
nx::Class(3) 2.0 Class ""

NAME

nx::Class - API reference of the base-metaclass of the NX objectsystem

TABLE OF CONTENTS

Table Of Contents
Synopsis
Description
Configuration Options for Instances of nx::Class
Methods for Instances of nx::Class
Object Life Cycle
Copyright

SYNOPSIS

nx::Class create cls ?-superclasses superClassNames? ?-mixins mixinSpec?
?-filters filterSpec? ?option value ...? ?initBlock?
nx::Class new ?-superclasses superClassNames? ?-mixins mixinSpec? ?-
filters filterSpec? ?initBlock?
cls ?public | private | protected? alias methodName ?-returns valueChecker?
?-frame object | method? cmdName
cls create instanceName ?option value option value ...?
cls delete feature arg
cls filters submethod ?arg ...?
cls ?public | protected | private? forward methodName ?-prefix prefixName?
?-frame object? ?-returns valueChecker? ?-verbose? ?target? ?arg ...?
cls info heritage ?pattern?
cls info instances ?-closure? ?pattern?
cls info mixinof ?-closure? ?-scope option? ?pattern?
cls info subclasses ?-closure? ?-dependent? ?pattern?
cls info superclasses ?-closure? ?pattern?
cls info info ?-asList?
cls info filters ?-guards? ?pattern?
cls info method option methodName
cls info methods ?-callprotection level? ?-type methodType? ?-path?
?namePattern?
cls info mixins ?-guards? ?pattern?
cls info slots ?-type className? ?pattern?
cls info variables ?pattern?
cls ?public | protected | private? method name parameters ?-checkalways? ?-
returns valueChecker? body
cls mixins submethod ?arg ...?
cls new ?-childof parentName? ?option value option value ...?
cls property ?-accessor public | protected | private? ?-configurable
trueFalse? ?-incremental? ?-class className? spec ?initBlock?
cls require ?public | protected | private? method methodName
cls variable ?-accessor public | protected | private? ?-incremental? ?-class
className? ?-configurable trueFalse? ?-initblock script? spec ?defaultValue?

Name

- 1 -

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

DESCRIPTION

nx::Class is the base metaclass of the NX object system. All classes (e.g. cls) are (direct or
indirect) instances of nx::Class . Therefore, the methods provided by nx::Class are
available to all classes. A class cls which does not have nx::Class as its direct or indirect
superclass is referred to as an application class. By default, when instantiating a new class
from nx::Class , it becomes an application class with nx::Object being set as its
superclass. A class cls which is explicitly declared as a (direct or indirect) subclass of
nx::Class is referred to as a metaclass, that is, its instances will become classes as well. In

other words, a metaclass instantiates and subclasses nx::Class at the same time.

+---------+
| ::nx::* |
+---------+--------------------------------------Y
| |
| instance of |
| .-------. |
| +--------'+ instance of +----------+ |
		<....................		
	Class		Object	
	>		
+---------+ subclass of +-----+----+				
^ ^ ^				
\...|...|................................|......./

	subclass.....(xor)......subclass		
	of +-----------+ of		

(metaclass)	/cls/	(application class)	
.............			
instance of +-----------+

Classes can be created in the following ways:

nx::Class create cls ? -superclasses superClassNames ? ? -mixins
mixinSpec ? ? -filters filterSpec ? ? option value ...? ? initBlock ?

To create a class having the explicit name cls , use create .

nx::Class new ? -superclasses superClassNames ? ? -mixins mixinSpec ? ? -
filters filterSpec ? ? initBlock ?

To create a class having an automatically assigned, implicit name, use new .

The configuration options for direct and indirect instances of nx::Class , which can be passed
when calling create and new, are documented in the subsequent section.

CONFIGURATION OPTIONS FOR INSTANCES OF NX::CLASS

Configuration options can be used for configuring objects during their creation by passing the
options as non-positional arguments into calls of new and create (see nx::Class). An
existing object can be queried for its current configuration using cget and it can be re-
configured using configure.

Description

- 2 -

-superclasses ? superClassNames ?

If superClassNames is not specified, returns the superclasses of the class. If provided,
the class becomes the subclass of superClassNames .

-filters ? filterSpecs ?

