
nx::Object(3) 2.0 Object ""

NAME

nx::Object - API reference of the base class in the NX object system

TABLE OF CONTENTS

Table Of Contents
Synopsis
Description
Configuration Options for Instances of nx::Object
Methods for Instances of nx::Object
Object Self-Reference
Copyright

SYNOPSIS

nx::Object create obj ?-object-mixins mixinSpec? ?-class newClassName? ?-
object-filters filterSpec? ?initBlock?
nx::Object new ?-object-mixins mixinSpec? ?-class newClassName? ?-
object-filters filterSpec? ?initBlock?
obj ?public | private | protected? object alias methodName ?-returns
valueChecker? ?-frame object | method? cmdName
obj cget configurationOption
obj configure ?configurationOption value ...?
obj contains ?-withnew trueFalse? ?-object objectName? ?-class className?
cmds
obj copy newObjectName
obj delete object feature arg
obj destroy
obj eval arg ?arg ...?
obj object filters submethod ?arg ...?
obj ?public | protected | private? object forward methodName ?-prefix
prefixName? ?-frame object? ?-returns valueChecker? ?-verbose? ?target?
?arg ...?
obj info children ?-type className? ?pattern?
obj info class
obj info has ?mixin | namespace | type? ?arg ...?
obj info lookup submethod ?arg ...?
obj info name
obj info info ?-asList?
obj info object filters ?-guards? ?pattern?
obj info object method option methodName
obj info object methods ?-callprotection level? ?-type methodType? ?-path?
?namePattern?
obj info object mixins ?-guards? ?pattern?
obj info object slots ?-type className? ?pattern?
obj info object variables ?pattern?
obj info parent
obj info precedence ?-intrinsic? ?pattern?
obj info variable option handle
obj info vars ?pattern?

Name

- 1 -

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

obj ?public | protected | private? object method name parameters ?-
checkalways? ?-returns valueChecker? body
obj move newObjectName
obj object mixins submethod ?arg ...?
obj object property ?-accessor public | protected | private? ?-configurable
trueFalse? ?-incremental? ?-class className? ?-nocomplain? spec
?initBlock?
obj require namespace
obj require ?public | protected | private? object method methodName
obj unknown unknownMethodName ?arg ...?
obj object variable ?-accessor public | protected | private? ?-incremental? ?-
class className? ?-configurable trueFalse? ?-initblock script? ?-
nocomplain? spec ?defaultValue?

DESCRIPTION

nx::Object is the base class of the NX object system. All objects defined in NX are (direct or
indirect) instances of this base class. The methods provided by the nx::Object base class
are available to all objects and to all classes defined in NX.

+---------+
| ::nx::* |
+---------+--------------------------------------Y
| |
| +---------+ instance of +----------+ |
		<....................		
	Class		Object	
	>		
+----+----+ subclass of +-----+----+				
^ ^ ^				

instance.|...........................|....|......./
of | | |

+-----+-----+ subclass of | | instance
| |.....................| | of
| /cls/ | (by default) |
| | |
+-----------+ |

^ |
instance |.............(xor)..............|

of | +-----------+ |
|.........| |..........|

| /obj/ |
| |
+-----------+

NX allows for creating and for using objects (e.g. obj) which are instantiated from the base
class nx::Object directly. Typical use cases are singletons and anonymous, inline objects. In
such use cases, NX does not require creating an intermediate application class (e.g. cls), which
specializes the base class nx::Object by default, beforehand.

Objects (e.g. obj) which are creating by instantiating a previously defined application class (e.g.
cls) are indirect instances of nx::Object .

Direct instances of nx::Object can be created as follows:

Description

- 2 -

nx::Object create obj ? -object-mixins mixinSpec ? ? -class newClassName ?
? -object-filters filterSpec ? ? initBlock ?

To create a direct instance of nx::Object having an explicit name obj , use create
on nx::Object . Note that create is defined by nx::Class and is available to
nx::Object being an instance of nx::Class . This way, singleton objects can be

created, for example.

nx::Object new ? -object-mixins mixinSpec ? ? -class newClassName ? ? -
object-filters filterSpec ? ? initBlock ?

To create a direct instance of nx::Object having an automatically assigned, implict
object name, use new on nx::Object . Note that new is defined by nx::Class and is
available to nx::Object being an instance of nx::Class . Using new allows for
creating anonymous, inline objects, for example.

The configuration options for direct and indirect instances of nx::Object , which can be
passed when calling create and new, are documented in the subsequent section.

CONFIGURATION OPTIONS FOR INSTANCES OF NX::OBJECT

Configuration options can be used for configuring objects during their creation by passing the
options as non-positional arguments into calls of new and create (see nx::Class). An
existing object can be queried for its current configuration using cget and it can be re-
configured using configure. Legal configuration options are:

-class ? className ?

Retrieves the current class of the object or sets the object's class to className , if
provided.

-object-filters ? filterMethods ?

