File: tutorial2.html

package info (click to toggle)
nsf 2.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 13,208 kB
  • sloc: ansic: 32,687; tcl: 10,723; sh: 660; pascal: 176; javascript: 135; lisp: 41; makefile: 24
file content (5109 lines) | stat: -rw-r--r-- 199,476 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
	<TITLE>XOTcl - Tutorial</TITLE>
	<META NAME="AUTHOR" CONTENT="Gustaf Neumann and Uwe Zdun">
	<META NAME="DOCNUMBER" CONTENT="2.0.0">
	<META NAME="CHANGEDBY" CONTENT="Gustaf Neumann">
<STYLE>
BODY	{
    	font-family: Verdana, Arial, Helvetica, sans-serif;
    	font-weight: normal;
	background-color : white;
	color: black;
}
tt {
    	font-family: courier, monospace;
}
pre.code {
    	font-family: courier, monospace;
	PADDING-RIGHT: 10px;
	PADDING-LEFT: 10px;
	PADDING-BOTTOM: 10px;
	PADDING-TOP: 10px;
	BORDER: #cccccc 1px solid;
	BACKGROUND-COLOR: #FFFFF4;
	MARGIN-BOTTOM: 15px;
}
pre em {
    	/*font-family: cursive;*/
	color: #888888;
}
pre tt {
    	font-family: helvetica;
    	font-weight: 900;
}
pre it {
    	font-style: italic;
	color: green;
}
tt em {
    	font-family: cursive;
	color: #888888;
}
table {
      font-size: 80%;
}
span.fixme {
   color: red;
   border: solid 1px red;
   background-color: #ffaaaa;
   padding: 2px;
}
</STYLE>
</HEAD>
<BODY BGCOLOR="#ffffff">
<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055" STYLE="page-break-before: always">
	<TR>
		<TD WIDTH=75%>
			<P><FONT COLOR="#ffffff"><FONT FACE="Arial, Helvetica"><FONT SIZE=6>XOTcl
			- Tutorial - Index </FONT></FONT></FONT>
			</P>
		</TD>
		<TD>
			<IMG SRC="logo-100.jpg" NAME="Graphic1" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
	</TR>
</TABLE>
<p align=right>Version: 2.0.0</p>

<UL>
	<LI>
	<P STYLE="margin-bottom: 0in">
	  <A HREF="#introduction">Introduction</A>
	
	<UL>
		<LI><A HREF="#langOverview">Language Overview</A>
                <LI><A HREF="#stack"> Introductory Overview Example: Stack</A>
<ul>
  <LI><A href="#object-methods">Object specific methods</<>
  <li><A href="#refining-methods">Refining the behavior of objects and classes</<>
  <li><A href="#integer-stack">Stack of integers</a>
  <li><A href="#class-specific-method">Class specific methods</a>
</ul>
                <LI><A HREF="#soccerClub"> Introductory Overview Example: Soccer Club</A>
        </UL>
	</P>
	<P STYLE="margin-bottom: 0in">
	<LI><A HREF="#object_class_system">Object and Class System </A>
	</P>
	<LI><A HREF="#basic">Basic Functionalities</A> 
	<P STYLE="margin-bottom: 0in">
	<UL>
		<LI><A HREF="#object">Objects </A>
		<UL>
			<LI><A HREF="#data_on_obj">Data on Objects </A>
			<LI><A HREF="#obj_methods">Methods for Objects</A> 
			<LI><A HREF="#obj_info">Information about Objects</A> 
		</UL>
		<LI><P STYLE="margin-bottom: 0in"><A HREF="#classes">Classes </A>
		<UL>
			<LI><A HREF="#class_instance">Creating Classes and Deriving
		  Instances</A> 
			<LI><A HREF="#class_methods">Methods Defined in Classes</A> 
			<LI><A HREF="#class_info">Information about Classes</A> 
			<LI><A HREF="#class_inheritance">Inheritance</A>
			<LI><A HREF="#class_destroy">Destruction of Classes</A> 
			<LI><A HREF="#class_method_chaining">Method Chaining</A> 
		</UL>
		</P>
		<LI><A HREF="#class_dynamics">Dynamic Class and Superclass 
	      Relationships</A> 
		<LI><A HREF="#meta-classes">Meta-Classes</A>
                <LI><A HREF="#destroy-logic">Create, Destroy, and Recreate Methods</A>
	        <LI><A HREF="#non-pos-args">Methods with Non-Positional Arguments</A>
	</UL>
        </P>
	<LI><P STYLE="margin-bottom: 0in"><A HREF="#interceptors">Message
Interception Techniques</A>

        <UL>
                <LI><A HREF="#filter">Filter</A> 
                <LI><A HREF="#mixins">Mixin Classes</A> 
                <LI><A HREF="#precedence order">Precedence Order</A>
	        <LI><A HREF="#guards">Guards for Filters and Mixins</A>
                <LI><A HREF="#updateinterceptors">Querying, Setting, Altering Filter and Mixin Lists</A>
	        <LI><A HREF="#callstack_info">Querying Call-stack Information</A> 
        </UL>
      </P>
      <LI><A HREF="#slots">Slots</A>
	<UL>
	  <LI><A HREF="#system-slots">System Slots</A>
	  <LI><A HREF="#attribute-slots">Attribute Slots</A>
          <LI><A HREF="#setter">Setter and Getter Methods for Slots</A>
          <LI><A HREF="#parameter">Backward-compatible Short-Hand Notation
          for Attribute Slots</A>
          <LI><A HREF="#slot-experimental">Experimental Slot Features</A>
          <UL>
            <LI><A HREF="#value-checking">Value Checking</A>
            <LI><A HREF="#trace-commands">Init Commands and Value Commands for Slot Values</A>
          </UL>
	</UL>
	<P>
    
        <LI><A HREF="#nesting">Nested Classes and Dynamic Object Aggregations</A>
        <UL>
          <LI><A href="#nested-classes">Nested Classes</A>
          <LI><A href="#obj-agg">Dynamic Object Aggregations</A>
          <LI><A href="#nest-agg">Relationship between Class Nesting
          and Object Aggregation </A>
          <LI><A href="#contains">Simplified Syntax for Creating
          Nested Object Structures</A>
          <LI><A href="#copy-move">Copy/Move</A>
        </UL>
        <p>
        
        <LI><A HREF="#forwarding">Method Forwarding</A>
        
        <LI><A HREF="#assertions">Assertions</A>
	<LI><P STYLE="margin-bottom: 0in">
	  <A HREF="#additional-functionalities">Additional Functionalities</A> 
	<UL>
		<LI><A HREF="#abstract-classes">Abstract Classes</A> 
                <LI><A HREF="#autonames">Automatic Name Creation</A> 
                <LI><A HREF="#meta-data">Meta-Data</A>
	</UL>
	</P>
        <LI><A HREF="#cext">Integrating XOTcl 
	    Programs with C Extensions (such as Tk)</A> 
        <LI><A HREF="#references">References</A> 
</UL>

<!-- PAGE BREAK -->

<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055">
	<TR>
		<TD WIDTH=75%>
			<P><A NAME="introduction"></A><FONT COLOR="#ffffff"><FONT FACE="Arial, Helvetica"><FONT SIZE=6>Introduction
			</FONT></FONT></FONT>
			</P>
		</TD>
		<TD>
			<IMG SRC="logo-100.jpg" NAME="Graphic2" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
	</TR>
</TABLE>


<H2><A NAME="langOverview"></A>&#160;<BR>Language Overview
</H2>

<P>XOTcl <a href="#xotcl">[Neumann and Zdun 2000a]</a> is a successor
of the object-oriented scripting language OTcl <a
href="#otcl">[Wetherall and Lindblad 1995]</a> which itself was an
early highly flexible object oriented exitension of 
Tcl <a href="#tcl">[Ousterhout 1990]</a> (Tool Command Language).
XOTcl was so far released in more than 30 versions, is described in
its detail in more than 20 papers and serves as a basis for TclOO <a
href="#tcloo">[Donal ???]</a>. XOTcl 2.0 <a
href="#xotcl2">[Neumann and Sobernig 2009]</a>
extends the basic ideas of XOTcl 1.0 by providing support for
language-oriented programming and makes it easy to host several
object oriented languages by a common environment...


<P>XOTcl runs in the <tt>tclsh</tt> and provides a few extension
commands. These are offered via the Tcl namespaces <tt>::xotcl</tt>
and <tt>::xotcl2</tt>, and can be imported into the current namespace
to reduce typing and improve readability. All Tcl commands remain
available (and are also applicable on the extension constructs).  </P>

<P>A central property of Tcl is, that it uses strings solely for the
representation of data. Internally it uses an dynamic type system with
automatic conversion (which enables efficient type handling).  For
that reason all components (e.g. written in C) once integrated in Tcl
automatically fit together and the components can be reused in
unpredicted situations without change. The evolving <EM>component
frameworks</EM> provide a high degree of code reuse, rapid
application development, and ease of use. The application developer
may concentrate on the application task solely, rather than investing
efforts in fitting components together.  Therefore, in certain
applications scripting languages like Tcl are very useful for a fast
and high-quality development of software (see <a
href="#ousterhout">[Ousterhout 1998]</a> for more details).
</P>
<P>Tcl is equipped with appropriate functionalities for the easy
gluing of components, like dynamic typing, dynamic extensibility, and
read/write introspection. OTcl is an object-oriented extension to Tcl,
which encourages a Tcl-like programming style and is composed of
language constructs with properties similar to Tcl. It offers an
object-orientation with encapsulation of data and operation without
protection mechanisms and single and multiple inheritance.
Furthermore it enables to change the relationships dynamically, offers
read/write introspection, has a three level class system based on
meta-classes and offers method chaining. These abilities are
integrated in XOTcl with only slight changes to OTcl visible to the
programmer.
</P>
<P>Extended Object Tcl aims at complexity and adaptability issues that
may occur in context of large (object-oriented) software structures
and in the context of component glueing. In particular we added the
following support:
</P>
<UL>
	<LI><P STYLE="margin-bottom: 0in"><I>Filters</I> as a means of
	abstractions over method invocations to implement large program
	structures, like design patterns. 
	</P>
	<LI><P STYLE="margin-bottom: 0in"><I>Mixin Classes</I>, as a
	means to give an object or a classes' instances access to several different supplemental
	classes, which may be changed dynamically. 
	</P>
	<LI><P STYLE="margin-bottom: 0in"><I>Dynamic Object Aggregations</I>,
	to provide dynamic aggregations through nested namespaces. 
	</P>
	<LI><P STYLE="margin-bottom: 0in"><I>Nested Classes</I>, to reduce
	the interference of independently developed program structures. 
	</P>
	<LI><P STYLE="margin-bottom: 0in"><I>Assertions</I>, to reduce the
	interface and the reliability problems caused by dynamic typing and,
	therefore, to ease the combination of components. 
	</P>
	<LI><P STYLE="margin-bottom: 0in"><I>Forwarders</I>, to delegate
          calls efficiently to other objects or classes.
	</P>
  	<LI><P STYLE="margin-bottom: 0in"><I>Slots</I>, to manage values
          of instance variables with a common interface.
	</P> 
	<LI><P><I>Meta-data and Automatic Documentation</I>, to enhance self-documentation of objects
	and classes. 
	</P>
</UL>

<!-- PAGE BREAK -->

<P STYLE="margin-bottom: 0in"><BR>
</P>
<P ALIGN=CENTER STYLE="margin-bottom: 0in"><A NAME="features"></A><A NAME="1176"></A>
&#160;&#160; 
</P>

<P ALIGN=CENTER STYLE="margin-bottom: 0in"><STRONG>Figure 1:</STRONG>
Language Extensions of XOTcl <br><span class="fixme">new graphic,
extension of the features above, history with OTcl, XOTcl1, tcloo and
XOTcl2</span> </P>

<CENTER>
	<TABLE WIDTH=455 BORDER=0 CELLPADDING=2 CELLSPACING=0>
		<COL WIDTH=451>
		<TR>
			<TD WIDTH=451>
				<P><IMG SRC="features.gif" NAME="Graphic3" ALIGN=BOTTOM WIDTH=451 HEIGHT=378 BORDER=0></P>
			</TD>
		</TR>
	</TABLE>
</CENTER>

<H2><A NAME="stack"></A>&#160;<BR>Introductory Overview Example: Stack</H2>
        
<p>
To give you an impression of the language before we go into the details of the extended language constructs, we present in this section a simple, classical example, familiar to many from introductory programming courses: the <em>Stack</em> example. In the later section, we will present the <em>soccer club</em> example, which focuses more on the dynamic features of the Extended Object Tcl.
</p>
        
<p>In a first step, we define a class <tt>Stack</tt>. A new class is defined in XOTcl via the command <tt>Class create yourclass</tt>. The stack will have a constructor (in XOTcl, the method <tt>init</tt>) and the methods <tt>push</tt> and <tt>pop</tt>. In the following example, all predefined commands (some from Tcl, some from XOTcl) are emphasized.
</p>
        
<pre CLASS="code">
<it>#</it>
<it># Create a stack class </it>
<it>#</it>
<tt>Class create</tt> Stack {
        
  <tt>:method</tt> init {} { <it># Constructor</it>
    <tt>set</tt> :things ""
  } 

  <tt>:method</tt> push {thing} {
    <tt>set</tt> :things [<tt>linsert</tt> ${:things} 0 $thing] 
    <tt>return</tt> $thing
  }
  
  <tt>:method</tt> pop {} {
    <tt>set</tt> top [<tt>lindex</tt> ${:things} 0]
    <tt>set</tt> :things [<tt>lrange</tt> ${:things} 1 end]
    <tt>return</tt> $top
  }
}
</pre>
<p>
The three methods are defined via <tt>:method</tt> (which means:
define a method for the current class). Variables are set with the
Tcl command <tt>set</tt>. Variable names starting with a dot "<tt>.</tt>"
are treated as instance variables (variables of an instance of the
Stack, i.e. an Stack object). The other variables are scoped to
the methods.
</p>
<p>
The definition of the class <tt>Stack</tt> is typically saved in a file (say <tt>stack.xotcl</tt>)
and can be used e.g. in an interactive Tcl shell (<tt>tclsh</tt>) as follows. The percent sign
indicates the prompt of the Tcl shell, the reminder of the line is typed in, the result
of the command is shown in the line below. Comments are lines starting with a hash symbol <tt>#</tt>.