Retrieves the list of filter methods currently active on instances of the class, if
filterSpecs is not set. Otherwise, activates a list of filter methods for the instances of

the class. Filters are returned or set in terms of a list of filter specifications.

-mixins ? mixinSpecs ?

Returns the list of mixin classes currently active on instances of the class, if mixinSpecs
is not specified. Otherwise, the class is extended by the list of mixin classes provided by
mixinSpecs . mixin classes are returned or set in terms of a list of mixin specifications.

The configuration options provided by nx::Object are equally available because an
application class cls is an indirect instance of nx::Object .

METHODS FOR INSTANCES OF NX::CLASS

alias

cls ? public | private | protected ? alias methodName ? -returns
valueChecker ? ? -frame object | method ? cmdName

Define an alias method for the given class. The resulting method registers a pre-
existing Tcl command cmdName under the (alias) name methodName with the class.
If cmdName refers to another method , the corresponding argument should be a
valid method handle. If a Tcl command (e.g., a proc), the argument should be a
fully qualified Tcl command name. If aliasing a subcommand (e.g., array exists)
of a Tcl namespace ensemble (e.g., array), cmdName must hold the fully qualified
subcommand name (and not the ensemble name of the subcommand).

As for a regular class method , -returns allows for setting a value checker on
the values returned by the aliased command cmdName .

When creating an alias method for a C-implemented Tcl command (i.e., command
defined using the Tcl/NX C-API), -frame sets the scope for variable references
used in the aliased command. If the provided value is object , then variable
references will be resolved in the context of the called object, i.e., the object upon
which the alias method is invoked, as if they were object variables. There is no need
for using the colon-prefix notation for identifying object variables. If the value is
method , then the aliased command will be executed as a regular method call. The
command is aware of its called-object context; i.e., it can resolve ::nx::self . In
addition, the alias method has access to the method-call context (e.g., nx::next).
If -frame is omitted, and by default, the variable references will resolve in the
context of the caller of the alias method.

__class_configureparameter

cls __class_configureparameter

Computes and returns the configuration options available for cls instances, to be
consumed as method-parameter specification by configure .

Methods for Instances of nx::Class

- 3 -

create

cls create instanceName ? option value option value ...?

This factory method creates an instance instanceName of cls and returns
instanceName .

% nx::Class create AClass {
:method init args {

next
}; # initialization method for instances of 'AClass'

}; # defines a class 'AClass' being an instance of 'nx::Class'
::AClass
% ::AClass create anInstance; # defines an object 'anInstance' being an instance of 'AClass'
::anInstance
% ::anInstance info class
::AClass
% ::AClass info class
::nx::Class

create accepts the configuration options option available for this instance, such
as those defined by properties of cls (see property).

Note that create is called internally when defining an instance of cls using new .

By calling create on nx::Class itself, the created instance will become a new
application class instanceName on which create can also be applied (i.e., it can
be instantiated). If the so-created class has ::nx::Class its direct or indirect
superclass, instanceName is referred to as a metaclass; that is, a class whose
instances are again classes.

delete

cls delete feature arg

This method serves as the equivalent to Tcl's rename for removing structural
(properties, variables) and behavioral features (methods) of the class:

cls delete property propertyName

cls delete variable variableName

cls delete method methodName

Removes a property propertyName , variable variableName , and method
methodName , respectively, previously defined for the scope of the class.

delete method can be equally used for removing regular methods (see method),
an alias method (see alias), and a forwarder method (see forward).

filters

cls filters submethod ? arg ...?

Accesses and modifies the list of methods which are registered as filters with cls
using a specific setter or getter submethod :

Methods for Instances of nx::Class

- 4 -

cls filters add spec ? index ?

Inserts a single filter into the current list of filters of cls . Using index , a
position in the existing list of filters for inserting the new filter can be set. If
omitted, index defaults to the list head (0).

cls filters clear

Removes all filters from cls and returns the list of removed filters. Clearing is
equivalent to passing an empty list for filterSpecList to class filter
set .

cls filters delete ? -nocomplain ? specPattern

Removes a single filter from the current list of filters of cls whose spec
matches specPattern . specPattern can contain special matching chars
(see string match). class filters delete will throw an error if there is
no matching filter, unless -nocomplain is set.

cls filters get

Returns the list of current filter specifications registered for cls .

cls filters guard methodName ? expr ?