Retrieves the list of currently active per-object filter methods or sets a list of per-object
filter methods, if filterMethods is provided.

-object-mixins ? mixinSpecs ?

If mixinSpecs is not specified, retrieves the list of currently active per-object mixin
specifications. If mixinSpecs is specified, sets a list of per-object mixin specifications to
become active. mixin classes are returned or set in terms of a list of mixin specifications.

METHODS FOR INSTANCES OF NX::OBJECT

alias

obj ? public | private | protected ? object alias methodName ? -returns
valueChecker ? ? -frame object | method ? cmdName

Define an alias method for the given object. The resulting method registers a pre-
existing Tcl command cmdName under the (alias) name methodName with the
object. If cmdName refers to another method , the corresponding argument should
be a valid method handle. If a Tcl command (e.g., a proc), the argument should be
a fully qualified Tcl command name. If aliasing a subcommand (e.g., array
exists) of a Tcl namespace ensemble (e.g., array), cmdName must hold the fully
qualified subcommand name (and not the ensemble name of the subcommand).

Configuration Options for Instances of nx::Object

- 3 -

As for a regular object method , -returns allows for setting a value checker on
the values returned by the aliased command cmdName .

When creating an alias method for a C-implemented Tcl command (i.e., command
defined using the Tcl/NX C-API), -frame sets the scope for variable references
used in the aliased command. If the provided value is object , then variable
references will be resolved in the context of the called object, i.e., the object upon
which the alias method is invoked, as if they were object variables. There is no need
for using the colon-prefix notation for identifying object variables. If the value is
method , then the aliased command will be executed as a regular method call. The
command is aware of its called-object context; i.e., it can resolve ::nx::self . In
addition, the alias method has access to the method-call context (e.g., nx::next).
If -frame is omitted, and by default, the variable references will resolve in the
context of the caller of the alias method.

cget

obj cget configurationOption

The method is used to obtain the current value of configurationOption for obj .
The configuration options available for querying through cget are determined by
the configurable properties defined by the class hierarchy of obj . The queriable
configuration options for obj can be obtained by calling info configure . The
configurationOption can be set and modified using configure .

% nx::Object create obj
::obj
% ::obj info configure
?-object-mixins /mixinreg .../? ?-class /class/? ?-object-filters /filterreg .../? ?/__initblock/?
% ::obj cget -class
::nx::Object

configure

obj configure ? configurationOption value ...?

This method sets configuration options on an object. The configuration options
available for setting on obj are determined by the configurable properties defined
by the class hierarchy of obj . The settable configuration options for obj can be
obtained by calling info configure . Furthermore, configure is also called
during object construction. Under object construction, it receives the arguments
passed into calls of create and new . Options set using configure can be
retrieved using cget .

% nx::Class create Foo {:property x}
::Foo
% Foo create f1 -x 101
::f1
% f1 cget -x
101
% f1 configure -x 200
% f1 cget -x
200

Methods for Instances of nx::Object

- 4 -

contains

obj contains ?-withnew trueFalse ? ?-object objectName ? ?-class
className ? cmds

This method acts as a builder for nested object structures. Object and class
construction statements passed to this method as its last argument cmds are
evaluated in a way so that the receiver object obj becomes the parent of the newly
constructed objects and classes. This is realized by setting explicitly the namespace
for constructing relatively named objects. Fully qualified object names in cmds
evade the nesting.

-withnew requests the automatic rescoping of objects created using new so that
they become nested into the receiver object obj , rather than being created in the
default namespace for autonamed objects (i.e., ::nsf). If turned off, autonamed
objects do not become children of obj .

The parent object objectName to be used instead of obj can be specified using -
object . If this explicitly set parent object does not exist prior to calling contains , it
will be created on the fly as a direct instance of nx::Object . Alternatively, using -
class , a class className other than nx::Object for the on-the-fly creation of
objectName can be provided.

% nx::Class create Window {
:contains {

#
Become children of Window, implicitly
#
nx::Class create Header; # Window::Header
nx::Object create Panel; # Window::Panel

}
#
Explicitly declared a child of Window using [self]
#
nx::Class create [self]::Slider; # Window::Slider
#
Fully-qualified objects do not become nested
#
nx::Class create ::Door; # ::Door

}
::Window
% ::Window info children
::Window::Panel ::Window::Header ::Window::Slider

copy

obj copy newObjectName

Creates a full and deep copy of a source object obj . The object's copy
newObjectName features all structural and behavioral properties of the source

object, including object variables, per-object methods, nested objects, slot objects,
namespaces, filters, mixins, and traces.

delete

obj delete object feature arg

This method serves as the equivalent to Tcl's rename for removing structural
(properties, variables) and behavioral features (methods) of the object:

Methods for Instances of nx::Object

- 5 -

obj delete object property propertyName

obj delete object variable variableName

obj delete object method methodName

Removes a property propertyName , variable variableName , and method
methodName , respectively, previously defined for the scope of the object.

delete object method can be equally used for removing regular methods (see
object method), an alias method (see object alias), and a forwarder method

(see object forward).

destroy

obj destroy

This method allows for explicitly destructing an object obj , potentially prior to obj
being destroyed by the object system (e.g. during the shutdown of the object system
upon calling exit):

[nx::Object new] destroy

By providing a custom implementation of destroy , the destruction procedure of
obj can be customized. Typically, once the application-specific destruction logic

has completed, a custom destroy will trigger the actual, physical object destruction
via next .