<pre CLASS="code">
% <tt>package require</tt> XOTcl
% <tt>::xotcl::use</tt> xotcl2
% <tt>source</tt> stack.xotcl
  
<it># Create Object s1 of class Stack</it>
% Stack <tt>create</tt> s1
::s1
% s1 push a
% s1 push b
b
% s1 push c
c
% s1 pop
c
% s1 pop
b
<it># Delete object s1</it>
s1 <tt>destroy</tt>
</pre>        

<p>In the session above, we load XOTcl into the current shell, import the names from the xotcl namespace and we load the file <tt>stack.xotcl</tt>. At this time, the class <tt>Stack</tt> is available in the scripting session. In the next step, we create an stack object named <tt>s1</tt> and push into the stack the values <tt>a</tt>, <tt>b</tt> and <tt>c</tt> via separate push calls. Then we pop values from the stack and we destroy finally the stack <tt>s1</tt>.

<H3><A NAME="object-methods"></A>&#160;<BR>Object specific methods</h3>

<p>The definition of <tt>Stack</tt> provided above is pretty similar
to stack definitions in many other object oriented languages. The next
example shows how to define purely object specific behavior. We can
define an object <tt>stack</tt> without the need of a class
<tt>Stack</tt>. Notice that the methods of the object <tt>stack</tt>
are defined exactly the same way as in the previous example with the
class <tt>Stack</tt>. Instead of defining a constructor, we can
set the instance variable <tt>things</tt> directly in the
definition block of the object.

<pre CLASS="code">
<it>#</it>
<it># Create an object named stack</it>
<it>#</it>
<tt>Object create</tt> stack {

  <tt>set</tt> :things ""

  <tt>:method</tt> push {thing} {
    <tt>set</tt> :things [<tt>linsert</tt> ${:things} 0 $thing] 
    <tt>return</tt> $thing
  }
  
  <tt>:method</tt> pop {} {
    <tt>set</tt> top [<tt>lindex</tt> ${:things} 0]
    <tt>set</tt> :things [<tt>lrange</tt> ${:things} 1 end]
    <tt>return</tt> $top
  }
}
</pre>

<p>The object <tt>stack</tt> can be used in exactly the same way as <tt>s1</tt> (the instance of class <tt>Stack</tt>) before.

<H3><A NAME="refining-methods"></A>&#160;<BR>Refining the behavior of objects and classes</h3>

<p>So far, the definition of stacks were pretty minimal. Suppose, we want to define "safe stacks", that check e.g. for stack underruns (more pop than push operations are issued).  Checking safety can be done mostly independent from the implementation details of the stack (usage of internal data structures).
With XOTcl, one can define stack-safety as a separate class using methods with the same names as the implementations before, and "mix" this behavior later into classes or objects. The implementation of <tt>Safety</tt> uses a counter to check for stack underruns.</p>

<pre CLASS="code">
<it>#</it>
<it># Create a safety class </it>
<it>#</it>
<tt>Class create</tt> Safety {
        
  <tt>:method</tt> init {} { <it># Constructor</it>
    <tt>set</tt> :count 0
    <tt>next</tt>
  } 

  <tt>:method</tt> push {thing} {
    <tt>incr</tt> :count
    <tt>next</tt>
  }
  
  <tt>:method</tt> pop {} {
    <tt>if</tt> {${:count} == 0} <tt>then</tt> { <tt>error</tt> "Stack empty!" }
    <tt>incr</tt> :count -1
    <tt>next</tt>
  }
}
</pre>

<p>When we load the classes <tt>Stack</tt> and <tt>Safety</tt> into the same script,
we can define e.g. a certain stack <tt>s2</tt> as a safe stack, while all other stacks
might be still "unsafe". This can be achieved via the option <tt>-mixin</tt> during
object creation.
</p>
<pre CLASS="code">
% Stack <tt>create</tt> s2 <tt>-mixin</tt> Safety
::s2
% s2 push a
% s2 pop
a
% s2 pop
Stack empty!
</pre>

Note that the definition of Safety can be used not only for instances
of the class <tt>Stack</tt>, but for arbitrary objects supporting the
same interface.  We can as well use <tt>Safety</tt> to create a new
class <tt>SafeStack</tt>. In this case, all instances of
<tt>SafeStack</tt> have the safety property defined above.

<pre CLASS="code">
<it>#</it>
<it># Create a safe stack class by using Stack and mixin </it>
<it># Safety </it>
<it>#</it>
<tt>Class create</tt> SafeStack <tt>-superclass</tt> Stack <tt>-mixin</tt> Safety

SafeStack <tt>create</tt> s3
</pre>

<H3><A NAME="integer-stack"></A>&#160;<BR>Stack of integers</h3>

<p>The definition of <tt>Stack</tt> is generic and allows all kind of
elements to be stacked. Suppose, we want to use the generic stack
definition, but a certain stack (say, <tt>s4</tt>) should allow only
stacking of integers. This behavior can be achieved by defining an
object specific method for the stack <tt>s4</tt> that checks the
values to be pushed. In case the pushed value is ok, the push
definition of <tt>Stack</tt> is called via <tt>next</tt>.

<pre CLASS="code">
<it># </it>
<it># Create a stack with a object-specific method </it>
<it># to check the type of entries </it>
<it>#</it>
<it># s4 is a stack of integer </it>
 
Stack <tt>create</tt> s4 {

  <tt>:method </tt> push {value} {
    <tt>if </tt> {![<tt>string is</tt> integer $value]} {
      <tt>error</tt> "value $value is not an integer"
    }
    <tt>next</tt>
  }

}
</pre>

<H3><A NAME="class-specific-method"></A>&#160;<BR>Class specific methods</h3>

<p>In extended object Tcl, classes are objects as well (objects with
certain properties; we will come to this later in more
detail). However, we can define as well methods of classes, which are
not inherited to the instances, but which are to be applied on the
class object itself. This can be achieved by the modifier
<tt>object</tt> which is placed in front of <tt>method</tt>. Such
methods defined on the class object are actually exactly same as the
object specific methods in the example with the object named
<tt>stack</tt> above.</p>

<p>In the following example, we will define the method
<tt>available_stacks</tt> on the class object, that returns the number
of the currently existing stack instances.  </p>

<pre CLASS="code">
Class <tt>create</tt> Stack {

   <it># ...</it>
    <tt>:class-object method</tt> available_stacks {} {
      <tt>return</tt> [<tt>llength</tt> [<tt>:info</tt> instances]]
   }
}

Stack <tt>create</tt> s1
Stack <tt>create</tt> s2

<tt>puts</tt> [Stack available_stacks]
</pre>
<p>The final command <tt>puts</tt> prints 2 to the console.</p>

<H2><A NAME="soccerClub"></A>&#160;<BR>Introductory Overview Example: Soccer Club
</H2>
<p>
In our second example, we will focus on an application example where one can benefit substantially from the dynamic language constructs of XOTcl, the soccer club example (the full code can
be found in the <tt>xotcl/src/scripts/soccerClub.xotcl</tt> file.  All
the persons and characters in this example are fictitious, and any resemblance to
actual persons, living or deceased, is coincidental.
</p>

<p> Before we start, we introduce an instrument for making the documentation of programs more easy. In order to document source code files, we can use the <tt>@</tt> object, which is used generally to provide any kind of information, meta-data, and documentation on a running program. Here, we just give a file description.  Then the <tt> makeDoc.xotcl</tt> tool can automatically document the program file later for us.  </p>

<pre CLASS="code">
  @ @File {
    description {
      This is a simple introductory example for the language XOTcl. 
      It demonstrates the basic language constructs on the example of
      a soccer club.
    }
  }
</pre>
<p>

All things and entities in XOTcl are objects. A special kind of objects 
are classes. Classes define common properties for other objects. For a
soccer club, we firstly require a common class for all kinds of members.
</p>
<p>
Common to all members is that they have a name. Common properties
defined across all instances of a class are called 'parameter' in
XOTcl. In this example the instance variable <tt>name</tt> will be
initialized by default with an empty string.
</p>
<pre CLASS="code">
  <tt>Class create</tt> ClubMember <tt>-parameter</tt> {{name ""}}
</pre>
<p>
A special club member is a <tt>Player</tt>. Derived classes can be
build with inheritance (specified through
<tt>superclass</tt>). Players may have a <tt>playerRole</tt> (defaults
to NONE).
</p>
<pre CLASS="code">
  <tt>Class create</tt> Player <tt>-superclass</tt> ClubMember <tt>-parameter</tt> {{playerRole NONE}}
</pre>
<p>
Other club member types are trainers, player-trainers, and presidents:
</p>
<pre CLASS="code">
  <tt>Class create</tt> Trainer <tt>-superclass</tt> ClubMember
  <tt>Class create</tt> President <tt>-superclass</tt> ClubMember
</pre>
<p>
The PlayerTrainer uses multiple inheritances by being both a player
and a trainer:
</p>
<pre CLASS="code">
  <tt>Class create</tt> PlayerTrainer <tt>-superclass</tt> {Player Trainer}
</pre>
<p>
Now we define the SoccerTeam class:
</p>
<pre CLASS="code">
  <tt>Class create</tt> SoccerTeam <tt>-parameter</tt> {name location type}
</pre>
<p>
We may add a player by using method. Methods can be defined
in XOTcl2 either by <tt>:method</tt> in the class creation block, or
via "<tt><em>ClassName</em> method ...</tt>". The added players (as
well as other club members) are aggregated in
the object of the soccer team (denoted by :: namespace syntax).
</p>
<pre CLASS="code">
  SoccerTeam <tt>method</tt> newPlayer args {
    <it># we create a new player who is part of the soccer team</it>
    <it># "eval" is needed to pass the provided arguments separately to the call of new</it>
    <tt>eval</tt> Player <tt>new</tt> -childof [<tt>self</tt>] $args
  }
</pre>
<p>
A player can be transferred to another team. The player object does
not change internally (e.g. the playerRole stays the same). Therefore we
<tt>move</tt> it to the destination team.
</p>
<pre CLASS="code">
  SoccerTeam <tt>method</tt> transferPlayer {playername destinationTeam} {
    <it># We use the aggregation introspection option <tt>children</tt> in order</it>
    <it># to get all club members</it>
    <tt>foreach</tt> player [<tt>:info</tt> children] {
      <it># But we only remove matching playernames of type "Player". We do</it>
      <it># not want to remove another club member type who has the same</it>
      <it># name.</it>
      <tt>if</tt>{[$player info has type Player] && [$player name] eq $playername} {
        <it># We simply 'move' the player object to the destination team.</it>
        <it># Again we use a unique autoname in the new scope</it>
        $player <tt>move</tt> ${destinationTeam}::[$destinationTeam <tt>autoname</tt> player%02d]
      }
    }
  }
</pre>
<p>
Finally we define two convenience to print the members/players to
the console with <tt>puts</tt>.
</p>
<pre CLASS="code">
  SoccerTeam <tt>method</tt> printMembers {} {
    <tt>puts</tt> "Members of ${:name}:"
    <tt>foreach</tt> m [<tt>:info</tt> children] {<tt>puts</tt> "  [$m name]"}
  }
  SoccerTeam <tt>method</tt> printPlayers {} {
    <tt>puts</tt> "Players of ${:name}:"
    <tt>foreach</tt> m [<tt>:info</tt> children] {
      <tt>if</tt> {[$m info has type Player]} {<tt>puts</tt> "  [$m name]"}
    }
  }
</pre>
<p>      
Now let us build to example soccer team objects.
</p>
<pre CLASS="code">
  SoccerTeam <tt>create</tt> chelsea -name "Chelsea FC" -location "Chelsea"
  SoccerTeam <tt>create</tt> bayernMunich -name "F.C. Bayern M&uuml;nchen" -location "Munich"
</pre>
<p>

With <tt>addPlayer</tt> we can create new aggregated player objects
<p></p>
Let us start some years in the past, when "Franz Beckenbauer" was
still a player.
</p>
<pre CLASS="code">
  <tt>set</tt> fb [bayernMunich newPlayer -name "Franz Beckenbauer" -playerRole PLAYER]
</pre>
<p>
<tt>playerRole</tt> may not take any value. It may either be NONE, PLAYER, 
or GOALY ... such rules may be given as assertions (here: an instinvar 
gives an invariant covering all instances of a class). In XOTcl 
the rules are syntactically identical to <tt>if</tt> statements:
</p>
<pre CLASS="code">
  Player instinvar {
    {${:playerRole} <tt>in</tt> [<tt>list</tt> "NONE" "PLAYER" "GOALY"]}
  }
</pre>
<p>
If we break the invariant and turn assertions checking on, we should
get an error message:
</p>
<pre CLASS="code">
  $fb check all
  <tt>if</tt> {[<tt>catch</tt> {$fb playerRole SINGER} errMsg]} {
    <tt>puts</tt> "CAUGHT EXCEPTION: playerRole has either to be NONE, PLAYER, or TRAINER"
    <it># turn assertion checking off again and reset to PLAYER</it>
    $fb check {}
    $fb playerRole PLAYER
  }
</pre>
<p>
But soccer players may play quite different, orthogonal
roles. E.g. Franz Beckenbauer was also a singer (a remarkably bad
one). However, we can not simply add such orthogonal, extrinsic
extensions with multiple inheritance or delegation. Otherwise we
would have either to build a lot of unnecessary helper classes, like
PlayerSinger, PlayerTrainerSinger, etc., or we would have to build
such helper objects. This either leads to an unwanted combinatorial
explosion of class or object number 
</p><p>
Here we can use a per-object mixin, which is a language construct
that expresses that a class is used as a role or as an extrinsic
extension to an object.
</p><p>
First we just define the Singer class.
</p>
<pre CLASS="code">
  <tt>Class create</tt> Singer {