If expr is specified, registers a guard expression expr with a filter
methodName . This requires that the filter methodName has been previously

set using filters set or added using filters add . expr must be a
valid Tcl expression (see expr). An empty string for expr will clear the
currently registered guard expression for filter methodName .

If expr is omitted, returns the guard expression set on the filter methodName
defined for cls . If none is available, an empty string will be returned.

cls filters methods ? pattern ?

If pattern is omitted, returns all filter names which are defined by cls . By
specifying pattern , the returned filters can be limited to those whose names
match patterns (see string match).

cls filters set filterSpecList

filterSpecList takes a list of filter specs, with each spec being itself either
a one-element or a two-element list: methodName ?-guard guardExpr ?.
methodName identifies an existing method of cls which becomes registered

as a filter. If having three elements, the third element guardExpr will be stored
as a guard expression of the filter. This guard expression must be a valid Tcl
expression (see expr). expr is evaluated when cls receives a message to
determine whether the filter should intercept the message. Guard expressions
allow for realizing context-dependent or conditional filter composition.

Every methodName in a spec must resolve to an existing method in the scope of
the class. To access and to manipulate the list of filters of cls , cget | configure
-filters can also be used.

Methods for Instances of nx::Class

- 5 -

forward

cls ? public | protected | private ? forward methodName ? -prefix
prefixName ? ? -frame object ? ? -returns valueChecker ? ? -verbose ?

? target ? ? arg ...?

Define a forward method for the given class. The definition of a forward method
registers a predefined, but changeable list of forwarder arguments under the
(forwarder) name methodName . Upon calling the forward method, the forwarder
arguments are evaluated as a Tcl command call. That is, if present, target is
interpreted as a Tcl command (e.g., a Tcl proc or an object) and the remainder of
the forwarder arguments arg as arguments passed into this command. The actual
method arguments to the invocation of the forward method itself are appended to the
list of forwarder arguments. If target is omitted, the value of methodName is
implicitly set and used as target . This way, when providing a fully-qualified Tcl
command name as methodName without target , the unqualified methodName
(namespace tail) is used as the forwarder name; while the fully-qualified one
serves as the target .

As for a regular method , -returns allows for setting a value checker on the
values returned by the resulting Tcl command call. When passing object to -
frame , the resulting Tcl command is evaluated in the context of the object receiving
the forward method call. This way, variable names used in the resulting execution of
a command become resolved as object variables.

The list of forwarder arguments arg can contain as its elements a mix of literal
values and placeholders. Placeholders are prefixed with a percent symbol (%) and
substituted for concrete values upon calling the forward method. These placeholders
allow for constructing and for manipulating the arguments to be passed into the
resulting command call on the fly:

• %method becomes substituted for the name of the forward method, i.e.
methodName .

• %self becomes substituted for the name of the object receiving the call of
the forward method.

• %1 becomes substituted for the first method argument passed to the call of
forward method. This requires, in turn, that at least one argument is passed
along with the method call.

Alternatively, %1 accepts an optional argument defaults : { %1
defaults }. defaults must be a valid Tcl list of two elements. For the

first element, %1 is substituted when there is no first method argument
which can be consumed by %1 . The second element is inserted upon
availability of a first method argument with the consumed argument being
appended right after the second list element. This placeholder is typically
used to define a pair of getter/setter methods.

• { %@ index value } becomes substituted for the specified value at
position index in the forwarder-arguments list, with index being either a
positive integer, a negative integer, or the literal value end (such as in Tcl's
lindex). Positive integers specify a list position relative to the list head,

negative integers give a position relative to the list tail. Indexes for
positioning placeholders in the definition of a forward method are evaluated
from left to right and should be used in ascending order.

Note that value can be a literal or any of the placeholders (e.g.,
%method , %self). Position prefixes are exempted, they are evaluated as
% cmdName -placeholders in this context.

Methods for Instances of nx::Class

- 6 -

• { %argclindex list } becomes substituted for the nth element of the
provided list , with n corresponding to the number of method arguments
passed to the forward method call.

• %% is substituted for a single, literal percent symbol (%).

• % cmdName is substituted for the value returned from executing the Tcl
command cmdName . To pass arguments to cmdName , the placeholder
should be wrapped into a Tcl list : { % cmdName ? arg ...?}.