% [nx::Object create obj {
:public method destroy {} {

puts "destroying [self]"
next; # physical destruction

}
}] destroy
destroying ::obj

A customized object-desctruction scheme can be made shared between the
instances of a class, by defining the custom destroy for an application class:

% nx::Class create Foo {
:method destroy {} {

puts "destroying [self]"
next; # physical destruction

}
}
::Foo
% Foo create f1
::f1
% f1 destroy
destroying ::f1

Physical destruction is performed by clearing the in-memory object storage of obj .
This is achieved by passing obj into a call to dealloc provided by nx::Class .
A near, scripted equivalent to the C-implemented destroy provided by
nx::Object would look as follows:

Methods for Instances of nx::Object

- 6 -

% Object method destroy {} {
[:info class] dealloc [self]

}

Note, however, that destroy is protected against application-level redefinition.
Trying to evaluate the above script snippet yields:

refuse to overwrite protected method 'destroy'; derive e.g. a sub-class!

A custom destroy must be provided as a refinement in a subclass of nx::Object
or in a mixin class.

eval

obj eval arg ? arg ...?

Evaluates a special Tcl script for the scope of obj in the style of Tcl's eval . There
are, however, notable differences to the standard eval : In this script, the colon-
prefix notation is available to dispatch to methods and to access variables of obj .
Script-local variables, which are thrown away once the evaluation of the script has
completed, can be defined to store intermediate results.

% nx::Object create obj {
:object property {bar 1}
:public object method foo {x} { return $x }

}
::obj
% ::obj eval {

set y [:foo ${:bar}]
}
1

filters

obj object filters submethod ? arg ...?

Accesses and modifies the list of methods which are registered as filters with obj
using a specific setter or getter submethod :

obj object filters add spec ? index ?

Inserts a single filter into the current list of filters of obj . Using index , a
position in the existing list of filters for inserting the new filter can be set. If
omitted, index defaults to the list head (0).

obj object filters clear

Removes all filters from obj and returns the list of removed filters. Clearing is
equivalent to passing an empty list for filterSpecList to object filter
set .

obj object filters delete ? -nocomplain ? specPattern

Removes a single filter from the current list of filters of obj whose spec
matches specPattern . specPattern can contain special matching chars
(see string match). object filters delete will throw an error if there is
no matching filter, unless -nocomplain is set.

Methods for Instances of nx::Object

- 7 -

obj object filters get

Returns the list of current filter specifications registered for obj .

obj object filters guard methodName ? expr ?

If expr is specified, registers a guard expression expr with a filter
methodName . This requires that the filter methodName has been previously

set using object filters set or added using object filters add .
expr must be a valid Tcl expression (see expr). An empty string for expr

will clear the currently registered guard expression for filter methodName .

If expr is omitted, returns the guard expression set on the filter methodName
defined for obj . If none is available, an empty string will be returned.

obj object filters methods ? pattern ?

If pattern is omitted, returns all filter names which are defined by obj . By
specifying pattern , the returned filters can be limited to those whose names
match patterns (see string match).

obj object filters set filterSpecList

filterSpecList takes a list of filter specs, with each spec being itself either
a one-element or a two-element list: methodName ?-guard guardExpr ?.
methodName identifies an existing method of obj which becomes registered

as a filter. If having three elements, the third element guardExpr will be stored
as a guard expression of the filter. This guard expression must be a valid Tcl
expression (see expr). expr is evaluated when obj receives a message to
determine whether the filter should intercept the message. Guard expressions
allow for realizing context-dependent or conditional filter composition.

Every methodName in a spec must resolve to an existing method in the scope of
the object. To access and to manipulate the list of filters of obj , cget | configure
-object-filters can also be used.

forward

obj ? public | protected | private ? object forward methodName ? -
prefix prefixName ? ? -frame object ? ? -returns valueChecker ? ? -
verbose ? ? target ? ? arg ...?

Define a forward method for the given object. The definition of a forward method
registers a predefined, but changeable list of forwarder arguments under the
(forwarder) name methodName . Upon calling the forward method, the forwarder
arguments are evaluated as a Tcl command call. That is, if present, target is
interpreted as a Tcl command (e.g., a Tcl proc or an object) and the remainder of
the forwarder arguments arg as arguments passed into this command. The actual
method arguments to the invocation of the forward method itself are appended to the
list of forwarder arguments. If target is omitted, the value of methodName is
implicitly set and used as target . This way, when providing a fully-qualified Tcl
command name as methodName without target , the unqualified methodName
(namespace tail) is used as the forwarder name; while the fully-qualified one
serves as the target .

