev)
{
Simulator::SetScheduler(factory);
m_scheduler = factory.GetTypeId().GetName();
if (m_scheduler == "ns3::CalendarScheduler")
{
m_scheduler += ": insertion order: " + std::string(calRev ? "reverse" : "normal");
}
if (m_scheduler == "ns3::MapScheduler")
{
m_scheduler += " (default)";
}
Bench bench(pop, total);
bench.SetRandomStream(eventStream);
bench.SetPopulation(pop);
bench.SetTotal(total);
m_results.reserve(runs);
Header();
// Prime
DEB("priming");
auto prime = bench.Run();
Result::Bench(prime).Log("prime");
// Perform the actual runs
for (uint64_t i = 0; i < runs; i++)
{
auto run = bench.Run();
m_results.push_back(Result::Bench(run));
m_results.back().Log(i);
}
Simulator::Destroy();
}
void
BenchSuite::Header() const
{
// table header
LOG("");
LOG(m_scheduler);
LOG(std::left << std::setw(g_fwidth) << "Run #" << std::left << std::setw(3 * g_fwidth)
<< "Initialization:" << std::left << "Simulation:");
LOG(std::left << std::setw(g_fwidth) << "" << std::left << std::setw(g_fwidth) << "Time (s)"
<< std::left << std::setw(g_fwidth) << "Rate (ev/s)" << std::left
<< std::setw(g_fwidth) << "Per (s/ev)" << std::left << std::setw(g_fwidth)
<< "Time (s)" << std::left << std::setw(g_fwidth) << "Rate (ev/s)" << std::left
<< "Per (s/ev)");
LOG(std::setfill('-') << std::right << std::setw(g_fwidth) << " " << std::right
<< std::setw(g_fwidth) << " " << std::right << std::setw(g_fwidth) << " "
<< std::right << std::setw(g_fwidth) << " " << std::right
<< std::setw(g_fwidth) << " " << std::right << std::setw(g_fwidth) << " "
<< std::right << std::setw(g_fwidth) << " " << std::setfill(' '));
}
void
BenchSuite::Log() const
{
if (m_results.size() < 2)
{
LOG("");
return;
}
// Average the results
// See Welford's online algorithm for these expressions,
// which avoid subtracting large numbers.
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm
uint64_t n{0}; // number of samples
Result average{m_results[0]}; // average
Result moment2{{0, 0, 0}, // 2nd moment, to calculate stdev
{0, 0, 0}};
for (; n < m_results.size(); ++n)
{
double deltaPre;
double deltaPost;
const auto& run = m_results[n];
uint64_t count = n + 1;
#define ACCUMULATE(phase, field) \
deltaPre = run.phase.field - average.phase.field; \
average.phase.field += deltaPre / count; \
deltaPost = run.phase.field - average.phase.field; \
moment2.phase.field += deltaPre * deltaPost
ACCUMULATE(init, time);
ACCUMULATE(init, rate);
ACCUMULATE(init, period);
ACCUMULATE(run, time);
ACCUMULATE(run, rate);
ACCUMULATE(run, period);
#undef ACCUMULATE
}
auto stdev = Result{
{std::sqrt(moment2.init.time / n),
std::sqrt(moment2.init.rate / n),
std::sqrt(moment2.init.period / n)},
{std::sqrt(moment2.run.time / n),
std::sqrt(moment2.run.rate / n),
std::sqrt(moment2.run.period / n)},
};
average.Log("average");
stdev.Log("stdev");
LOG("");
}
/**
* Create a RandomVariableStream to generate next event delays.
*
* If the \p filename parameter is empty a default exponential time
* distribution will be used, with mean delay of 100 ns.
*
* If the \p filename is `-` standard input will be used.
*
* @param [in] filename The delay interval source file name.
* @returns The RandomVariableStream.