Consider using fully-qualified Tcl command names for cmdName to avoid
possible name conflicts with the predefined placeholders, e.g., %self vs.
% ::nx::self .

To disambiguate the names of subcommands or methods, which potentially become
called by a forward method, a prefix prefixName can be set using -prefix . This
prefix is prepended automatically to the argument following target (i.e., a second
argument), if present. If missing, -prefix has no effect on the forward method call.

To inspect and to debug the conversions performed by the above placeholders,
setting the switch -verbose will have the command list to be executed (i.e., after
substitution) printed using ::nsf::log (debugging level: notice) upon calling the
forward method.

info

A collection of introspection submethods on the structural features (e.g. configuration
options, superclasses) and the behavioral features (e.g. methods, filters) provided by cls
to its instances.

cls info heritage ? pattern ?

If pattern is omitted, returns the list of object names of all the direct and indirect
superclasses and per-class mixin classes of cls , in their order of precedence,
which are active for instances of cls . If pattern is specified, only superclasses
and mixin classes whose names match pattern will be listed (see string
match).

cls info instances ? -closure ? ? pattern ?

If pattern is not specified, returns a list of the object names of all the direct
instances of cls . If the switch -closure is set, indirect instances are also
returned. A direct instance is created by using create or new on cls , an indirect
instance was created from a direct or indirect subclass of cls . If pattern is
specified, only instances whose names match pattern will be listed (see string
match).

cls info mixinof ? -closure ? ? -scope option ? ? pattern ?

If pattern is not specified, returns a list of the object names of all the objects for
which cls is active as a direct mixin class. If the switch -closure is set, objects
which have cls as an indirect mixin class are also returned. If pattern is
specified, only objects whose names match pattern will be listed (see string
match). Valid values of option are all , object , and class . Passing object
will have only objects returned which have cls as per-object mixin class. Passing
class will have only classes returned which have cls as per-class mixin class.
all (the default) will have contained both in the returned list.

Methods for Instances of nx::Class

- 7 -

cls info subclasses ? -closure ? ? -dependent ? ? pattern ?

If pattern is not specified, returns a list of the object names of the direct
subclasses of cls . If the switch -closure is set, indirect subclasses are also
returned. If the switch -dependent is on, indirect subclasses introduced by mixin
class relations of subclasses of cls are also reported. -closure and -
dependent are mutually exclusive. If pattern is specified, only subclasses whose
names match pattern will be listed (see string match).

cls info superclasses ? -closure ? ? pattern ?

If pattern is not specified, returns a list of the object names of all direct
superclasses of cls . If the switch -closure is set, indirect superclasses will also
be returned. If pattern is specified, only superclasses whose names match
pattern will be listed (see string match).

cls info info ? -asList ?

Returns the available submethods of the info method ensemble for cls , either as
a pretty-printed string or as a Tcl list (if the switch -asList is set) for further
processing.

cls info filters ? -guards ? ? pattern ?

If pattern is omitted, returns all filter names which are defined by cls . By turning
on the switch -guards , the corresponding guard expressions, if any, are also
reported along with each filter as a three-element list: filterName -guard
guardExpr . By specifying pattern , the returned filters can be limited to those

whose names match patterns (see string match).

cls info method option methodName

This introspection submethod provides access to the details of methodName
provided by cls . Permitted values for option are:

• args returns a list containing the parameter names of methodName , in
order of the method-parameter specification.

• body returns the body script of methodName .

• definition returns a canonical command list which allows for (re-)define
methodName .

• definitionhandle returns the method handle for a submethod in a
method ensemble from the perspective of cls as method provider.
methodName must contain a complete method path.

• exists returns 1 if there is a methodName provided by cls , returns 0
otherwise.

• handle returns the method handle for methodName .

• origin returns the aliased command if methodName is an alias method,
or an empty string otherwise.

• parameters returns the parameter specification of methodName as a list
of parameter names and type specifications.

Methods for Instances of nx::Class

- 8 -

• registrationhandle returns the method handle for a submethod in a
method ensemble from the perspective of the method caller. methodName
must contain a complete method path.

• returns gives the type specification defined for the return value of
methodName .

• submethods returns the names of all submethods of methodName , if
methodName is a method ensemble. Otherwise, an empty string is

returned.