    <tt>:method</tt> sing text {
      <tt>puts</tt> "${:name} sings: $text, lala."
    }
  }
</pre>
<p>
Now we register this class as a per-object mixin on the player object:
</p>
<pre CLASS="code">
  $fb <tt>mixin</tt> Singer
</pre>
<p>
And now Franz Beckenbauer is able to sing:
</p>
<pre CLASS="code">
  $fb sing "lali"
</pre>
<p>
But Franz Beckenbauer has already retired. When a player retires, we
have an intrinsic change of the classification. He *is* not a player
anymore. But still he has the same name, is club member, and
is a singer (brrrrrr).
</p><p>
Before we perform the class change, we extend the Player class to
support it. I.e. the playerRole is not valid after class change
anymore (we unset the instance variable).
</p>
<pre CLASS="code">
  Player <tt>method</tt> class args {
    <tt>unset</tt> :playerRole
    <tt>next</tt>
  }
</pre>
<p>
Now we can re-class the player object to its new class (now Franz
Beckenbauer is President of Bayern Munich.
</p>
<pre CLASS="code">
  $fb <tt>class</tt> President
  <it># Check that the playerRole isn't there anymore.</it>
  <tt>if</tt> {[<tt>catch</tt> {$fb playerRole} errMsg]} {
    <tt>puts</tt> "CAUGHT EXCEPTION: The player role doesn't exist anymore \
         (as it should be after the class change)"
  }
</pre>
<p>
But still Franz Beckenbauer can entertain us with what he believes
is singing:
</p>
<pre CLASS="code">
  $fb sing "lali"
</pre>
<p>
Now we define some new players for Bayern Munich:
</p>
<pre CLASS="code">
  bayernMunich newPlayer -name "Oliver Kahn" -playerRole GOALY
  bayernMunich newPlayer -name "Giovanne Elber" -playerRole PLAYER
</pre>
<p>
If we enlist the players of Munich Franz Beckenbauer is not enlisted
anymore:
</p>
<pre CLASS="code">
  bayernMunich printPlayers
</pre>
<p>
But as a president he still appears in the list of members:
</p>
<pre CLASS="code">
  bayernMunich printMembers
</pre>
<p>
Now consider an orthonogal extension of a transfer list. Every
transfer in the system should be notified. But since the transfer
list is orthogonal to SoccerTeams we do not want to interfere with
the existing implementation at all. Moreover, the targeted kind of
extension has also to work on all subclasses of SoccerTeam. Firstly, we
just create the extension as an ordinary class:
</p>
<pre CLASS="code">
  <tt>Class</tt> TransferObserver {
    <tt>:method</tt> transferPlayer {pname destinationTeam} {
      <tt>puts</tt> "Player '$pname' is transferred to Team '[$destinationTeam name]'"
      <tt>next</tt>
    }
  }
</pre>
<p>
Now we can apply the class as a per-class mixin, which functions
exactly like a per-object mixin, but on all instances of a class and
its subclasses.  The <tt>next</tt> primitive ensures that the original
method on <tt>SoccerTeam</tt> is called after notifying the transfer (with
puts to stdout):
</p>
<pre CLASS="code">
  SoccerTeam <tt>mixin</tt> TransferObserver
</pre>
<p>
If we perform a transfer of one of the players, he is moved to the new 
club and the transfer is reported to the stdout:
</p>
<pre CLASS="code">
  bayernMunich transferPlayer "Giovanne Elber" chelsea
</pre>
<p>
Finally we verify the transfer by printing the players:
</p>
<pre CLASS="code">
  chelsea printPlayers
  bayernMunich printPlayers
</pre>
<p>

<P><BR><BR>
</P>
<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055">
	<TR>
		<TD WIDTH=75%>
			<P><A NAME="object_class_system"></A><FONT COLOR="#ffffff"><FONT FACE="Arial, Helvetica"><FONT SIZE=6>Object
			and Class System </FONT></FONT></FONT>
			</P>
		</TD>
		<TD>
			<IMG SRC="logo-100.jpg" NAME="Graphic4" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
	</TR>
</TABLE>

<P>In XOTcl every object is associated with its managing class by a relationship
called <tt>class</tt>. Classes are special objects with the purpose of
managing other objects. "Managing" means that a class controls the
creation and destruction of its instances and that it contains a
repository of methods accessible for the instances.
</P>

<p>Since a class is a
special (managing) kind of object it is managed itself by a special
class called a "meta-class" (which manages itself). Meta-Classes are
used to define classes and to provides methods for these.  Most
classes are defined by the predefined meta-class <tt>Class</tt>. One
interesting aspect of meta-classes is that by providing a constructor
pre-configured classes can be derived.  Meta-classes can be used to
instantiate large program structures, like some design patterns (see
<a href="#xotcl-filter">[Neumann and Zdun 1999a]</a> for more
details), where the meta-class may holds the generic parts of the
structures. Since a meta-class is an entity of the program, it is
possible to collect these entities in pattern libraries for later
reuse easily (more details about meta-classes are given in a later <A
HREF="meta-classes">section</A>).
</P>

<P>The methods common to all objects in the XOTcl 2 object system are
defined in the root class <tt>Object</tt> (fully qualified name
<tt>::xotcl2::Object</tt>). All methods can be predefined (defined by
XOTcl) or user-defined. All objects of XOTcl 2 are either direct
instances of <tt>Object</tt> or instances of subclasses of
<tt>Object</tt>.</p>

<p>The most basic meta-class is <tt>Class</tt> (fully qualified name
<tt>::xotcl2::Class</tt>). All classes of XOTcl 2 are either direct
instances of <tt>Class</tt> or instances of subclasses of
<tt>Class</tt>. Since - as noted before - a class is a special kind of
object, <tt>Class</tt> is a subclass of <tt>Object</tt>. Therefore,
all methods available in all classes are the union of the methods of
<tt>Object</tt> and <tt>Class</tt> (see Figure 2a).</p>

<P ALIGN=CENTER STYLE="margin-bottom: 0in"><STRONG>Figure 2a:</STRONG>
Basic Classes of the XOTcl2 object system
</P>
<CENTER>
<IMG SRC="object-class.png" NAME="Graphic5" ALIGN=BOTTOM WIDTH=400 BORDER=0>
</center>

<p>
When we create an application class such as the class <tt>Stack</tt>
in the examples above, we create it as instance of the basic
meta-class <tt>::xotcl2::Class</tt>. The application class will have
<tt>::xotcl2::Object</tt> as it superclass, unless we spefify this
differently. When we create an instance of the class <tt>Stack</tt>
(such as e.g. the stack <tt>s1</tt>) we create it by using the method
<tt>create</tt> provided by <tt>::xotcl2::Class</tt> (an instance can
use the methods provided by its class).
</p>

<P ALIGN=CENTER STYLE="margin-bottom: 0in"><STRONG>Figure 2b:</STRONG>
Application class Stack and instance of Stack together with the Basic Classes of the XOTcl2 object system
</P>
<CENTER>
<IMG SRC="object-class-appclass.png" NAME="Graphic5" ALIGN=BOTTOM WIDTH=400 BORDER=0>
</center>

<P>XOTcl supports single and multiple inheritance. Classes are ordered
by the relationship <tt>superclass</tt> in a directed acyclic
graph. The root of the class hierarchy is the class <tt>Object</tt>.
Note that it is possible to create as well objects from this most
general class; we have done this already above by creating an object
named <tt>stack</tt>.</p>

<p>A classical problem of multiple inheritance is the problem of name
resolution, when for example two super-classes contain an instance
method with the same name. XOTcl provides an intuitive and unambiguous
approach for name resolution by defining the precedence order along a
linear "<EM>next-path</EM>" incorporating the class and mixin
hierarchies. A method can invoke explicitly the shadowed methods by
the predefined command <tt>next</tt>.  When <tt>next</tt> is executed
a shadowed method is invoked. The execution of the shadowed methods is
called "method chaining". Method chaining without explicit naming of
the targeted method is very important for languages supporting a
dynamic class system, because one cannot always predict which classes
are currently participating in the inheritance hierarchy at design
time (often necessary in inheritance models, like C++).  </P>


<P
 STYLE="margin-bottom: 0in">An important feature of all XOTcl objects
is the read/write introspection. The reading introspection abilities
of XOTcl are packed compactly into the <tt>info</tt> instance method
which is available for objects and classes. All obtained information
can be changed at run-time dynamically with immediate effect. Unlike
languages with a static class concept, XOTcl supports dynamic
class/superclass relationships. At any time the class graph may be
changed entirely using the <tt>superclass</tt> method, or
an object may change its class through the <tt>class</tt> method. This
feature can be used for an implementation of a life-cycle or other
intrinsic changes of object properties (in contrast to extrinsic
properties e.g. modeled through roles and implemented through
per-object and per-class mixins <a href="#xotcl-mixin">[Neumann and
Zdun 1999c]</a> ) . These changes can be achieved without losing the
object's identity, its inner state, and its per-object behavior (methods
and mixins).
</P>