As for a regular object method , -returns allows for setting a value checker on
the values returned by the resulting Tcl command call. When passing object to -
frame , the resulting Tcl command is evaluated in the context of the object receiving

Methods for Instances of nx::Object

- 8 -

the forward method call. This way, variable names used in the resulting execution of
a command become resolved as object variables.

The list of forwarder arguments arg can contain as its elements a mix of literal
values and placeholders. Placeholders are prefixed with a percent symbol (%) and
substituted for concrete values upon calling the forward method. These placeholders
allow for constructing and for manipulating the arguments to be passed into the
resulting command call on the fly:

• %method becomes substituted for the name of the forward method, i.e.
methodName .

• %self becomes substituted for the name of the object receiving the call of
the forward method.

• %1 becomes substituted for the first method argument passed to the call of
forward method. This requires, in turn, that at least one argument is passed
along with the method call.

Alternatively, %1 accepts an optional argument defaults : { %1
defaults }. defaults must be a valid Tcl list of two elements. For the

first element, %1 is substituted when there is no first method argument
which can be consumed by %1 . The second element is inserted upon
availability of a first method argument with the consumed argument being
appended right after the second list element. This placeholder is typically
used to define a pair of getter/setter methods.

• { %@ index value } becomes substituted for the specified value at
position index in the forwarder-arguments list, with index being either a
positive integer, a negative integer, or the literal value end (such as in Tcl's
lindex). Positive integers specify a list position relative to the list head,

negative integers give a position relative to the list tail. Indexes for
positioning placeholders in the definition of a forward method are evaluated
from left to right and should be used in ascending order.

Note that value can be a literal or any of the placeholders (e.g.,
%method , %self). Position prefixes are exempted, they are evaluated as
% cmdName -placeholders in this context.

• { %argclindex list } becomes substituted for the nth element of the
provided list , with n corresponding to the number of method arguments
passed to the forward method call.

• %% is substituted for a single, literal percent symbol (%).

• % cmdName is substituted for the value returned from executing the Tcl
command cmdName . To pass arguments to cmdName , the placeholder
should be wrapped into a Tcl list : { % cmdName ? arg ...?}.

Consider using fully-qualified Tcl command names for cmdName to avoid
possible name conflicts with the predefined placeholders, e.g., %self vs.
% ::nx::self .

To disambiguate the names of subcommands or methods, which potentially become
called by a forward method, a prefix prefixName can be set using -prefix . This
prefix is prepended automatically to the argument following target (i.e., a second
argument), if present. If missing, -prefix has no effect on the forward method call.

To inspect and to debug the conversions performed by the above placeholders,
setting the switch -verbose will have the command list to be executed (i.e., after

Methods for Instances of nx::Object

- 9 -

substitution) printed using ::nsf::log (debugging level: notice) upon calling the
forward method.

info

obj info children ? -type className ? ? pattern ?

Retrieves the list of nested (or aggregated) objects of obj . The resulting list
contains the fully qualified names of the nested objects. If -type is set, only nested
objects which are direct or indirect instances of class className are returned.
Using pattern , only nested objects whose names match pattern are returned.
The pattern string can contain special matching characters (see string match).
This method allows for introspecting on contains .

obj info class

Returns the fully qualified name of the current nx::Class of obj . In case of re-
classification (see configure), the returned class will be different from the
nx::Class from which obj was originally instantiated using create or new .

obj info has ? mixin | namespace | type ? ? arg ...?

obj info method has mixin className

Verifies whether obj has a given nx::Class className registered as a
mixin class (returns: true) or not (returns: false).

obj info has namespace

Checks whether the object has a companion Tcl namespace (returns: true) or
not (returns: false). The namespace could have been created using, for
example, object require namespace .

obj info has type className

Tests whether the nx::Class className is a type of the object (returns:
true) or not (returns: false). That is, the method checks whether the object
is a direct instance of className or an indirect instance of one of the
superclasses of className .

obj info lookup submethod ? arg ...?

A collection of submethods to retrieve structural features (e.g. configuration options,
slot objects) and behavioral features (e.g. methods, filters) available for obj from
the perspective of a client to obj . Features provided by obj itself and by the
classes in its current linearisation list are considered.

obj info lookup configure parameters ? namePattern ?

Returns all configuration options available for obj as a list of method-
parameter definitions. They can be used, for example, to define a custom
method refinement for configure . The returned configuration options can be
limited to those whose names match pattern (see string match).

obj info lookup configure syntax

Returns all configuration options available for obj as a concrete-syntax
description to be used in human-understandable messages (e.g. errors or
warnings, documentation strings).

Methods for Instances of nx::Object

- 10 -

obj info lookup filter name

Returns the method handle for the filter method name , if currently registered. If
there is no filter name registered, an empty string is returned.

obj info lookup filters ? -guards ? ? namePattern ?