• syntax returns the method parameters of methodName as a concrete-
syntax description to be used in human-understandable messages (e.g.,
errors or warnings, documentation strings).

• type returns whether methodName is a scripted method, an alias method,
a forwarder method, or a setter method.

cls info methods ? -callprotection level ? ? -type methodType ? ? -
path ? ? namePattern ?

Returns the names of all methods defined by cls . Methods covered include those
defined using alias and forward . The returned methods can be limited to those
whose names match namePattern (see string match).

By setting -callprotection , only methods of a certain call protection level
(public , protected , or private) will be returned. Methods of a specific type can
be requested using -type . The recognized values for methodType are:

• scripted denotes methods defined using class method ;

• alias denotes alias methods defined using class alias ;

• forwarder denotes forwarder methods defined using class forward ;

• setter denotes methods defined using ::nsf::setter ;

• all returns methods of any type, without restrictions (also the default
value);

cls info mixins ? -guards ? ? pattern ?

If pattern is omitted, returns the object names of the mixin classes which extend
cls directly. By turning on the switch -guards , the corresponding guard

expressions, if any, are also reported along with each mixin as a three-element list:
className -guard guardExpr . The returned mixin classes can be limited to those

whose names match patterns (see string match).

cls info slots ? -type className ? ? pattern ?

If pattern is not specified, returns the object names of all slot objects defined by
cls . The returned slot objects can be limited according to any or a combination of

the following criteria: First, slot objects can be filtered based on their command
names matching pattern (see string match). Second, -type allows one to
select slot objects which are instantiated from a subclass className of nx::Slot
(default: nx::Slot).

Methods for Instances of nx::Class

- 9 -

cls info variables ? pattern ?

If pattern is omitted, returns the object names of all slot objects provided by cls
which are responsible for managing properties and variables of cls . Otherwise,
only slot objects whose names match pattern are returned.

This is equivalent to calling: cls info slots -type ::nx::VariableSlot
pattern .

To extract details of each slot object, use the info submethods available for each
slot object.

method

cls ? public | protected | private ? method name parameters ? -
checkalways ? ? -returns valueChecker ? body

Defines a scripted method methodName for the scope of the class. The method
becomes part of the class's signature interface. Besides a methodName , the method
definition specifies the method parameters and a method body .

parameters accepts a Tcl list containing an arbitrary number of non-positional
and positional parameter definitions. Each parameter definition comprises a
parameter name, a parameter-specific value checker, and parameter options.

The body contains the method implementation as a script block. In this body script,
the colon-prefix notation is available to denote an object variable and a self call. In
addition, the context of the object receiving the method call (i.e., the message) can
be accessed (e.g., using nx::self) and the call stack can be introspected (e.g.,
using nx::current).

Optionally, -returns allows for setting a value checker on values returned by the
method implementation. By setting the switch -checkalways , value checking on
arguments and return value is guaranteed to be performed, even if value checking is
temporarily disabled; see nx::configure).

A method closely resembles a Tcl proc , but it differs in some important aspects:
First, a method can define non-positional parameters and value checkers on
arguments. Second, the script implementing the method body can contain object-
specific notation and commands (see above). Third, method calls cannot be
intercepted using Tcl trace . Note that an existing Tcl proc can be registered as
an alias method with the class (see alias).

mixins

cls mixins submethod ? arg ...?

Accesses and modifies the list of mixin classes of cls using a specific setter or
getter submethod :

cls mixins add spec ? index ?

Inserts a single mixin class into the current list of mixin classes of cls . Using
index , a position in the existing list of mixin classes for inserting the new mixin

class can be set. If omitted, index defaults to the list head (0).

Methods for Instances of nx::Class

- 10 -

cls mixins classes ? pattern ?

If pattern is omitted, returns the object names of the mixin classes which
extend cls directly. By specifying pattern , the returned mixin classes can
be limited to those whose names match pattern (see string match).

cls mixins clear

Removes all mixin classes from cls and returns the list of removed mixin
classes. Clearing is equivalent to passing an empty list for mixinSpecList to
mixins set .

cls mixins delete ? -nocomplain ? specPattern

Removes a mixin class from a current list of mixin classes of cls whose spec
matches specPattern . specPattern can contain special matching chars
(see string match). class mixins delete will throw an error if there is
no matching mixin class, unless -nocomplain is set.

cls mixins get

Returns the list of current mixin specifications.

cls mixins guard className ? expr ?