*/
Ptr<RandomVariableStream>
GetRandomStream(std::string filename)
{
Ptr<RandomVariableStream> stream = nullptr;
if (filename.empty())
{
LOG(" Event time distribution: default exponential");
auto erv = CreateObject<ExponentialRandomVariable>();
erv->SetAttribute("Mean", DoubleValue(100));
stream = erv;
}
else
{
std::istream* input;
if (filename == "-")
{
LOG(" Event time distribution: from stdin");
input = &std::cin;
}
else
{
LOG(" Event time distribution: from " << filename);
input = new std::ifstream(filename);
}
double value;
std::vector<double> nsValues;
while (!input->eof())
{
if (*input >> value)
{
auto ns = (uint64_t)(value * 1000000000);
nsValues.push_back(ns);
}
else
{
input->clear();
std::string line;
*input >> line;
}
}
LOG(" Found " << nsValues.size() << " entries");
auto drv = CreateObject<DeterministicRandomVariable>();
drv->SetValueArray(&nsValues[0], nsValues.size());
stream = drv;
}
return stream;
}
int
main(int argc, char* argv[])
{
bool allSched = false;
bool schedCal = false;
bool schedHeap = false;
bool schedList = false;
bool schedMap = false; // default scheduler
bool schedPQ = false;
uint64_t pop = 100000;
uint64_t total = 1000000;
uint64_t runs = 1;
std::string filename = "";
bool calRev = false;
CommandLine cmd(__FILE__);
cmd.Usage("Benchmark the simulator scheduler.\n"
"\n"
"Event intervals are taken from one of:\n"
" an exponential distribution, with mean 100 ns,\n"
" an ascii file, given by the --file=\"<filename>\" argument,\n"
" or standard input, by the argument --file=\"-\"\n"
"In the case of either --file form, the input is expected\n"
"to be ascii, giving the relative event times in ns.\n"
"\n"
"If no scheduler is specified the MapScheduler will be run.");
cmd.AddValue("all", "use all schedulers", allSched);
cmd.AddValue("cal", "use CalendarScheduler", schedCal);
cmd.AddValue("calrev", "reverse ordering in the CalendarScheduler", calRev);
cmd.AddValue("heap", "use HeapScheduler", schedHeap);
cmd.AddValue("list", "use ListScheduler", schedList);
cmd.AddValue("map", "use MapScheduler (default)", schedMap);
cmd.AddValue("pri", "use PriorityQueue", schedPQ);
cmd.AddValue("debug", "enable debugging output", g_debug);
cmd.AddValue("pop", "event population size", pop);
cmd.AddValue("total", "total number of events to run", total);
cmd.AddValue("runs", "number of runs", runs);
cmd.AddValue("file", "file of relative event times", filename);
cmd.AddValue("prec", "printed output precision", g_fwidth);
cmd.Parse(argc, argv);
g_me = cmd.GetName() + ": ";
g_fwidth += 6; // 5 extra chars in '2.000002e+07 ': . e+0 _
LOG(std::setprecision(g_fwidth - 6)); // prints blank line
LOGME(" Benchmark the simulator scheduler");
LOG(" Event population size: " << pop);
LOG(" Total events per run: " << total);
LOG(" Number of runs per scheduler: " << runs);
DEB("debugging is ON");
if (allSched)
{
schedCal = schedHeap = schedList = schedMap = schedPQ = true;
}
// Set the default case if nothing else is set
if (!(schedCal || schedHeap || schedList || schedMap || schedPQ))
{
schedMap = true;
}
auto eventStream = GetRandomStream(filename);
ObjectFactory factory("ns3::MapScheduler");
if (schedCal)
{
factory.SetTypeId("ns3::CalendarScheduler");
factory.Set("Reverse", BooleanValue(calRev));
BenchSuite(factory, pop, total, runs, eventStream, calRev).Log();
if (allSched)
{
factory.Set("Reverse", BooleanValue(!calRev));
BenchSuite(factory, pop, total, runs, eventStream, !calRev).Log();
}
}
if (schedHeap)
{
factory.SetTypeId("ns3::HeapScheduler");
BenchSuite(factory, pop, total, runs, eventStream, calRev).Log();
}
if (schedList)
{
factory.SetTypeId("ns3::ListScheduler");
auto listTotal = total;
if (allSched)
{
LOG("Running List scheduler with 1/10 total events");
listTotal /= 10;
}
BenchSuite(factory, pop, listTotal, runs, eventStream, calRev).Log();
}
if (schedMap)
{
factory.SetTypeId("ns3::MapScheduler");
BenchSuite(factory, pop, total, runs, eventStream, calRev).Log();
}
if (schedPQ)
{
factory.SetTypeId("ns3::PriorityQueueScheduler");
BenchSuite(factory, pop, total, runs, eventStream, calRev).Log();
}
return 0;
}
|