Returns the method handles of all filters which are active on obj . By turning
on the switch -guards , the corresponding guard expressions, if any, are also
reported for each filter as a three-element list: methodHandle -guard
guardExpr . The returned filters can be limited to those whose names match
namePattern (see string match).

obj info lookup method name

Returns the method handle for a method name if a so-named method can be
invoked on obj . If there is no method name , an empty string is returned.

obj info lookup methods ? namePattern ?

Returns the names of all methods (including aliases and forwarders) which can
be invoked on obj . The returned methods can be limited to those whose
names match namePattern (see string match).

obj info lookup mixins ? -guards ? ? namePattern ?

Returns the object names of all mixin classes which are currently active on
obj . By turning on the switch -guards , the corresponding guard

expressions, if any, are also reported as a three-element list for each mixin
class: className -guard guardExpr . The returned mixin classes can be
limited to those whose names match namePattern (see string match).

obj info lookup slots ? -type className ? ? -source all | application |
system? ? namePattern ?

Returns the command names of all slot objects responsible for managing
properties, variables, and relations of obj . The returned slot objects can be
limited according to any or a combination of the following criteria: First, slot
objects can be filtered based on their command names matching
namePattern (see string match). Second, -type allows one to select

slot objects which are instantiated from a subclass className of nx::Slot
(default: nx::Slot) . Third, -source restricts slot objects returned according
to their provenance in either the NX system classes or the application classes
present in the linearisation list of obj (default: all).

To extract details of each slot object, use the info submethods available for
each slot object.

obj info lookup variables

Returns the command names of all slot objects responsible for managing
properties and variables of obj , if provided by obj or the classes in the
linearisation list of obj .

This is equivalent to calling: obj info lookup slots -type ::nx::VariableSlot
-source all ? namePattern ?.

Methods for Instances of nx::Object

- 11 -

To extract details of each slot object, use the info submethods available for
each slot object.

obj info name

Returns the unqualified name of an object, i.e., the object name without any
namespace qualifiers.

obj info info ? -asList ?

Returns the available submethods of the info method ensemble for obj , either as
a pretty-printed string or as a Tcl list (if the switch -asList is set) for further
processing.

obj info object filters ? -guards ? ? pattern ?

If pattern is omitted, returns all filter names which are defined by obj . By turning
on the switch -guards , the corresponding guard expressions, if any, are also
reported along with each filter as a three-element list: filterName -guard
guardExpr . By specifying pattern , the returned filters can be limited to those

whose names match patterns (see string match).

obj info object method option methodName

This introspection submethod provides access to the details of methodName
provided by obj . Permitted values for option are:

• args returns a list containing the parameter names of methodName , in
order of the method-parameter specification.

• body returns the body script of methodName .

• definition returns a canonical command list which allows for (re-)define
methodName .

• definitionhandle returns the method handle for a submethod in a
method ensemble from the perspective of obj as method provider.
methodName must contain a complete method path.

• exists returns 1 if there is a methodName provided by obj , returns 0
otherwise.

• handle returns the method handle for methodName .

• origin returns the aliased command if methodName is an alias method,
or an empty string otherwise.

• parameters returns the parameter specification of methodName as a list
of parameter names and type specifications.

• registrationhandle returns the method handle for a submethod in a
method ensemble from the perspective of the method caller. methodName
must contain a complete method path.

• returns gives the type specification defined for the return value of
methodName .

• submethods returns the names of all submethods of methodName , if
methodName is a method ensemble. Otherwise, an empty string is

returned.

Methods for Instances of nx::Object

- 12 -

• syntax returns the method parameters of methodName as a concrete-
syntax description to be used in human-understandable messages (e.g.,
errors or warnings, documentation strings).

• type returns whether methodName is a scripted method, an alias method,
a forwarder method, or a setter method.

obj info object methods ? -callprotection level ? ? -type methodType ?
? -path ? ? namePattern ?

Returns the names of all methods defined by obj . Methods covered include those
defined using object alias and object forward . The returned methods can
be limited to those whose names match namePattern (see string match).

By setting -callprotection , only methods of a certain call protection level
(public , protected , or private) will be returned. Methods of a specific type can
be requested using -type . The recognized values for methodType are:

• scripted denotes methods defined using object method ;

• alias denotes alias methods defined using object alias ;

• forwarder denotes forwarder methods defined using object forward ;

• setter denotes methods defined using ::nsf::setter ;

• all returns methods of any type, without restrictions (also the default
value);

obj info object mixins ? -guards ? ? pattern ?

If pattern is omitted, returns the object names of the mixin classes which extend
obj directly. By turning on the switch -guards , the corresponding guard

expressions, if any, are also reported along with each mixin as a three-element list:
className -guard guardExpr . The returned mixin classes can be limited to those

whose names match patterns (see string match).

obj info object slots ? -type className ? ? pattern ?