If expr is specified, a guard expression expr is registered with the mixin
class className . This requires that the corresponding mixin class
className has been previously set using class mixins set or added

using mixins add . expr must be a valid Tcl expression (see expr). An
empty string for expr will clear the currently registered guard expression for
the mixin class className .

If expr is not specified, returns the active guard expression. If none is
available, an empty string will be returned.

cls mixins set mixinSpecList

mixinSpecList represents a list of mixin class specs, with each spec being
itself either a one-element or a three-element list: className ?-guard
guardExpr ?. If having one element, the element will be considered the
className of the mixin class. If having three elements, the third element
guardExpr will be stored as a guard expression of the mixin class. This guard

expression will be evaluated using expr when cls receives a message to
determine if the mixin is to be considered during method dispatch or not. Guard
expressions allow for realizing context-dependent or conditional mixin
composition.

At the time of setting the mixin relation, that is, calling mixins , every className
as part of a spec must be an existing instance of nx::Class . To access and to
manipulate the list of mixin classes of cls , cget | configure -mixins can also
be used.

new

cls new ? -childof parentName ? ? option value option value ...?

A factory method to create autonamed instances of cls . It returns the name of the
newly created instance. For example:

Methods for Instances of nx::Class

- 11 -

% nx::Class create AClass; # defines a class 'AClass' being an instance of 'nx::Class'
::AClass
% set inst [::AClass new]; # defines an autonamed object being an instance of 'AClass'
::nsf::__#0
% $inst info class
::AClass

The factory method will provide computed object names of the form, e.g.
::nsf::__#0 . The uniqueness of generated object names is guaranteed for the
scope of the current Tcl interpreter only.

It is a frontend to create which will be called by new once the name of the
instance has been computed, passing along the arguments option to new as the
configuration options (see create).

If -childof is provided, the new object will be created as a nested object of
parentName . parentName can be the name of either an existing NX object or an

existing Tcl namespace. If non-existing, a Tcl namespace parentName will be
created on the fly.

property

cls property ? -accessor public | protected | private ? ? -configurable
trueFalse ? ? -incremental ? ? -class className ? spec ? initBlock ?

Defines a property for the scope of the class. The spec provides the property
specification as a list holding at least one element or, maximum, two elements:
propertyName ? : typeSpec ? ? defaultValue ?. The propertyName is also

used as to form the names of the getter/setter methods, if requested (see -
accessor). It is, optionally, equipped with a typeSpec following a colon delimiter
which specifies a value checker for the values which become assigned to the
property. The second, optional element sets a defaultValue for this property.

If -accessor is set, a property will provide for a pair of getter and setter methods:

obj propertyName set value

Sets the property propertyName to value .

obj propertyName get

Returns the current value of property propertyName .

obj propertyName unset

Removes the value store of propertyName (e.g., an object variable), if
existing.

The option value passed along -accessor sets the level of call protection for the
generated getter and setter methods: public , protected , or private . By
default, no getter and setter methods are created.

Turning on the switch -incremental provides a refined setter interface to the value
managed by the property. First, setting -incremental implies requesting -
accessor (set to public by default, if not specified explicitly). Second, the
managed value will be considered a valid Tcl list. A multiplicity of 1..* is set by
default, if not specified explicitly as part of spec . Third, to manage this list value
element-wise (incrementally), two additional setter methods become available:

Methods for Instances of nx::Class

- 12 -

obj propertyName add element ? index ?

Adding element to the managed list value, at the list position given by index
(by default: 0).

obj propertyName delete elementPattern

Removing one or multiple elements from the managed list value which match
elementPattern . elementPattern can contain matching characters (see
string match).

By setting -configurable to true (the default), the property can be accessed
and modified through cget and configure , respectively. If false , no
configuration option will become available via cget and configure .

If neither -accessor nor -configurable are requested, the value managed by
the property will have to be accessed and modified directly. If the property manages
an object variable, its value will be readable and writable using set and eval .

A property becomes implemented by a slot object under any of the following
conditions:

• -configurable equals true (by default).