<span class="fixme">xotcl2 changes until here, reminder is
missing;</span><br>

<P ALIGN=CENTER STYLE="margin-bottom: 0in"><A NAME="features1"></A><A NAME="11761"></A>
&#160;&#160; 
</P>
<P ALIGN=CENTER STYLE="margin-bottom: 0in"><STRONG>Figure 2b:</STRONG>
Object and Class System 
</P>
<CENTER>
	<TABLE WIDTH=469 BORDER=0 CELLPADDING=2 CELLSPACING=0>
		<COL WIDTH=465>
		<TR>
			<TD WIDTH=465>
				<P ALIGN=CENTER><IMG SRC="obj_class_system.gif" NAME="Graphic5" ALIGN=BOTTOM WIDTH=467 HEIGHT=144 BORDER=0></P>
			</TD>
		</TR>
	</TABLE>
</CENTER>
<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055">
	<TR>
		<TD WIDTH=75%>
			<P><A NAME="basic"></A><FONT
                  COLOR="#ffffff"><FONT FACE="Arial, Helvetica"><FONT
                  SIZE=6>Basic Functionalities </FONT></FONT></FONT>
			</P>
		</TD>
		<TD>
	<IMG SRC="logo-100.jpg" NAME="Graphic6" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
	</TR>
</TABLE>
<H2><A NAME="object"></A>&#160;<BR>Objects </H2>
<span class="fixme">at least the first paragraph has to be rewritten;
"2 commands" don't really hold</span><br>
<P>Initially XOTcl offers two new commands: <tt>Object</tt> and
<tt>Class</tt>. They represent hooks to the features of the language.
This section discusses both of them in detail and shows how they
function in the context of XOTcl. Note that even if most of this is
compatible to OTcl, a few changes occur. For this reason, this
section is no introduction to plain OTcl. The <tt>Object</tt> command
provides access to the <tt>Object</tt> class, which holds the common
features of all objects, and allows us to define new objects. Objects
are always instances of classes, therefore, objects defined with the
<tt>Object</tt> command are (initially) instances of the <tt>Object</tt>
class. But since they have no user-defined type, they may be referred
to as <EM>singular objects</EM>. As all other objects they may be
specialized by object-operations and -data. 
</P>
<P>The object command has the following syntax: 
</P>
<pre CLASS="code">
  <tt>Object</tt> <em>objName ?args?</em>
</pre><P>
A command of this form is a short-cut for a message to the <tt>create</tt>
instance method (forwarded automatically by the <tt>unknown</tt>
mechanism, which is invoked every time the message dispatch system
discovers an unknown message): 
</P>
<pre CLASS="code">
  <tt>Object</tt> <tt>create</tt> <em>objName ?args?</em>
</pre><P>
It creates a new object of type <tt>Object</tt> with the name <tt>objName</tt>
(in fact it invokes a <tt>create</tt> call on the <tt>Object</tt> class).
<tt>objName</tt> becomes a new command, which allows us to access the
created object. Similar to the <tt>Object</tt> command it may be
used like a normal Tcl-command (using sub-commands to access the
object's methods). Therefore, this form of access is called
<EM>object-command</EM> approach. A simple example is an object which
holds the information of a kitchen. It is created by: 
</P>
<pre CLASS="code">
  <tt>Object</tt> kitchen
</pre>
<P>
An object creation calls the constructor <tt>init</tt> of the
object's class. The destruction of an object is handled by the
<tt>destroy</tt> instance method. The general syntax of <tt>destroy
</tt>is: 
</P>
<pre CLASS="code">
  <em>objName</em> <tt>destroy</tt>
</pre><P>
E.g. the kitchen object is destroyed by: 
</P>
<pre CLASS="code">
  kitchen <tt>destroy</tt>
</pre><P>
To invoke a user-defined destruction process, it is possible to
overload this instance method in every class derived from object.
</P>
<P>
Note that the destruction of an object is performed by the
method <tt>destroy</tt> of Object (since every object is an instance
of <tt>Object</tt>, every object can call <tt>destroy</tt>). When an application class
overloads <tt>destroy</tt>, this method should contain a <tt>next</tt> in order
to reach the base class and to actually destroy the object. 
</P>
<H3><A NAME="data_on_obj"></A>Data on Objects 
</H3>
<P>The <tt>Object</tt> class provides a range of operations to manage
objects, including those to manipulate data-structures on the
objects. They are similar to the same-named Tcl-commands: 
</P>
<pre CLASS="code">
  <em>objName</em> <tt>set</tt> <em>varname ?value?</em>
  <em>objName</em> <tt>unset</tt> <em>v1 ?v2 ... vn?</em>
</pre>
<P>
The <tt>set</tt> instance method with given <tt>value</tt> option
allows us to manipulate an object-variable's value or to create a new
one, if the variable <tt>varname</tt> does not exist on the object so
far. Without <tt>value</tt> option the <tt>set</tt> operation queries
the variable and returns it's value, if the variable exists,
otherwise it produces an error message. The <tt>unset</tt> operation
deletes one or optionally a set of variables from an object. For
example the <tt>kitchen</tt> object can store information on the
color of the wall-paper by: 
</P>
<pre CLASS="code">
  kitchen <tt>set</tt> wallPaperColor white
</pre><P>
Similar to Tcl-variables the object variables are dynamical; they
may be set at run-time when they are needed and unset when they
become obsolete. E.g. the persons in the kitchen may be stored in an
array. If there are no persons in the kitchen the array is deleted: 
</P>
<pre CLASS="code">
  <it># Peter enters the kitchen to cook</it>
  kitchen <tt>set</tt> persons(cook) Peter
  ...
  <it># Marion enters the kitchen to take one of the seats</it>
  kitchen <tt>set</tt> persons(seat1) Marion 
  ...
  <it># Both Peter and Marion leave the kitchen</it>
  <it># the array is deleted by unset</it>
  kitchen <tt>unset</tt> persons
</pre><P>
Since XOTcl variables are internally realized through Tcl-variables
they may be treated like all Tcl-variables. For that reason they have
all Tcl-variable abilities, including the possibility to handle them
as lists or arrays (as seen in the last example). The <tt>array</tt>
command of Tcl is mapped to an XOTcl-command directly. An
object-oriented call to an object of the form 
</P>
<pre CLASS="code">
  <em>objName</em> <tt>array</tt> <em>option arrayName args</em>
</pre><P>
forwards its arguments to an <tt>array</tt> Tcl-command for the
object&acute;s instance variable <tt>arrayName</tt>. It could be used like
the same-named Tcl-command, e.g. the command 
</P>
<pre CLASS="code">
  kitchen <tt>array</tt> names persons
</pre><P>
returns all indexes currently stored in the <tt>persons</tt> array. 
</P>
<P>Similarly Tcl&acute;s <tt>incr</tt> command is mapped to the
object system. A call with the syntax: 
</P>
<pre CLASS="code">
  <em>objName</em> <tt>incr</tt> <em>varName ?value?</em>
</pre><P>
increments <tt>varName</tt> with the given value (or without given
value with 1). 
</P>
<H3><A NAME="obj_methods"></A>Methods for Objects 
</H3>
<P>Methods in XOTcl resemble Tcl-procedures. On objects one can define
object-specific methods, called procs. Instance methods which are
defined on classes are called instprocs. A new proc is defined using
the <tt>proc</tt> instance method of the class <tt>Object</tt>:
</P>
<pre CLASS="code">
  <em>objName</em> <tt>proc</tt> <em>name args body</em>
</pre><P>
The arguments of the <tt>proc</tt> instance method specify the name,
the arguments as a Tcl-list, and the body of the new proc. All of them
must be given, only one of <tt>args</tt> and <tt>body</tt> may be
empty. An example proc would be a method to let persons enter the
kitchen: 
</P>
<pre CLASS="code">
  kitchen <tt>proc</tt> enter {name} {
    [<tt>self</tt>] <tt>set</tt> persons($name) [<tt>clock</tt> seconds]
  }
</pre><P>
Here the predefined <tt>self</tt> command is used in one of three
possible ways, which allow us to access useful information when working
with XOTcl-methods, these are in particular: 
</P>
<UL>
	<LI><P STYLE="margin-bottom: 0in"><tt>self</tt>: returns the
	  name of the object, which is currently in execution. This
	  command is similar to <tt>this</tt> in C++. It is
	  automatically generated on each object. If it is called from
	  outside of an XOTcl method, it produces the error message
	  "<tt>Can't find self</tt>".
	</P>
	<LI><P STYLE="margin-bottom: 0in"><tt>self class</tt>: the self
	command with the  argument <tt>class</tt> returns the name of the
	class, which holds the currently executing instproc. Note that this
	may be different to the class of the current object. If it is called
	from a proc it returns an empty string. 
	</P>
	<LI><P><tt>self proc</tt>: the self command with the argument
	<tt>proc</tt> returns the name of the currently executing
	method (proc or instproc).
	</P>
</UL>
<p>The method <tt>enter</tt> can be written in XOTcl as well with
less syntactic overhead by using the predefined primitive <tt>my</tt>
instead of <tt>[<tt>self</tt>]</tt>:</p>
<pre CLASS="code">
  kitchen <tt>proc</tt> enter {name} {
    <tt>my</tt> <tt>set</tt> persons($name) [<tt>clock</tt> seconds]
  }
</pre><P>
<P>Note that there is a difference to the realization of these
object information to OTcl. XOTcl uses commands in order to make
XOTcl-methods compatible to Tcl-procedures and accessible via
namespace-paths. OTcl uses the three variables <tt>self</tt>, <tt>class</tt>
and <tt>proc</tt>, which are filled automatically with proper values
by the interpreter each time a method is called. To gain backwards
compatibility XOTcl can be compiled with <tt>-DAUTOVARS</tt> to
provide these variables additionally. By default this option is turned off.
</P>
<P>Each XOTcl-method has its own scope for definition of local
variables for the executing method. In most cases when a method uses
object-variables, it is likely that the programmer wants to make one
or more of these variables part of the method's scope. Then the
Tcl-command for variable handling, like <tt>set</tt>, <tt>lindex</tt>,
<tt>array</tt>, ... work also on these variables.  The
<tt>instvar</tt> instance method links a variable to the scope of
an executing method. It has the syntax:
</P>
<pre CLASS="code">
  <em>objName</em> <tt>instvar</tt> <em>v1 ?v2 ... vn?</em>
</pre>
<P> 
It makes the variables <tt>v1 ... vn</tt>, which must
be variables of the object, part of the current method's scope. A
special syntax is:
</P>
<pre CLASS="code">
  <em>objName</em> <tt>instvar</tt> <em>{varName aliasName} ...</em>
</pre>
<P> 
for one of the variables. This gives the variable with the name
<tt>varName</tt> the alias <tt>aliasName</tt>. This way the variables
can be linked to the methods scope, even if a variable with that name
already exists in the scope. Now the <tt>enter</tt> method can be
adapted slightly and a <tt>leave</tt> method can be added, which uses
Tcl's <tt>info</tt> command to check
whether the named person is in the object's <tt>persons</tt> array. To
demonstrate the alias-syntax this is done with the <tt>persons</tt>
array and the alias <tt>p</tt>.
</P>
<pre CLASS="code">
  kitchen <tt>proc</tt> enter {name} {
    <tt>my</tt> <tt>instvar</tt> persons
    <tt>set</tt> persons($name) [<tt>clock</tt> seconds]
  }

  kitchen <tt>proc</tt> leave {name} {
    <tt>my</tt> <tt>instvar</tt> {persons p}
    <tt>if</tt> {[<tt>info</tt> exists p($name)]} {
      <tt>puts</tt> &quot;$name leaves after [<tt>expr</tt> {[<tt>clock</tt> seconds]-$p($name)}] seconds&quot; 
      <tt>unset</tt> p($name) 
    } <tt>else</tt> {
      <tt>puts</tt> &quot;$name is not in the room&quot;
    }
  }
</pre>
A method defined via <tt>proc</tt> can be deleted by <tt>proc</tt> using 
an empty argument list and an empty body. The following example deletes the method
<tt>enter</tt>:
<pre CLASS="code">
  Room <tt>proc</tt> enter {} {}
</pre>

<H3>
<A NAME="obj_info"></A>Information about Objects 
</H3>
<P STYLE="margin-bottom: 0in">XOTcl offers reading and writing
introspection. The reading introspection abilities are packed
compactly into the <tt>info</tt> instance method which is available
for objects and classes (there are special info options for object
aggregations, nested classes, mixins, filters, meta-data and
assertions, which are explained separately in the following
sections). 
</P>
<CENTER>
      <P><A NAME="table_oinfo"></A>
	<STRONG>Options for the <tt>info</tt> method on objects</STRONG></P>

      <TABLE BORDER=1>
	<TR>
	  <TD width=40%>
	    <tt><em>objName</em> <tt>info</tt> args <em>methodName </em></tt>
	  </TD>
	  <TD>
	    <P ALIGN=LEFT>Returns the arguments of the specified proc (object specific method).</P>
	  </TD>
	</TR>
	<TR>
	  <TD>
	    <tt><em>objName</em> <tt>info</tt> body <em>methodName</tt>
	  </TD>
	  <TD>
	    <P ALIGN=LEFT>Returns the body of the specified proc.</P>
	  </TD>
	</TR>
	<TR>
	  <TD><tt><em>objName</em> <tt>info</tt> class <em>?className?</em></tt>
	  </TD>
	  <TD>
	    <P ALIGN=LEFT>Returns the name of the class of the current
	    object, if <em>className</em> was not specified.  Otherwise it
	    returns 1 if <em>className</em> matches the object's class and 0 if
	    not.
	    </P>
	  </TD>
	</TR>
	<TR>
	  <TD><tt><em>objName</em> <tt>info</tt> commands <em>?pattern?</em></tt>
	  </TD>
	  <TD>
	    <P ALIGN=LEFT>Returns all commands defined on the object
	    if <em>pattern</em> was not specified. Otherwise it
	    returns all commands that match the pattern.</P>
	  </TD>
	</TR>
	<TR>
	  <TD><tt><em>objName</em> <tt>info</tt> default <em>methodName arg var</em></tt></P>
	  </TD>
	  <TD>
	    <P ALIGN=LEFT>Returns 1 if the argument <em>arg</em> of
	    the specified proc has a default value, otherwise 0. If
	    the default value exists it is stored in <em>var</em>.</P>
	  </TD>
	</TR>

	<TR>
	  <TD><tt><em>objName</em> <tt>info</tt> precedence <em>?pattern?</em></tt>
	  </TD>

	  <TD>
	    <P ALIGN=LEFT>Returns all classes in the precedence order
	    from which the specified object inherits methods. The
	    returned list of classes contains the mixin and instmixin
	    classes as well as the classes of the superclass chain in
	    linearized order (i.e., duplicate classes are removed). If
	    the <em>pattern</em> is specified, only matching classes are
	    returned.</P>
	  </TD>
	</TR>

	<TR>
	  <TD><tt><em>objName</em> <tt>info</tt> vars <em>?pattern?</em></tt>
	  </TD>
	  <TD>
	    <P ALIGN=LEFT>Returns all variables defined on the object
	    if <em>pattern</em> was not specified, otherwise it returns
	    all variables that match the pattern.</P>
	  </TD>
	</TR>
      </TABLE>
    </FONT>
    </CENTER>
<p><br></p>
<P>For example on the <tt>kitchen</tt> object 
</P>
<pre CLASS="code">
  kitchen <tt>info</tt> procs
</pre><P>
returns <tt>enter</tt> and <tt>leave</tt> as a Tcl-list since these
are the procs defined on the object. 
</P>
<H2><A NAME="classes"></A>Classes 
</H2>
<H3><A NAME="class_instance"></A>Creating Classes and deriving
Instances 
</H3>
<P>There are different ways to create a class in XOTcl. They have in
common that they derive the new class from a meta-class. Initially the
<tt>Class</tt> command provides access to the meta-class
<tt>Class</tt>, which holds the features common to all classes. It
also allows one to derive new meta-classes. The common way to create a
new class is:
</P>
<pre CLASS="code">
  <tt>Class</tt> <em>className ?args?</em>
</pre>