If pattern is not specified, returns the object names of all slot objects defined by
obj . The returned slot objects can be limited according to any or a combination of

the following criteria: First, slot objects can be filtered based on their command
names matching pattern (see string match). Second, -type allows one to
select slot objects which are instantiated from a subclass className of nx::Slot
(default: nx::Slot).

obj info object variables ? pattern ?

If pattern is omitted, returns the object names of all slot objects provided by obj
which are responsible for managing properties and variables of obj . Otherwise,
only slot objects whose names match pattern are returned.

This is equivalent to calling: obj info object slots -type
::nx::VariableSlot pattern .

To extract details of each slot object, use the info submethods available for each
slot object.

Methods for Instances of nx::Object

- 13 -

obj info parent

Returns the fully qualified name of the parent object of obj , if any. If there is no
parent object, the name of the Tcl namespace containing obj (e.g. "::") will be
reported.

obj info precedence ? -intrinsic ? ? pattern ?

Lists the classes from which obj inherits structural (e.g. properties) and behavioral
features (e.g. methods) and methods, in order of the linearisation scheme in NX. By
setting the switch -intrinsic , only classes which participate in superclass/
subclass relationships (i.e., intrinsic classes) are returned. If a pattern is provided
only classes whose names match pattern are returned. The pattern string can
contain special matching characters (see string match).

obj info variable option handle

Retrieves selected details about a variable represented by the given handle . A
handle can be obtained by querying obj using info object variables and
info lookup variables . Valid values for option are:

• name returns the variable name.

• parameter returns a canonical parameter specification eligible to (re-
)define the given variable (e.g. using object variable) in a new context.

• definition returns a canonical representation of the definition command
used to create the variable in its current configuration.

obj info vars ? pattern ?

Yields a list of Tcl variable names created and defined for the scope of obj , i.e.,
object variables. The list can be limited to object variables whose names match
pattern . The pattern string can contain special matching characters (see
string match).

method

obj ? public | protected | private ? object method name parameters ? -
checkalways ? ? -returns valueChecker ? body

Defines a scripted method methodName for the scope of the object. The method
becomes part of the object's signature interface. Besides a methodName , the
method definition specifies the method parameters and a method body .

parameters accepts a Tcl list containing an arbitrary number of non-positional
and positional parameter definitions. Each parameter definition comprises a
parameter name, a parameter-specific value checker, and parameter options.

The body contains the method implementation as a script block. In this body script,
the colon-prefix notation is available to denote an object variable and a self call. In
addition, the context of the object receiving the method call (i.e., the message) can
be accessed (e.g., using nx::self) and the call stack can be introspected (e.g.,
using nx::current).

Optionally, -returns allows for setting a value checker on values returned by the
method implementation. By setting the switch -checkalways , value checking on
arguments and return value is guaranteed to be performed, even if value checking is
temporarily disabled; see nx::configure).

Methods for Instances of nx::Object

- 14 -

A method closely resembles a Tcl proc , but it differs in some important aspects:
First, a method can define non-positional parameters and value checkers on
arguments. Second, the script implementing the method body can contain object-
specific notation and commands (see above). Third, method calls cannot be
intercepted using Tcl trace . Note that an existing Tcl proc can be registered as
an alias method with the object (see object alias).

move

obj move newObjectName

Effectively renames an object. First, the source object obj is cloned into a target
object newObjectName using copy . Second, the source object obj is destroyed
by invoking destroy . move is also called internally when rename is performed for
a Tcl command representing an object.

mixins

obj object mixins submethod ? arg ...?

Accesses and modifies the list of mixin classes of obj using a specific setter or
getter submethod :

obj object mixins add spec ? index ?

Inserts a single mixin class into the current list of mixin classes of obj . Using
index , a position in the existing list of mixin classes for inserting the new mixin

class can be set. If omitted, index defaults to the list head (0).

obj object mixins classes ? pattern ?

If pattern is omitted, returns the object names of the mixin classes which
extend obj directly. By specifying pattern , the returned mixin classes can
be limited to those whose names match pattern (see string match).

obj object mixins clear

Removes all mixin classes from obj and returns the list of removed mixin
classes. Clearing is equivalent to passing an empty list for mixinSpecList to
object mixins set .

obj object mixins delete ? -nocomplain ? specPattern

Removes a mixin class from a current list of mixin classes of obj whose spec
matches specPattern . specPattern can contain special matching chars
(see string match). object mixins delete will throw an error if there is
no matching mixin class, unless -nocomplain is set.

obj object mixins get

Returns the list of current mixin specifications.

obj object mixins guard className ? expr ?

If expr is specified, a guard expression expr is registered with the mixin
class className . This requires that the corresponding mixin class
className has been previously set using object mixins set or added

using object mixins add . expr must be a valid Tcl expression (see

Methods for Instances of nx::Object

- 15 -

expr). An empty string for expr will clear the currently registered guard
expression for the mixin class className .