• -accessor is one of public , protected , or private .

• -incremental is turned on.

• initBlock is a non-empty string.

Assuming default settings, every property is realized by a slot object.

Provided a slot object managing the property is to be created, a custom class
className from which this slot object is to be instantiated can be set using -
class . The default value is ::nx::VariableSlot .

The last argument initBlock accepts an optional Tcl script which is passed into
the initialization procedure (see configure) of the property's slot object. See also
initBlock for create and new .

require

cls require ? public | protected | private ? method methodName

Attempts to register a method definition made available using
::nsf::method::provide under the name methodName with cls . The

registered method is subjected to default call protection (protected), if not set
explicitly.

variable

cls variable ? -accessor public | protected | private ? ? -incremental ?
? -class className ? ? -configurable trueFalse ? ? -initblock script ?
spec ? defaultValue ?

Defines a variable for the scope of the class. The spec provides the variable
specification: variableName ? : typeSpec ?. The variableName will be used to
name the underlying Tcl variable and the getter/setter methods, if requested (see -
accessor). spec is optionally equipped with a typeSpec following a colon
delimiter which specifies a value checker for the values managed by the variable.
Optionally, a defaultValue can be defined.

Methods for Instances of nx::Class

- 13 -

If -accessor is set explicitly, a variable will provide for a pair of getter and setter
methods:

obj variableName set varValue

Sets variableName to varValue .

obj variableName get

Returns the current value of variableName .

obj variableName unset

Removes variableName , if existing, underlying the property.

The option value passed along -accessor sets the level of call protection for the
getter and setter methods: public , protected , or private . By default, no getter
and setter methods are created.

Turning on the switch -incremental provides a refined setter interface to the value
managed by the variable. First, setting -incremental implies requesting -
accessor (public by default, if not specified explicitly). Second, the managed
value will be considered a valid Tcl list. A multiplicity of 1..* is set by default, if not
specified explicitly as part of spec (see above). Third, to manage this list value
element-wise (incrementally), two additional setter operations become available:

obj variableName add element ? index ?

Adding element to the managed list value, at the list position given by index
(by default: 0).

obj variableName delete elementPattern

Removing one or multiple elements from the managed list value which match
elementPattern . elementPattern can contain matching characters (see
string match).

By setting -configurable to true , the variable can be accessed and modified via
cget and configure , respectively. If false (the default), the interface based on
cget and configure will not become available. In this case, and provided that -
accessor is set, the variable can be accessed and modified via the getter/setter
methods. Alternatively, the underlying Tcl variable, which is represented by the
variable, can always be accessed and modified directly, e.g., using eval . By
default, -configurable is false .

A variable becomes implemented by a slot object under any of the following
conditions:

• -configurable equals true .

• -accessor is one of public , protected , or private .

• -incremental is turned on.

• -initblock is a non-empty string.

Provided a slot object managing the variable is to be created, a custom class
className from which this slot object is to be instantiated can be set using -
class . The default value is ::nx::VariableSlot .

Methods for Instances of nx::Class

- 14 -

Using -initblock , an optional Tcl script can be defined which becomes passed
into the initialization procedure (see configure) of the variable's slot object. See
also initBlock for create and new .

OBJECT LIFE CYCLE

nx::Class provides means to control important stages through which an NX object passes
between and including its creation and its destruction: allocation, recreation, deallocation.

/cls/->create(/instance/)
.---------------. exists? [false] .----------------. .-------------------.

---->|Class::create()|----><>---------------->|Class::__alloc()|-----------><>---->|Object::configure()|
`---------------' | (1) `----------------' ^ (3) `---------+---------'

[true] | | | (4)
| .-------------------. | .------------------.
`->|Class::__recreate()|-------------------------' |/instance/->init()|

(2) `-------------------' `------------------'
/instance/->destroy()

.-----------------. .------------------.
---->|Object::destroy()|---->|Class::__dealloc()|

`-----------------' (5) `------------------'

Object creation is controlled by the factory method create, provided by nx::Class to its
instance cls. create produces a new object instance as an instance of cls in a number of steps.

1. If instance does not represent an existing object, an internal call to __alloc, provided
by nx::Class , runs the allocation procedure for a fresh instance of cls.