<P>
Similar to the object short form, this is a short form of a call to
the <tt>create</tt> instance method of the meta-class <tt>Class</tt>,
which is also executed by the standard <tt>unknown</tt> mechanism.
This mechanism is always triggered when XOTcl does not know a method
called on an object. Supposed that there is no method with the name
<tt>className</tt>, defined on the class-object of <tt>Class</tt>,
XOTcl looks up the method <tt>unknown</tt> (which is found on the
Class <tt>Object</tt>) and executes it. The standard unknown-mechanism
of XOTcl calls <tt>create</tt> with all arguments stepping one step
to the right; in the general case: 
</P>
<pre CLASS="code">
  <tt>Class</tt> <tt>create</tt> <em>className ?args?</em>
</pre><P>
This may also be called directly. Besides the indirection when using
<tt>unknown</tt>, in most cases there is no difference in the action
performed: Firstly the memory is allocated, using the <tt>alloc</tt>
instance method; as the next step the constructor <tt>init</tt> is called
on the creating object, which is in this case the class-object of the
meta-class <tt>Class</tt>. In seldom cases the programmer may want to
suppress the <tt>init</tt> call. To do so the <tt>alloc</tt> instance
method may also be called directly: 
</P>
<pre CLASS="code">
  <tt>Class</tt> <tt>alloc</tt> <em>className ?args?</em>
</pre>
<P>
As seen in the preceding section objects are created in the same way.
The difference was, that the command <tt>Object</tt>, which accesses
a class, instead of the command <tt>Class</tt>, which accesses a
meta-class, was used. The user-defined classes may also be used in
the same way to create new objects: 
</P>
<pre CLASS="code">
  <em>className objName ?args?</em>
</pre>
<P>
Resembling the creation of classes this creates an object <tt>objName</tt>
of type <tt>className</tt> using the <tt>unknown</tt> mechanism. That
means the <tt>create</tt> instance method of the class is called. If
there is no other instance method defined on the class-path so far
(which would mean, an user defined creation process is invoked), the
<tt>create</tt> instance method of the class <tt>Object</tt> is
invoked. This method is similar to the <tt>create</tt> method of the
meta-class <tt>Class</tt>. It firstly calls the <tt>alloc</tt>
instance method on its (of the <tt>Class</tt> class) which allocates
memory for the object, and makes it an instance of it's class.
Afterwards a call to the constructor <tt>init</tt> is invoked. 
</P>
<P>Now we can specify the object for the kitchen by the class to
which it belongs. In this case a kitchen is an instance of a room. 
</P>
<pre CLASS="code">
  <tt>Class</tt> Room
  Room kitchen
</pre><P>
A <tt>set</tt> call on a class creates an instance variable on the
class-object. This variable is unique for all instances, therefore,
it may be referred to as a class variable. 
</P>
<H3><A NAME="class_methods"></A>Methods Defined in Classes 
</H3>
<P>Methods which are defined in classes and which are provided to the 
instances of these classes are called "instprocs". 
The syntax for defining an instproc is: 
</P>
<pre CLASS="code">
  <em>className</em> <tt>instproc</tt> <em>procname args body</em>
</pre>
<P>
It is similar to the definition of procs on objects, but uses the
keyword <tt>instproc</tt> to distinguish between the methods defined
on the class-object and those defined on the class. Since all rooms
(in the modeled world) have ceilings, we may want to define a simple
convenience instproc, which is able to set the color: 
</P>
<pre CLASS="code">
  Room <tt>instproc</tt> setCeilingColor color {
    <tt>my</tt> <tt>set</tt> ceilingColor $color
  }
</pre><P>
A special instproc, the constructor <tt>init</tt>, was mentioned
already. Now we are able to define such an instproc. Defined on a
class it is responsible for all initialization tasks, which needed to
be performed, when constructing a new instance object of the class.
The constructor of the <tt>Room</tt> can initialize a variable for
the color, in which the ceiling is painted, to white as default,
since this is the color of ceilings without painting. 
</P>
<pre CLASS="code">
  Room <tt>instproc</tt> <tt>init</tt> args {
    <tt>my</tt> setCeilingColor white
    <tt>next</tt>
  }
</pre>
<P>
After this definition, all instances derived from the <tt>Room</tt>
class have an instance variable <tt>ceilingColor</tt> with the value
<tt>white</tt>. The <tt>args</tt> argument used here is a special
argument in Tcl which allows us to use a list of arguments which may
change its length from call to call.
<p>
An instproc can be deleted by the method <tt>instproc</tt> as well.
If <tt>instproc</tt> is called with an empty argument list and an
empty body, the specified method is deleted, as the following example shows:
<pre CLASS="code">
  Room <tt>instproc</tt> setCeilingColor {} {}
</pre>

</P>
<H3><A NAME="class_info"></A>Information about Classes 
</H3>
<P STYLE="margin-bottom: 0in">Resembling to objects, information on
classes may be gained through the <tt>info</tt> instance method of the
meta-class <tt>Class</tt>. Note that this instance method does not
only support the class info options, but also the class-object info options,
since the accessing command refers to the class-object, which itself
is an object and, therefore, offers its information.  The following
table summarizes the additional info options available on classes.
</P>
<CENTER>
<P><STRONG>Options for the <tt>info</tt> method on classes</STRONG></P>
      <TABLE BORDER=1>
	<TR>
	  <TD width=35%><tt><em>className</em> <tt>info</tt> heritage <em>?pattern?</em></tt>
	  </TD>
	  <TD><P ALIGN=LEFT>Returns a list of all classes in the
	  precedence order of the class hierarchy matching
	  <em>pattern</em> or a list of all classes, if
	  <em>pattern</em> was not specified.</P>
	  </TD>
	</TR>
	<TR>
	  <TD><tt><em>className</em> <tt>info</tt> instances <em>?pattern?</em></tt>
	  </TD>
	  <TD><P ALIGN=LEFT>Returns a list of the instances of the
	      class matching <em>pattern</em> or of all instances, if
	      <em>pattern</em> was not specified.
	    </P>
	  </TD>
	</TR>
	<TR>
	  <TD><tt><em>className</em> <tt>info</tt> instargs <em>methodName</em></tt>
	  </TD>
	  <TD><P ALIGN=LEFT>Returns the arguments of the specified instproc 
	      (method provided to objects).</P>
	  </TD>
	</TR>
	<TR>
	  <TD><tt><em>className</em> <tt>info</tt> instbody <em>methodName</em></tt>
	  </TD>
	  <TD><P ALIGN=LEFT>Returns the body of the specified instproc.</P>
	  </TD>
	</TR>
	<TR>
	  <TD><tt><em>className</em> <tt>info</tt> instcommands <em>?pattern?</em></tt>
	  </TD>
	  <TD><P ALIGN=LEFT>Returns all commands defined on the class, if
	      <em>pattern</em> was not specified, otherwise it returns all
	      commands provided to objects that match the pattern.</P>
	  </TD>
	</TR>
	<TR>
	  <TD><tt><em>className</em> <tt>info</tt> instdefault <em>methodName arg var</em></tt></P>
	  </TD>
	  <TD>
	    <P ALIGN=LEFT>Returns 1 if the argument <em>arg</em> of
	    the specified instproc has a default value, otherwise 0. If
	    the default value exists it is stored in <em>var</em>.</P>
	  </TD>
	</TR>
	<TR>
	  <TD><tt><em>className</em> <tt>info</tt> subclass <em>?className2?<em></tt>
	  </TD>
	  <TD><P ALIGN=LEFT>Returns a list of all subclasses of the class, if
	      <em>className2</em> was not specified, otherwise it returns 1 if
	      <em>className2</em> is a subclass and 0 if not.</P>
	  </TD>
	</TR>
	<TR>
	  <TD><tt><em>className</em> <tt>info</tt> superclass <em>?className2?</em></tt>
	  </TD>
	  <TD><P ALIGN=LEFT>Returns a list of all super-classes of the class,
	      if <em>className2</em> was not specified, otherwise it returns 1
	      if <em>className2</em> is a superclass and 0 if not.</P>
	  </TD>
	</TR>
      </TABLE>
</CENTER>  
<P>The full list of info options is provided in the language reference.</P>
<H3><A NAME="class_inheritance"></A>Inheritance 
</H3>
<P>Besides encapsulation of operations and state in objects, a second
central ability of object-orientation is inheritance. XOTcl supports
single and multiple inheritance with a directed acyclic class
graph. Automatically each new class created by the instance methods
<tt>create</tt> and <tt>alloc</tt> of <tt>Class</tt> inherits from
<tt>Object</tt>. Therefore, it is ensured that all instances of the
new class have access to the common features of objects stored in the
class <tt>Object</tt>.
</P>
<P>To specify further inheritance relationships the instance methods
<tt>superclass</tt> of <tt>Class</tt> is used: 
</P>
<pre CLASS="code">
  <em>className</em> <tt>-superclass</tt> <em>classList</em>
</pre><P>
E.g. in the example a kitchen may be seen as a
special room: 
</P>
<pre CLASS="code">
  <tt>Class</tt> Room
  <tt>Class</tt> Kitchen <tt>-superclass</tt> Room
</pre><P>
Now all instances of <tt>Kitchen</tt> are able to access the
methods provided by the <tt>Room</tt> and the <tt>Kitchen</tt> classes.
Note the transition the kitchen was going through: firstly it was a
singular object, then it was an object with a user-defined class,
and now it is a class. This is possible because we can provide 
a per-object behavior, and because classes are a special kind of objects.
Both properties of XOTcl's object system lead to a
seamless connection of the run-time behavior of objects
and the descriptive properties of the classes. It is possible
to avoid the strict distinction between objects and classes, known from static typed
languages, like C++, Java, etc. 
</p>
<p>Moreover, since the syntaxes of constructs expressing the same
concern are nearly identical, we can re-factor a solution with very few 
changes to the alternative. We will see similar "ease of refactoring"
throughout the XOTcl language. E.g., we can also easily re-factor the
class hierarchies or exchange class hierarchies against mixin
solutions with only slight changes in the code.
</P>
<P>Besides single inheritance, as seen, XOTcl provides also multiple
inheritance. This is syntactically solved by giving the <tt>superclass</tt>
instance method a list of classes instead of a single class as
argument. 
</P>
<pre CLASS="code">
  <tt>Class</tt> Room
  <tt>Class</tt> 4WallsRoom <tt>-superclass</tt> Room
  <tt>Class</tt> CookingPlace
  <tt>Class</tt> Kitchen <tt>-superclass</tt> {4WallsRoom CookingPlace}
</pre><P>
Now the kitchen class is specialized a bit more. It is a special room
which has four walls <EM>and</EM> it is a cooking place. Multiple
inheritance, as seen here, is as simple to apply as single
inheritance. 
</P><P>

Most often when the disadvantages of multiple inheritance are
discussed, the name resolution along the class graph is considered as
the biggest problem. The question is, which method is to be chosen and
which path through class graph is to be taken, if more then one method
of the specified name exist on the class graph.

</P>
<P ALIGN=LEFT STYLE="margin-bottom: 0in">In the example such questions
would arise for an object of the <tt>Kitchen</tt> class, if two
same-named methods are defined on <tt>CookingPlace</tt> and
<tt>4WallsRoom</tt> or if a method of the class <tt>Object</tt> is
called, which is reachable through two paths (along
<tt>CookingPlace</tt> or <tt>Room</tt>). 
</P>

<P ALIGN=LEFT STYLE="margin-bottom: 0in">Often - e.g. in the
inheritance model of C++ - the path through the graph is not clearly
determined and/or the rules are too complicated to be understood on
the first glance. The programmer often can only determine by trial
which method is found firstly. Than an explicit naming of the class is
necessary, which means storage of non-local information in
subclasses. Often different compilers of one language behave
differently. All these issues make code reuse difficult. Moreover
understandability and portability are reduced.
</P>
<P ALIGN=CENTER STYLE="margin-bottom: 0in"><BR>
</P>
<P ALIGN=CENTER STYLE="margin-bottom: 0in"><STRONG>Figure 3:</STRONG>
The example classes and the following next-path</P>
<CENTER>
	<TABLE BORDER=0 CELLPADDING=2 CELLSPACING=0>
		<COL>
		<TR>
			<TD>
				<IMG SRC="next-path.gif" NAME="Graphic13" ALIGN=LEFT BORDER=0><BR CLEAR=LEFT></TD>
		</TR>
	</TABLE>
</CENTER>
<P>XOTcl goes an intuitive and unambiguous way to solve this problem.
It resolutes the precedence order along a ``<EM>next-path</EM>''.
Firstly the class of the object is searched, which is <tt>Kitchen</tt>
in example. Then the super-classes are searched in definition order,
which means at first <tt>4WallsRoom</tt>, then <tt>CookingPlace</tt>.
Each branch is searched completely, before changing to the next
branch. That means, <tt>Room</tt> is searched, before the
<tt>CookingPlace</tt> branch is visited. At last the top of the
hierarchy, the class <tt>Object</tt>, is searched. 
</P>

<P>The usage of <tt>next</tt> in XOTcl is different to OTcl: In OTcl,
	 <tt>next</tt> is defined as a method, in XOTcl it is a
	primitive command. Furthermore, in OTcl, 
it is always necessary to provide the full argument list for every
invocation explicitly. In XOTcl, a call of <tt>next</tt> without
arguments can be used to call the shadowed methods with the same
arguments (which is the most common case). When arguments should be
changed for the shadowed methods, they must be provided explicitly in
XOTcl as well. In the rare case that the shadowed method should
receive no argument, the flag <tt>--noArgs</tt> must be used. 
</P>

<H3><A NAME="class_destroy"></A>Destruction of Classes 
</H3>
<P>Classes are destroyed by the destruction of the class-object using
the <tt>destroy</tt> method of the <tt>Object</tt> class. The
destruction of super-classes does not destroy the subclasses. The
super-class is simply removed from the subclasses' super-class
lists. All classes have the super-class <tt>Object</tt>, if no
super-class is specified. Therefore, if all super-classes are
destroyed or removed, the new super-class is <tt>Object</tt>, not: no
super-class. The destruction of the class of an object does neither
delete the object nor leave it without class. In XOTcl a deleted class
leaves it's instances with the class <tt>Object</tt>.
</P>
<P>So all empty class- and superclass-relationships are automatically
reset to <tt>Object</tt>. Note that this are differences to OTcl,
where the destruction of a class destroys all instances and an empty
super-class list remains empty. 
</P>
<H3><A NAME="class_method_chaining"></A>Method Chaining 
</H3>
<P>A special feature of XOTcl is the method chaining without explicit
naming of the ``mix-in''-method. It allows one to mix the same-named
superclass methods into the current method (modeled after CLOS). The
previously described next-path is the basis for this functionality.
At the point marked by a call to the <tt>next</tt> primitive of XOTcl
the next shadowed method on the next path is searched and, when it is
found, it is mixed into the execution of the current method. When no
method is found, the call of <tt>next</tt> returns an empty string,
otherwise it returns the result of the called method. 
The syntax is: 
</P>
<pre CLASS="code">
  <tt>next</tt> <em>?arguments|--noArgs?</em>
</pre><P>
As stated earlier the usage of <tt>next</tt> in XOTcl differs from
OTcl, since the <tt>next</tt> call without arguments in OTcl means
per default that no arguments are passed. But most often all
arguments are passed through to the shadowed methods (since these will
most likely have the same signatures). When all
variables should be passed through, in OTcl it is necessary for
correct variable substitution to use: 
</P>
<pre CLASS="code">
  <tt>eval</tt> $self <tt>next</tt> $args
</pre><P>
To avoid such difficulties, we made the passing of all arguments the
default case; a simple 
</P>
<pre CLASS="code">
  <tt>next</tt>
</pre><P>
performs the task of passing all arguments to the shadowed methods.
These arguments are called the <EM>standard arguments</EM>. If the
standard argument feature should not be used, optionally arguments
can be given or the flag <tt>--noArgs</tt> could be set as sole
argument, which means that the shadowed method is called with no
arguments. 
</P>
<P>
E.g. the following <tt> next </tt> call ignores the standard arguments 
and sends the arguments 1 and 2 instead:
</P>
<pre CLASS="code">
  <tt>next</tt> 1 2
</pre><P>