If expr is not specified, returns the active guard expression. If none is
available, an empty string will be returned.

obj object mixins set mixinSpecList

mixinSpecList represents a list of mixin class specs, with each spec being
itself either a one-element or a three-element list: className ?-guard
guardExpr ?. If having one element, the element will be considered the
className of the mixin class. If having three elements, the third element
guardExpr will be stored as a guard expression of the mixin class. This guard

expression will be evaluated using expr when obj receives a message to
determine if the mixin is to be considered during method dispatch or not. Guard
expressions allow for realizing context-dependent or conditional mixin
composition.

At the time of setting the mixin relation, that is, calling object mixins , every
className as part of a spec must be an existing instance of nx::Class . To

access and to manipulate the list of mixin classes of obj , cget | configure -
object-mixins can also be used.

__object_configureparameter

obj __object_configureparameter

Computes and returns the configuration options available for obj , to be consumed
as method-parameter specification by configure .

property

obj object property ? -accessor public | protected | private ? ? -
configurable trueFalse ? ? -incremental ? ? -class className ? ? -
nocomplain ? spec ? initBlock ?

Defines a property for the scope of the object. The spec provides the property
specification as a list holding at least one element or, maximum, two elements:
propertyName ? : typeSpec ? ? defaultValue ?. The propertyName is also

used as to form the names of the getter/setter methods, if requested (see -
accessor). It is, optionally, equipped with a typeSpec following a colon delimiter
which specifies a value checker for the values which become assigned to the
property. The second, optional element sets a defaultValue for this property.

If -accessor is set, a property will provide for a pair of getter and setter methods:

obj propertyName set value

Sets the property propertyName to value .

obj propertyName get

Returns the current value of property propertyName .

obj propertyName unset

Removes the value store of propertyName (e.g., an object variable), if
existing.

Methods for Instances of nx::Object

- 16 -

The option value passed along -accessor sets the level of call protection for the
generated getter and setter methods: public , protected , or private . By
default, no getter and setter methods are created.

Turning on the switch -incremental provides a refined setter interface to the value
managed by the property. First, setting -incremental implies requesting -
accessor (set to public by default, if not specified explicitly). Second, the
managed value will be considered a valid Tcl list. A multiplicity of 1..* is set by
default, if not specified explicitly as part of spec . Third, to manage this list value
element-wise (incrementally), two additional setter methods become available:

obj propertyName add element ? index ?

Adding element to the managed list value, at the list position given by index
(by default: 0).

obj propertyName delete elementPattern

Removing one or multiple elements from the managed list value which match
elementPattern . elementPattern can contain matching characters (see
string match).

By setting -configurable to true (the default), the property can be accessed
and modified through cget and configure , respectively. If false , no
configuration option will become available via cget and configure .

If neither -accessor nor -configurable are requested, the value managed by
the property will have to be accessed and modified directly. If the property manages
an object variable, its value will be readable and writable using set and eval .

A property becomes implemented by a slot object under any of the following
conditions:

• -configurable equals true (by default).

• -accessor is one of public , protected , or private .

• -incremental is turned on.

• initBlock is a non-empty string.

Assuming default settings, every property is realized by a slot object.

Provided a slot object managing the property is to be created, a custom class
className from which this slot object is to be instantiated can be set using -
class . The default value is ::nx::VariableSlot .

The last argument initBlock accepts an optional Tcl script which is passed into
the initialization procedure (see configure) of the property's slot object. See also
initBlock for create and new .

By default, the property will ascertain that no (potentially) pre-existing and equally
named object variable will be overwritten when defining the property. In case of a
conflict, an error exception is thrown:

% Object create obj { set :x 1 }
::obj
% ::obj object property {x 2}
object ::obj has already an instance variable named 'x'

Methods for Instances of nx::Object

- 17 -

If the switch -nocomplain is on, this check is omitted (continuing the above
example):

% ::obj object property -nocomplain {x 2}
% ::obj eval {set :x}
2

require

obj require namespace

Create a Tcl namespace named after the object obj . All object variables become
available as namespace variables.

obj require ? public | protected | private ? object method methodName

Attempts to register a method definition made available using
::nsf::method::provide under the name methodName with obj . The

registered method is subjected to default call protection (protected), if not set
explicitly.

unknown

obj unknown unknownMethodName ? arg ...?

This method is called implicitly whenever an unknown method is invoked.
unknownMethodName indicates the unresolvable method name, followed by the

remainder of the original argument vector as a number of arg of the indirected
method invocation.

variable

obj object variable ? -accessor public | protected | private ? ? -
incremental ? ? -class className ? ? -configurable trueFalse ? ? -
initblock script ? ? -nocomplain ? spec ? defaultValue ?

Defines a variable for the scope of the object. The spec provides the variable
specification: variableName ? : typeSpec ?. The variableName will be used to
name the underlying Tcl variable and the getter/setter methods, if requested (see -
accessor). spec is optionally equipped with a typeSpec following a colon
delimiter which specifies a value checker for the values managed by the variable.
Optionally, a defaultValue can be defined.