2. If instance corresponds to an existing object, the recreation procedure is triggered by
calling __recreate defined by nx::Class .

3. The newly allocated or recreated object instance is then configured by dispatching
configure, provided by nx::Object , which consumes the configuration options
passed into create. This will establish the instance's initial state, e.g. by setting object
variables and object relations according to the configuration options and
corresponding default values.

4. Finally, the initialization method init is dispatched, if available for instance. init can be
defined by cls on behalf of its instance instance, e.g. to lay out a class-specific
initialisation behaviour.

% nx::Class create Foo {:property x}
% Foo method init {} {set :y [expr {${:x} + 1}]}
% Foo public method bar {} {return ${:y}}
% Foo create f1 -x 101
% f1 cget -x
101
% f1 bar
102

Alternatively, the object instance may define an per-object init on its own. A per-object
init can be chained to a class-level init using nx::next , just like a regular method.

Note that the definition of an init method must contain an empty parameter
specification, since init is always called with an empty argument list.

Object destruction, such as triggered by an application-level destroy call (5), is finalized by
__dealloc offerd by nx::Class .

Object Life Cycle

- 15 -

In the following, the three built-in procedures --- allocation, recreation, and deallocation --- are
explained:

• Allocation: __alloc creates a blank object instance as an instance of cls and returns
the fully-qualified instance. __alloc is primarily used internally by create to allocate a
Tcl memory storage for instance and to register instance with the Tcl interpreter as a
new command.

• Recreation: Recreation is the NX scheme for resolving naming conflicts between
objects: An object is requested to be created using create or new while an object of
an identical object name, e.g. instance, already exists:

% Object create Bar
::Bar
% Object create Bar; # calls Object->__recreate(::Bar, ...)
::Bar

In such a situation, the built-in __recreate first unsets the object state (i.e., Tcl
variables held by the object) and removes relations of the object under recreation with
other objects. Then, second, standard object initialization is performed by calling
configure and init, if any.

Alternatively, recreation will be performed as a sequence of destroy and create calls
in the following recreation scenarios:

• An existing class is requested to be recreated as an object.

• An existing object is requested to be recreated as a class.

% Object create Bar
::Bar
% Class create Bar; # calls Bar->destroy() & Class::create(::Bar, ...)

• An object of an object system other than NX (e.g. XOTcl2) is asked to be
recreated.

• Deallocation: __dealloc marks an instance instance of cls for deletion by returning its
Tcl memory representation to the Tcl memory pool and by unregistering the
corresponding Tcl command with the Tcl interpreter.

Beware that __dealloc does not necessarily cause the object to be deleted
immediately. Depending on the lifecycle of the object's environment (e.g. the Tcl interp
interpreter, the containing namespace) and on call references down the callstack, the
actual memory freeing/returning operation may occur at a later point.

The three methods __alloc, __recreate, and __dealloc are internally provided and internally
called. By default, they are not part of the method interface of cls and cannot be called directly
by clients of cls. In addition, __alloc, __recreate, and __dealloc are protected from redefinition
by a script.

To extend or to replace the built-in allocation, recreation, and deallocation procedure, the
methods __alloc, __recreate, and __dealloc can be refined by providing a custom method
implementation:

• as a per-object method of cls;

• as a method of a per-object mixin class extending cls;

• as a method of a per-class mixin class extending nx::Class ;

Object Life Cycle

- 16 -

• as a method of a subclass specializing nx::Class , from which cls is to be
instantiated.

This custom implementation can redirect to the built-in __alloc, __recreate, and __dealloc,
respectively, by using nx::next . By providing such a custom implementation, __alloc,
__recreate, and __dealloc, respectively, become available as callable methods of cls:

cls __alloc instance

cls __recreate instance ? arg ...?

cls __dealloc instance

COPYRIGHT

Copyright © 2014 Stefan Sobernig <stefan.sobernig@wu.ac.at>, Gustaf Neumann
<gustaf.neumann@wu.ac.at>; available under the Creative Commons Attribution 3.0 Austria
license (CC BY 3.0 AT).

Copyright

- 17 -

	nx::Class(3) 2.0 Class ""
	Name
	Table Of Contents
	Synopsis
	Description
	Configuration Options for Instances of nx::Class
	Methods for Instances of nx::Class
	Object Life Cycle
	Copyright