<P>As an example all classes involved in the previous example should
get a constructor instance method, which simply sets an instance
variable on the object:
</P>
<pre CLASS="code">
  Room <tt>instproc</tt> <tt>init</tt> args {
    <tt>my</tt> <tt>set</tt> roomNumber 0
    <tt>next</tt>
  }    
  4WallsRoom <tt>instproc</tt> <tt>init</tt> args {
    <tt>my</tt> <tt>set</tt> doorPosition 0
    <tt>next</tt>
  }
  CookingPlace <tt>instproc</tt> <tt>init</tt> args {
    <tt>my</tt> <tt>set</tt> stoveType electric
    <tt>next</tt>
  }
  Kitchen <tt>instproc</tt> <tt>init</tt> args {
    <tt>my</tt> <tt>set</tt> cookName -
    <tt>next</tt>
  }
</pre><P>
After creation an object of class <tt>Kitchen</tt> gets automatically
four instance variables <tt>cookName</tt>, <tt>roomNumber</tt>,
<tt>doorPosition</tt> and <tt>stoveType</tt> set up with default
values in this order (since this is the order of the classes in the
next-path). Note that the order is important, because one missing
next call, in one of the <tt>init</tt> methods, means that succeeding
<tt>init</tt> methods will not be executed. This mechanism functions
equally on all kinds of instprocs, not only on constructors. 
</P>
<P>The constructors use the <tt>args</tt> argument, which allows us to
give a list of variable length as arguments. To ensure reusability of
our classes the constructors should use <tt>args</tt> in most cases,
since they may pass through arguments for constructors further up the
class hierarchy.
</P>
<P>If a <tt>proc</tt> with the searched name exists on the object it
shadows all instprocs. A <tt>next</tt> call in a proc leads to
the normal next-paths search, starting with the object's class. 
</P>
<p>By the way, an observant reader might notice that the example
above can be rewritten without explicit constructors, just by
using parameters with default values.
</p>
<pre CLASS="code">
  <tt>Class</tt> Room <tt>-parameter</tt> {{roomNumber 0}}
  <tt>Class</tt> 4WallsRoom <tt>-superclass</tt> Room <tt>-parameter</tt> {{doorPosition 0}}
  <tt>Class</tt> CookingPlace <tt>-parameter</tt> {{stoveType electric}}
  <tt>Class</tt> Kitchen <tt>-superclass</tt> {4WallsRoom CookingPlace} <tt>-parameter</tt> {{cookName -}}
</pre><P>
If an instance of a Kitchen is created it will contain instance
variables for <tt>doorPosition</tt>, <tt>cookName</tt>,
<tt>roomNumber</tt>, and <tt>stoveType</tt>, as the following
statements will show.</p>
<pre CLASS="code">
  Kitchen k
  <tt>puts</tt> [k <tt>info</tt> vars]
</pre>


<H2><A NAME="class_dynamics"></A>Dynamic Class and Superclass
Relationships 
</H2>
<P>Another property of XOTcl that distinguishes it from statically typed
languages are dynamics of class relationships. The realization of the
definition of super-classes as seen above with the <tt>superclass</tt>
method suggests already, that it is not only available at the class
definition time. In the above example its appended to the class
definition with &quot;<tt>-superclass</tt>&quot; as a short syntax
for method invocation at definition time (all other available methods
can also be called with a preceding dash (&quot;-&quot;) appended
to definitions). 
</P>
<P>At any time the class graph may be changed entirely using the
<tt>superclass</tt> method. Suppose the rooms and kitchens created in
modeling of a house should be displayed to a screen, but it is not
determined, whether the user of the system has the possibilities for
graphical outputs. Two classes <tt>TextOutput</tt> and
<tt>GraphicalOutput</tt> may be defined, which handle the output. Both
have an instproc <tt>paint</tt> which does the painting of the virtual
world on the chosen display type. The common output requirements are
handled by a derived class <tt>VirtualWorldOutput</tt> which calls the
<tt>paint</tt> method of the superclass using <tt>next</tt>. In
statically typed languages it would need more sophisticated constructs
to change the output class at run-time. E.g. a delegation to another
object handling the intrinsic task of the output object would be
introduced solely for the purpose of configuring the output
form. With a dynamic class system we can use the <tt>superclass</tt>
method to do so easily:
</P>
<pre CLASS="code">
  <tt>Class</tt> TextOutput
  TextOutput <tt>instproc</tt> paint args {
    <it># do the painting ...</it>
  }
  <tt>Class</tt> GraphicalOutput
  GraphicalOutput <tt>instproc</tt> paint args {
    <it># do the painting ...</it>
  }

  <it># initially we use textual output</it>
  <tt>Class</tt> VirtualWorldOutput <tt>-superclass</tt> TextOutput
  VirtualWorldOutput <tt>instproc</tt> paint args {
    <it># do the common computations for painting ...</it>
    <tt>next</tt>; <it># and call the actual output</it>
  }

  <it># user decides to change to graphical output</it>
  VirtualWorldOutput superclass GraphicalOutput
</pre>
<P>
Sometimes, such a change to new intrinsic properties should not happen
for all instances of a class (or the class hierarchy), but only for
one specific object. Then the usage of a dynamic super-class
relationship is a too coarse-grained means. A second form of such
dynamics is the changing of the relationship between object and
class. This means, objects can also change their class dynamically at
run-time. This feature may be used to model a life-cycle of an object,
without losing the object's identity, inner state or
per-object-specializations through procs. The <tt>class</tt> instance
method enables this functionality.
</P>
<P>An example would be an agent for the virtual world. Agents may be
placeholders for persons, who interactively travel the world, or
programs, which act automatically. When a person decides at run-time
to give a task it has performed formerly by hand to an automatic
agent, the agents nature changes from interactive agent to automatic
agent, but the identity and the local state (that means the parts of
the task, that are already fulfilled by the person) stay the same.
This is a scenario for changing class relationships, e.g.: 
</P>
<pre CLASS="code">
  <tt>Class</tt> Agent
  <tt>Class</tt> AutomaticAgent <tt>-superclass</tt> Agent
  <tt>Class</tt> InteractiveAgent <tt>-superclass</tt> Agent

  <it># create a new agent for a person</it>
  InteractiveAgent agent1

  <it># the person does something ...</it>
  <it># and decides the change to an automatic agent</it>
  agent1 <tt>class</tt> AutomaticAgent
</pre>

<H2>
<A NAME="meta-classes"></A>Meta-Classes 
</H2>
<P>Meta-classes are a special kind of classes. Similar as classes are
managing objects (where managing means: control the creation and
destruction of instances, know what instances exist, provide methods),
meta-classes are managing classes. So, meta-classes are used to define
classes. In other words, every Class in XOTcl is created by a
meta-class, in most cases by the meta-class named <tt>Class</tt>.  New
user-defined meta-classes can be defined as subclasses of the
predefined meta-class <tt>Class</tt>, or by adding an instmixin class
(see <A HREF="per-class-mixins">below</A>) containing <tt>Class</tt>
to the precedence chain of the class.  By defining <tt>Object
instmixin Class</tt> one can even change the object system of XOTclin a way such that every created Object is a meta-class.
</P>
<P>Since the concept of a meta-class are sometimes
confusing to people of a background of some other programming
languages, we explain meta-classes slowly with the analogy of classes
and objects.
</p>
<p>
When a class <tt>Foo</tt> is created via the command
<pre CLASS="code">
   <tt>Class</tt> Foo
</pre>
 it has no private variables and no special methods. This is 
 somewhat similar as creating an object via <tt>Object</tt>:
<pre CLASS="code">
   <tt>Object</tt> foo
</pre>
 This plain object <tt>foo</tt> can be configured directly, or
 one can create a class that configures the object. 
 Instead of writing 
<pre CLASS="code">
   <tt>Object</tt> foo 
   foo <tt>set</tt> x 1
   foo <tt>proc</tt> hi {} {<tt>puts</tt> "hello"}
</pre>
 one can use
<pre CLASS="code">
   <tt>Class</tt> C <tt>-superclass</tt> Object
   C <tt>instproc</tt> <tt>init</tt> {} {<tt>my</tt> <tt>set</tt> x 1}
   C <tt>instproc</tt> hi {} {<tt>puts</tt> "hello"}
</pre>
 and create an instance and call the method.
<pre CLASS="code">
   C c1
   c1 hi
</pre>
 The same holds for meta-classes and classes as well: Instead of writing 
<pre CLASS="code">
   <tt>Class</tt> Foo
   Foo <tt>set</tt> x 1
   Foo <tt>proc</tt> hi {} {<tt>puts</tt> "hello"}
</pre>
 the following can be used:
<pre CLASS="code">
   <tt>Class</tt> MC <tt>-superclass</tt> <tt>Class</tt>
   MC <tt>instproc</tt> <tt>init</tt> {} {<tt>my</tt> <tt>set</tt> x 1}
   MC <tt>instproc</tt> hi {} {<tt>puts</tt> "hello"}
</pre>
 The instances of meta-classes are classes which can be 
 defined the usual way:
<pre CLASS="code">
   MC Bar
   Bar hi
   Bar b1
</pre>
 Now we have a class names <tt>Bar</tt> which has a class-scoped
 variable named <tt>x</tt> with the value of 1 (set via the
 constructor); the class <tt>Bar</tt> has as well a class-method named
 <tt>hi</tt> which prints, when called, the string "hello". The class
 <tt>Bar</tt> can be used to create instances of the class like
 <tt>b1</tt>, <tt>b2</tt> and so on.
</p>
<p>Note that the command <tt>Class</tt> is a predefined definition
of the most general meta-class in XOTcl. Each time we are creating
a class, we use this meta-class.
In order to define a specialized meta-class, we can do this the
traditional object-oriented way: we subclass. Therefore, in to define
a specialized meta-class, we can use:
</P>
<pre CLASS="code">
  <tt>Class</tt> myMetaClass <tt>-superclass</tt> <tt>Class</tt>
</pre>
<P>This defines a new meta-class <tt>myMetaClass</tt>, which has all the
abilities of meta-classes. That means that the programmer is able to
specify new class features or override old ones. Later she/he may
instantiate these into new classes. 
</P>
<P>This is a very powerful language feature, since it allows one to give
some classes further abilities than the others (or to restrict
classes). This way large program structures, like certain design
pattern parts, may be instantiated. Meta-classes hold the common
abstract parts of the structures. They allow one to form libraries of
such structures very easily. 
</P>
<H3>Example 1: Overloading the info method of classes
</H3>
<P>
As a simple example we can derive a new meta-class
<tt>NoClassInfo</tt> from <tt>Class</tt>. Later we override the
<tt>info</tt> method of <tt>Class</tt>. Thus the classes created with
<tt>NoClassInfo</tt>, have an <tt>info</tt> option that only produces
an error message. All classes created with <tt>NoClassInfo</tt>, like
<tt>Agent</tt> in the example below, are not capable of accessing the class
<tt>info</tt> method anymore:
</P>
<pre CLASS="code">
  <tt>Class</tt> NoClassInfo <tt>-superclass</tt> <tt>Class</tt>
  <it># redefine info ability</it>
  NoClassInfo <tt>instproc</tt> <tt>info</tt> args {
    error &quot;No class info lookup&quot;
  }
  <it># derive agent class from meta-class, which</it>
  <it># can not access class info</it>
  NoClassInfo Agent
</pre>
Now a call like: 
<pre CLASS="code">
  Agent <tt>info</tt> superclass
</pre><P>
triggers the error message. 
</P>

<H3>Example 2: Defining Classes that Count Their Instances
</H3>
<p>Meta-classes are frequently used to define some bookkeeping
about the number of instances on the class level. In the following
example we define a meta-class named <tt>CountedClass</tt> which
defines classes that count their instances:
<pre CLASS="code">
  <tt>Class</tt> CountedClass <tt>-superclass</tt> <tt>Class</tt> <tt>-parameter</tt> {{counter 0}}
  CountedClass <tt>instproc</tt> <tt>create</tt> args {
    <tt>my</tt> <tt>incr</tt> counter
    <tt>next</tt>
  }
  CountedClass <tt>instproc</tt> <tt>dealloc</tt> args {
    <tt>my</tt> <tt>incr</tt> counter -1
    <tt>next</tt>
  }
  CountedClass Dog

  Dog piffie
  Dog idefix
  <tt>puts</tt> "nr of dogs: [Dog counter]"

  piffie <tt>destroy</tt>
  <tt>puts</tt> "nr of dogs: [Dog counter]"
</pre>
Note that the behavior introduced by meta-classes
can be orthogonal to the behavior of the classes. One can
define <tt>Dog</tt> as a specialization of <tt>Animal</tt>
or defines a special kind of dog such as <tt>Poodle</tt> using
the method <tt>superclass</tt> as usual.
</p>