If -accessor is set explicitly, a variable will provide for a pair of getter and setter
methods:

obj variableName set varValue

Sets variableName to varValue .

obj variableName get

Returns the current value of variableName .

obj variableName unset

Removes variableName , if existing, underlying the property.

Methods for Instances of nx::Object

- 18 -

The option value passed along -accessor sets the level of call protection for the
getter and setter methods: public , protected , or private . By default, no getter
and setter methods are created.

Turning on the switch -incremental provides a refined setter interface to the value
managed by the variable. First, setting -incremental implies requesting -
accessor (public by default, if not specified explicitly). Second, the managed
value will be considered a valid Tcl list. A multiplicity of 1..* is set by default, if not
specified explicitly as part of spec (see above). Third, to manage this list value
element-wise (incrementally), two additional setter operations become available:

obj variableName add element ? index ?

Adding element to the managed list value, at the list position given by index
(by default: 0).

obj variableName delete elementPattern

Removing one or multiple elements from the managed list value which match
elementPattern . elementPattern can contain matching characters (see
string match).

By setting -configurable to true , the variable can be accessed and modified via
cget and configure , respectively. If false (the default), the interface based on
cget and configure will not become available. In this case, and provided that -
accessor is set, the variable can be accessed and modified via the getter/setter
methods. Alternatively, the underlying Tcl variable, which is represented by the
variable, can always be accessed and modified directly, e.g., using eval . By
default, -configurable is false .

A variable becomes implemented by a slot object under any of the following
conditions:

• -configurable equals true .

• -accessor is one of public , protected , or private .

• -incremental is turned on.

• -initblock is a non-empty string.

Provided a slot object managing the variable is to be created, a custom class
className from which this slot object is to be instantiated can be set using -
class . The default value is ::nx::VariableSlot .

Using -initblock , an optional Tcl script can be defined which becomes passed
into the initialization procedure (see configure) of the variable's slot object. See
also initBlock for create and new .

By default, the variable will ascertain that a pre-existing and equally named object
variable will not be overwritten when defining the variable. In case of a conflict, an
error exception is thrown:

% Object create obj { set :x 1 }
::obj
% ::obj object variable x 2
object ::obj has already an instance variable named 'x'

If the switch -nocomplain is on, this check is omitted (continuing the above
example):

Methods for Instances of nx::Object

- 19 -

% ::obj object variable -nocomplain x 2
% ::obj eval {set :x}
2

OBJECT SELF-REFERENCE

Objects are naturally recursive, with methods of an object ::obj frequently invoking other
methods in the same object ::obj and accessing ::obj 's object variables. To represent
these self-references effectively in method bodies, and dependening on the usage scenario, NX
offers two alternative notations for self-references: one based on a special-purpose syntax
token ("colon prefix"), the other based on the command nx::current .

Both, the colon-prefix notation and nx::current , may be used only in method bodies and
scripts passed to eval. If they appear anywhere else, an error will be reported. There are three
main use cases for self-references:

1. As a placeholder for the currently active object, nx::current can be used to
retrieve the object name.

2. Reading and writing object variables directly (i.e. without getter/setter methods in
place) require the use of variable names carrying the prefix : ("colon-prefix
notation"). Internally, colon-prefixed variable names are processed using Tcl's variable
resolvers. Alternatively, one can provide for getter/setter methods for object variables
(see property and variable).

3. Self-referential method calls can be defined via prefixing (:) the method names or,
alternatively, via nx::current . Internally, colon-prefixed method names are
processed using Tcl's command resolvers. The colon-prefix notation is recommended,
also because it has a (slight) performance advantage over nx::current which
requires two rather than one command evaluation per method call.

See the following listing for some examples corresponding to use cases 1--3:

Object create ::obj {
puts [current]; # 1) print name of currently active object ('::obj')
set :x 1; :object variable y 2; # 2) object variables
:public object method print {} {

set z 3; # 2.a) method-local variable
puts ${:x}-${:y}-$z; # 2.b) variable substitution using '$' and ':'
puts [set :x]-[set :y]-[set z]; # 2.c) reading variables using 'set'
set :x 1; incr :y; # 2.d) writing variables using 'set', 'incr', ...

}
:public object method show {} {
:print; # 3.a) self-referential method call using ':'
[current] print; # 3.b) self-referential method call using 'nx::current'
[current object] print; # 3.c) self-referential method call using 'nx::current object'

}
:show

}

COPYRIGHT

Copyright © 2014 Stefan Sobernig <stefan.sobernig@wu.ac.at>, Gustaf Neumann
<gustaf.neumann@wu.ac.at>; available under the Creative Commons Attribution 3.0 Austria
license (CC BY 3.0 AT).

Object Self-Reference

- 20 -

	nx::Object(3) 2.0 Object ""
	Name
	Table Of Contents
	Synopsis
	Description
	Configuration Options for Instances of nx::Object
	Methods for Instances of nx::Object
	Object Self-Reference
	Copyright