<H3>Example 3: The Singleton Meta-Class
</H3>
<p>Finally, a small example, which is more practical. Some
applications have the requirement that only one instance of a class
might be defined at a certain time. Such a behavior is frequently
called a "Singleton". In XOTcl we can define a class singleton by
overloading the <tt>create</tt> method of <tt>Class</tt>: when
<tt>create</tt> is called and there exists already an instance of the
singleton it is returned instead of a new instance.
<pre CLASS="code">
  <tt>Class</tt> Singleton <tt>-superclass</tt> <tt>Class</tt>
  Singleton <tt>instproc</tt> <tt>create</tt> args {
    <tt>expr</tt> {[<tt>my</tt> exists instance] ? [<tt>my</tt> <tt>set</tt> instance] : [<tt>my</tt> <tt>set</tt> instance [<tt>next</tt>]]}
  }
</pre>
 If someone wants to have a class e.g. <tt>Manager</tt> to be a
 singleton, you can create it by e.g.
<pre CLASS="code">
  Singleton Manager <tt>-superclass</tt> FOO
</pre>
</p>


<H2>
<A NAME="destroy-logic"></A>Create, Destroy, and Recreate Methods
</H2>
<P>
<P>
XOTcl allows since version 0.84 for a flexible destroy and recreate scheme.
<tt>create</tt> and <tt>alloc</tt> are both Class instprocs 
handling creation for their instances. I.e.:
</P>
<pre CLASS="code">
 <em>className</em> <tt>alloc</tt> [<tt>self</tt>]
</pre>
and
<pre CLASS="code">
 <em>className</em> <tt>create</tt> [<tt>self</tt>]
</pre>
<P>
are used for creating an instance. A similar method <tt>dealloc</tt>
exists on Class that handles physical destruction of an object. The
method <tt>destroy</tt> on Object which lets an object destroy itself in fact
has the following behavior:
</P>
<pre CLASS="code">
  <tt>Object</tt> <tt>instproc</tt> <tt>destroy</tt> args {
   [<tt>my</tt> <tt>info</tt> class] <tt>dealloc</tt> [<tt>self</tt>]
  }
</pre>
<P>
However, this behavior is not implemented in XOTcl, but in C.
<tt>create</tt>  distinguishes between the following situations:
</P>
<ul>
<li> <em>Create a new object:</em> 
    By default <tt>create</tt> calls <tt>alloc</tt> and then
   <tt>doInitializations</tt>.
<li> <em>Recreate an existing object:</em> 
    When the specified object exists, it is recreated through the
    <tt>recreate</tt> method:
<pre CLASS="code">
  <em>givenClass</em> <tt>recreate</tt> [<tt>self</tt>]
</pre>
    <P>
    The method <tt>recreate</tt> can be customized like all other
  XOTcl methods (e.g. by overloading or interception). 
    By default <tt>recreate</tt> calls <tt>cleanup</tt> followed by
  <tt>doInitializations</tt>.
  </p>
  <p>
  Note that <tt>recreate</tt> is not called, when a someone tries
  to recreate a class as an object or an object as a class. In these
  cases, <tt>destroy</tt> + <tt>create</tt> are used.
<pre CLASS="code">
    Class c
    Object c ;# here, "c" is downgraded to an object, no "recreate" is called
</pre>
</ul>
<p>
For <tt>create</tt> and <tt>recreate</tt>, the method <tt>doInitializations</tt> 
is called automatically from C and has the following default behavior: 
</p>
<ul>
<li> Search for parameter default values,
<li> Call parameter initialization methods,
<li> Call the constructor <tt>init</tt>.
</ul>
<P>
Each step has a method call that can be changed, intercepted, etc.  Of
course, <tt>cleanup</tt>, <tt>recreate</tt>, <tt>dealloc</tt>, 
etc. can also be overloaded or intercepted.
</P>
<P>
Consider a typical case for overloading <tt>recreate</tt>: a structure
preserving <tt>recreate</tt> that cleans up the class but 
preserves the existing class hierarchy (subclass and instance relationships):
</P>
<pre CLASS="code">
  <tt>Class</tt> StructurePreservingRecreate
  StructurePreservingRecreate <tt>instproc</tt> <tt>recreate</tt> {cl args} {
    <tt>if</tt> {[<tt>my</tt> <tt>isclass</tt> $cl]} {
      <tt>set</tt> subclass [$cl <tt>info</tt> subclass]
      <tt>set</tt> instances [$cl <tt>info</tt> instances]
    }
    <tt>next</tt>
    <tt>if</tt> {[<tt>my</tt> <tt>isclass</tt> $cl]} {
      <tt>foreach</tt> sc $subclass {
        $sc <tt>superclass</tt> $cl
      }
      <tt>foreach</tt> i $instances {
        $i <tt>class</tt> $cl
      }
    }
  }
  <tt>Object</tt> instmixin add StructurePreservingRecreate
</pre>
<p>
Now the following code does not change the superclass or instance
relationships of C:
</p>
<pre CLASS="code">
  <tt>Class</tt> A
  <tt>Class</tt> B
  <tt>Class</tt> C <tt>-superclass</tt> {A B}
  <tt>Class</tt> D
  <tt>Class</tt> E <tt>-superclass</tt> {C D}
  C c1
  C c2

  <it># recreate -> is structure preserving</it>
  <tt>Class</tt> C <tt>-superclass</tt> {A B}
  C c2

  <it># test</it>
  <tt>puts</tt> superclass=[C <tt>info</tt> superclass]
  <tt>puts</tt> subclass=[C <tt>info</tt> subclass]
  <tt>puts</tt> instances=[C <tt>info</tt> instances]
  <tt>puts</tt> class=[c1 <tt>info</tt> class]
  <tt>puts</tt> class=[c2 <tt>info</tt> class]
</pre>

Starting with XOTcl 1.4.0, xotcl provides also a user-friendly
way for a structure-prevering recreate implemented in C. Since this version, one
can configure "softrecreate" as follow.
<pre CLASS="code">
<tt>::xotcl::configure softrecreate</tt> true
</pre>
This command causes that recreates are structure-conservative.

<H2>
<A NAME="non-pos-args"></A>Methods with Non-Positional Arguments
</H2>
<P>
<P>
So far we have introduced methods only with positional arguments: that
is, the position of an argument in the argument list determines to
which local variable the argument is bound, when the method is
invoked. Sometimes non-positional arguments -- arguments that carry
both a name and a value when the method is invoked -- are
useful. Before a non-positional argument can be used, it must be
defined in the method definition using the following syntax:
</P>
<pre CLASS="code">
 <em>className</em> <tt>instproc</tt> methodName <em>?non-pos-args? args</em> body ?assertions
 <em>objName</em> <tt>proc</tt> methodName <em>?non-pos-args?</em> args body ?assertions
</pre>
<P>
The non-positional arguments are defined with the following syntax:
</P>
<pre CLASS="code">
 {-name?:checkoption1, checkoption2, ...? default value} \
     {-name?:checkoption1, checkoption2, ...? ?default value?} ...
</pre>
<p>
Only the name of the non-positional argument is really required, all
other parts of this syntax are optional.
</p>
<p>
Let's consider a simple example, where a method with two
non-positional args is defined; one has only a name ("a"), and one has
a name and a default value (b):
</p>
<pre CLASS="code">
 <tt>Object</tt> o
 o <tt>proc</tt> someproc {-a {-b {1 2 3}} x y} {
     puts "$a $b $x $y"
 }
</pre><P>
We can invoke this method as follows:
</p>
<pre CLASS="code">
 o someproc -b {4 5} -a 1 3 4
</pre><P>

Here, the order of <tt>a</tt> and <tt>b</tt> can be changed; hence the name
non-positional arguments.  As <tt>b</tt> has a default value, we do not need
to provide a value for it. In the following invocation <tt>b</tt> has the
value "1 2 3":
</p>
<pre CLASS="code">
 o someproc -a 1 3 4
</pre><P>
The ordinary arguments start after the last non-positional argument
(here: "3 4").  We can explicitly end the non-positional arguments by
using "--". This is useful if we want to provide arguments that contain 
dashes ("-"), e.g.:
</p>
<pre CLASS="code">
 o someproc -a 1 -- -b -c
</pre><P>

Sometimes we want to check or control the non-positional
arguments. For instance, in the above invocation, we might want to
check that <tt>a</tt> is not forgotten, because otherwise the method cannot
execute properly. This is the role of the checkoptions. There are three
predefined checkoptions: <tt>required</tt>, <tt>boolean</tt> and 
<tt>switch</tt>. <tt>required</tt> checks
whether a non-positional argument is given, <tt>boolean</tt> checks that a
non-positional argument is of boolean type. For instance:
</p>
<pre CLASS="code">
 <tt>Class</tt> P
 P <tt>instproc</tt> someproc {-a:required {-b:boolean true}} {
     puts "$a $b"
 }
 P p
</pre><P>

This method requires <tt>a</tt>, and <tt>b</tt> needs to be 
of type boolean (is has
the default value <tt>true</tt>). This invocation is valid:
</p>
<pre CLASS="code">
 p someproc -a 1 -b 0
</pre><P>

This invocation is invalid, because <tt>a</tt> is missing, 
and <tt>b</tt> is not a Tcl boolean type:
</p>
<pre CLASS="code">
 p someproc -b " a b v"
</pre><P>
The checkoption <tt>switch</tt> is similar to <tt>boolean</tt> except
it does not require an additional argument. If the default value is 
<tt>false</tt>, the switch can be turned on, if the default is <tt>true</tt>
it can be switched off.
<p>
The checkoptions are extensible. In fact, they are defined in an
object <tt>::xotcl::nonposArgs</tt>. We can extend this object with new
methods.
<!-- and we can provide other checkobjects. -->
A check option method has the following syntax:
</P>
<pre CLASS="code">
 <em>someobject|someclass</em> <tt>proc</tt>|<tt>instproc</tt> methodName {?optional nonpositional arguments? argName arg} {
  ...
 }
</pre>
<p>

<tt>argName</tt> is here used to denote the name of the argument, 
and <tt>arg</tt> is the provided value.
</p>


<!--
<p>
In seldom cases, more flexibility might be required. Using the
checkoption "checkobj" we can switch the object that is used for
checking the options. This can be done at any place in the checkoption
list. The following example defines new checkoptions in a separate
object and switches to this object for checking. Then the check is
switched back to "xotcl::nonposArgs" to invoke the predefined option
"required":

</P>
<pre CLASS="code">
Object colorchecker
colorchecker proc color {a b c argName args} {
    puts "$a $b $c"
}
colorchecker proc reddish {argName args} {
    puts "reddish"
}
o proc color {{{-color:checkobj colorchecker,color must be red,reddish,checkobj xotcl::nonposArgs, required} red}} {} {
    puts "$b $arg"
}
</pre></p>
-->

Of course, the non-positional arguments can also be introspected. The
following <tt>info</tt> options return the non-positional arguments of a
method:

</P>
<pre CLASS="code">
 <em>objName</em> <tt>info</tt> <em>nonposargs</em> methodName
 <em>className</em> <tt>info</tt> <em>instnonposargs</em> methodName
</pre></p>

<!-- PAGE BREAK -->

<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055">
	<TR>
		<TD WIDTH=75%>
			<P><A NAME="interceptors"></A><FONT
COLOR="#ffffff"><FONT FACE="Arial, Helvetica"><FONT SIZE=6>Message
Interception Techniques
			</FONT></FONT></FONT>
			</P>
		</TD>
		<TD>
			<IMG SRC="logo-100.jpg" NAME="Graphic7" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
	</TR>
</TABLE>

<P>Even though object-orientation orders program structures around
data, objects are characterized primarily by their behavior.
Object-oriented programming style encourages the access of
encapsulated data only through the methods of an object, since this
enables data abstractions. A method invocation can be interpreted as a
message exchange between the calling and the called object.
Therefore, objects are at runtime only traceable through their message
exchanges. At this point the message interceptors can be applied to
catch and manipulate all incoming and outgoing messages of an
object. 
<P>
</P>Generally interceptors can be applied to attach additional or
extrinsic concerns to an object or a class or a class hierarchy. For
instance roles or aspects can be implemented this way on various
levels of scale.
</P>

<P>We have already discussed some interception techniques
implicitly. E.g., the <tt>unknown</tt> mechanism intercepts messages
that have not be found on the object. It can be used as a very useful
programming technique, e.g., the define a default behavior for an
object. The interceptors presented in this section have a different
character: They are applied before/after the original method <em>even
if the method is defined for the target object</em>. Thus these
interception techniques may be applied 
</P>

<P>We will discuss the message interceptors in this section in
detail. The table below gives an impression, when which interceptor
may be applied.

    <P ALIGN=CENTER STYLE="margin-bottom: 0in"><STRONG>Message
	Interceptors Overview</STRONG></P>

    <CENTER>
      <TABLE BORDER=1 CELLPADDING=2>
	<TR>
	  <TD></TD>
	  <TD><P ALIGN=LEFT><strong>Applied When</strong></P></TD>
	  <TD><P ALIGN=LEFT><strong>Primary Target Structure</strong></P></TD>
	  <TD><P ALIGN=LEFT><strong>Coverage</strong></P></TD>
	</TR>
	<TR>
	  <TD><P ALIGN=LEFT><em> Per-Object Filter</em></P></TD>
	  <TD><P ALIGN=LEFT>before/after a call</P></TD>
	  <TD><P ALIGN=LEFT> object hierarchies</P></TD>
	  <TD><P ALIGN=LEFT>all methods</P></TD>
	</TR>
	<TR>
	  <TD><P ALIGN=LEFT><em> Per-Class Filter</em></P></TD>
	  <TD><P ALIGN=LEFT>before/after a call</P></TD>
	  <TD><P ALIGN=LEFT> class and class hierarchies</P></TD>
	  <TD><P ALIGN=LEFT>all methods</P></TD>
	</TR>
	<TR>
	  <TD><P ALIGN=LEFT><em> Per-Object Mixin</em></P></TD>
	  <TD><P ALIGN=LEFT> before/after a call</P></TD>
	  <TD><P ALIGN=LEFT> object</P></TD>
	  <TD><P ALIGN=LEFT> specific methods</P></TD>
	</TR>
	<TR>
	  <TD><P ALIGN=LEFT><em> Per-Class Mixin</em></P></TD>
	  <TD><P ALIGN=LEFT> before/after a call</P></TD>
	  <TD><P ALIGN=LEFT> class and class hierarchies</P></TD>
	  <TD><P ALIGN=LEFT> specific methods</P></TD>
	</TR>
	<TR>
	  <TD><P ALIGN=LEFT><em> Unknown Mechanism</em></P></TD>
	  <TD><P ALIGN=LEFT> after method was not found</P></TD>
	  <TD><P ALIGN=LEFT> object</P></TD>
	  <TD><P ALIGN=LEFT> all unknown calls</P></TD>
	</TR>
      </TABLE>
    </CENTER>

<br>

<H2><A NAME="filter"></A>Filter
</H2>

<P>The filter (see <a href="#xotcl-filter">[Neumann and Zdun
1999a]</a> for more details) is a language construct to implement
broader extensional concerns either for a single object or for several
classes or class hierarchies. This way large program structures at the
scale of several classes or class hierarchies can be managed.  It is a
very general interception mechanism which can be used in various
application areas. E.g. a very powerful programming language support
for certain design patterns is easily achievable, but there are also
several other domains which are covered, like tracing of program
structures, self-documentation at run-time, re-interpretation of the
running program, etc.
</P>
<P>A <I>per-class filter</I> is a special instance method that is
registered for a class <I>C</I>. A <I>per-object filter</I> is a
special instance method that is registered for a object
<I>o</I>. Every time an object of class, <I>C</I> or the object
<I>o</I> respectively, receives a message,
the <I>filter</I> method is invoked automatically.
</P>
<H3><A NAME="filter_usage"></A>Usage of Filters 
</H3>
<P>All messages to a filtered object must go through the filter before
they reach their destination object. A simple example would be a sole
filter on the class of the object. To define such a filter two steps
are necessary. Firstly a filter method has to be defined, then the
filter has to be registered. The filter method consists of three parts
which are all optional. A filter method has the following form:
</P>
<pre CLASS="code">
  <EM>className</em> <tt>instproc</tt> <em>FilterName args</em> {
    <em>pre-part</em>
    <tt>next</tt>
    <em>post-part</em>
  }
</pre>
<P>
When a filter comes to execution at first the actions in the <EM>pre-part</EM>
are processed.  The filter is free in what it does with the
message. Especially it can (a) pass the message, which was perhaps
modified in the <EM>pre-part</EM>, to other filters and finally to
the object. It can (b) redirect it to another destination. Or it can
(c) decide to handle the message on its own. The forward passing of
messages is implemented through the <tt>next</tt> primitive of XOTcl.
After the filter has passed its pre-part, the actual called method is
invoked through <tt>next</tt>. 
</P>
<P>After the call of <tt>next</tt> is processed, the execution returns
to the point in the filter, where the <tt>next</tt> call is located
and resumes execution with the actions of the <EM>post-part</EM>.
These may contain arbitrary statements, but especially may take the
result of the actual called method (which is returned by the
next-call) and modify it. The caller then receives the result of the
filter, instead of the result of the actual called method.
</P>
<P>The pre- and post-part may be filled with any ordinary
XOTcl-statements. The distinction between the three parts is just a
naming convention for explanation purposes. 
</P>
<P>The filter uses the <tt>args</tt> argument which lets us use a list of
variable length as arguments, since it must filter a lot of different
calls, which may have different argument lists. Furthermore, it may
pass through arguments to other filters and the preceding filters may
change the argument list. 
</P>
<P>Since any proc/instproc may be a filter, a registration of the
filter is necessary, in order to tell XOTcl, which instprocs are
filters on which classes. The <tt>filter</tt> and <tt>instfilter</tt>
instance methods are able to handle this task for per-object filters
and per-class filters respectively. Similar to the XOTcl language
introduced so far, the filter registration is dynamic at run-time. By
supplying a new list of filters to
<tt>filter</tt>/<tt>instfilter</tt>, the programmer can change the
filters registered on a class at arbitrary times. The filter instance
method has the syntax:
</P>
<pre CLASS="code">
  <em>className</em> <tt>instfilter</tt> <em>filterList</em>
</pre>
for per-class filters and:
<pre CLASS="code">
  <em>objName</em> <tt>filter</tt> <em>filterList</em>
</pre>
for per-object filters.

<P>
Now a simple example should show the filter's usage. In the preceding
examples we have defined several rooms. Every time a room action
occurs it is likely that the graphical sub-system has to change
something on the output of that particular room. Therefore, at first
we need a facility to be informed every time an action on a room
happens. This is quite easily done using filters: 
</P>
<pre CLASS="code">
  <tt>Class</tt> Room
  Room r1; Room r2;       <it># just two test objects</it>

  Room <tt>instproc</tt> roomObservationFilter args {
    <tt>puts</tt> "now a room action begins"
    <tt>set</tt> result [<tt>next</tt>]
    <tt>puts</tt> "now a room action ends - Result: $result"
    <tt>return</tt> $result
  }

  Room <tt>instfilter</tt> roomObservationFilter
</pre><P>
Now every action performed on room objects is notified with a pre-
and a post-message to the standard output stream. We return the
result of the actual called method, since we don't want to change the
program behavior at all. E.g. we can set an instance variable on both
of the two room objects: 
</P>
<pre CLASS="code">
  r1 <tt>set</tt> name &quot;room 1&quot;
  r2 <tt>set</tt> name &quot;room 2&quot;
</pre><P>
The output would be: 
</P>
<pre CLASS="code">
  now a room action begins
  now a room action ends - Result: room 1
  now a room action begins
  now a room action ends - Result: room 2
</pre><P STYLE="margin-bottom: 0in">
<BR>
</P>
<P ALIGN=CENTER STYLE="margin-bottom: 0in"><A NAME="oneFilter"></A><A NAME="718"></A>
&#160;&#160; 
</P>
<P ALIGN=CENTER STYLE="margin-bottom: 0in"><STRONG>Figure 4:</STRONG>
Cascaded Message Filtering</P>
<CENTER>
	<TABLE WIDTH=480 BORDER=0 CELLPADDING=2 CELLSPACING=0>
		<COL WIDTH=476>
		<TR>
			<TD WIDTH=476>
				<P><FONT SIZE=1 STYLE="font-size: 2pt"><IMG SRC="cascaded-message-filter.gif" NAME="Graphic14" ALIGN=BOTTOM WIDTH=474 HEIGHT=281 BORDER=0></FONT></P>
			</TD>
		</TR>
	</TABLE>
</CENTER>
<P><BR><BR>
</P>
<P>All classes may have more than one filter. In fact they may have a
whole filter chain, where the filters are cascaded through <tt><tt>next</tt></tt>.
The <tt>next</tt> method is responsible for the forwarding of
messages to the remaining filters in the chain one by one till all
pre-parts are executed. Then the actual method is executed and
then the post-parts come to turn. If one next-call is omitted the
chain ends in this filter method. As an example for an additional
filter we may register a filter that just counts the calls to
rooms. 
</P>
<pre CLASS="code">
  Room <tt>set</tt> callCounter 0;  <it># set class variable</it>
  Room <tt>instproc</tt> counterFilter args {
    [<tt>self</tt> class] <tt>instvar</tt> callCounter
    <tt>incr</tt> callCounter
    <tt>puts</tt> "the call number callCounter to a room object"
    <tt>next</tt>
  }
  Room <tt>instfilter</tt> {roomObservationFilter counterFilter}
</pre><P>
Filters are invoked in registration order. The order may be changed
by removing them and adding them in new order. Filters are inherited
by subclasses. E.g. in the preceding example for the next path, an
<tt>OvalOffice</tt> was derived from the <tt>Room</tt> class. Without
a change to the program each <tt>OvalOffice</tt> object automatically
produces the same filter output as rooms. 
</P>
<P STYLE="margin-bottom: 0in"><BR>
</P>
<P ALIGN=CENTER STYLE="margin-bottom: 0in"><A NAME="filterInheritance"></A><A NAME="734"></A>
&#160;&#160; 
</P>
<P ALIGN=CENTER STYLE="margin-bottom: 0in"><STRONG>Figure 5:</STRONG>
Filter Inheritance</P>
<CENTER>
	<TABLE WIDTH=2 BORDER=0 CELLPADDING=2 CELLSPACING=0>
		<COL WIDTH=0>
		<TR>
			<TD>
				<P><FONT SIZE=1 STYLE="font-size: 2pt"><IMG SRC="filter-inheritance.gif" NAME="Graphic15" ALIGN=BOTTOM WIDTH=508 HEIGHT=350 BORDER=0></FONT></P>
			</TD>
		</TR>
	</TABLE>
</CENTER>
<P><BR>Filter chains can also be combined through (multiple)
inheritance using the <tt>next</tt> method. When the filter chain of
the object's class is passed, the filter chains of the superclasses
are invoked using the same precedence order as for inheritance. Since
on the subclass there may also be a another filter chain, without
sophisticated computing in the pre- and post-parts one can produce
easily a powerful tracing facility. E.g. if we want to distinguish an
<tt>OvalOffice</tt> from other rooms we may want to add a filter
solely for rooms of the type <tt>OvalOffice</tt>: 
</P>
<pre CLASS="code">
  <tt>Class</tt> OvalOffice <tt>-superclass</tt> Room
  OvalOffice o1;  <it># test object</it>
  OvalOffice <tt>instproc</tt> ovalOfficeObservationFilter args {
    <tt>puts</tt> &quot;actions in an oval office&quot;
    <tt>next</tt>
  }
  OvalOffice <tt>instfilter</tt> ovalOfficeObservationFilter
</pre><P>
A simple call to the <tt>o1</tt> object, like: 
</P>
<pre CLASS="code">
  o1 <tt>set</tt> location "Washington"
</pre><P>
produces the following output: 
</P>
<pre CLASS="code">
  actions in an oval office
  now a room action begins
  the call number 3 to a room object
  now a room action ends - Result: Washington
</pre><P>
As seen already, filter registrations can be added dynamically at
runtime. But they may also be removed. Perhaps the counting on rooms
should stop after a while, then a simple call of the <tt>instfilter</tt>
method is sufficient: 
</P>
<pre CLASS="code">
  Room <tt>instfilter</tt> roomObservationFilter
</pre>
<P>Filters can be removed completely by giving an empty list to the
registration method:</P>
<pre CLASS="code">
  Room <tt>instfilter</tt> {}
</pre>


<P> Per-object filters operate on a single object. E.g. if we only
want to observe a single Room object room1, we can use the filter
method to register the roomObservationFilter only for this particular
instance:</P>
<pre CLASS="code">
  room1 <tt>filter</tt> roomObservationFilter
</pre>
<P> As a filter we can register any method in the precedence order of
the class or object. Thus we can also register procs as per-object
filters. Additionally, meta-class methods may be registered as
per-class filters. Filters are linearized so that each filter is only
executed once, even if it is registered multiple times. 
</P>
<P><BR><BR>
</P>
<H3><A NAME="filter_info"></A>Introspection on Filters
</H3>
In order to gain information about the currently registered filters on
a certain object/class, the class-object info option <tt>filters </tt> and
the  class info option <tt>instfilters </tt> may be
queried. It returns a list of the currently registered filters:
</P>
<pre CLASS="code">
  <em>className</em> <tt>info</tt> instfilter
  <em>objName</em> <tt>info</tt> filter
</pre>
<p>

A special call-stack info option for filters is <tt>self
filterreg</tt>. It returns the name of the object or class on which
the filter is registered. Since the filter may be registered on other
objects/classes than the one on which it is defined, this may vary from
<tt>self class</tt> in the filter.

The command returns a list of the form:
<pre CLASS="code">
  <em>objName</em> <tt>filter</tt> <em>filterName</em>
</pre>
or:
<pre CLASS="code">
  <em>className</em> <tt>instfilter</tt> <em>filterName</em>
</pre>
respectively.
</P>

<P><BR><BR>
</P>
<H3><A NAME="filter_trace"></A>Example: A Simple Trace Filter 
</H3>
<P>The trace example primarily demonstrates the inheritance of filter
chains. Since all classes inherit from <tt>Object</tt>, a filter on
this class is applied on all messages to objects. The <tt>Trace</tt>
object encapsulates methods for managing the tracing: 
</P>
<pre CLASS="code">
  <tt>Object</tt> Trace
  Trace <tt>set</tt> traceStream stdout

  Trace <tt>proc</tt> openTraceFile name {
    <tt>my</tt> <tt>set</tt> traceStream [open $name w]
  }

  Trace <tt>proc</tt> closeTraceFile {} {
    <tt>close</tt> $Trace::traceStream
    <tt>my</tt> <tt>set</tt> traceStream stdout
  }

  Trace <tt>proc</tt> <tt>puts</tt> line {
    <tt>puts</tt> $Trace::traceStream $line
  }

  Trace <tt>proc</tt> add className {
    $className <tt>instfilter</tt> [concat [$className <tt>info</tt> filter] traceFilter]
  }
</pre><P>
First we define the object and set a variable for the stream to which
we send the trace outputs (here: stdout). With a method for opening
and a method for closing a file we can redirect the trace stream to a
file. <tt>puts</tt> is helper method for the filter to print an
output to the selected output stream. In <tt>add</tt> the <tt>traceFilter</tt>
is appended to the existing filters of a specified class. The actual
filter method (see below) displays the calls and exits of methods
with an according message. The calls are supplied with the arguments,
the exit traces contain the result values. We have to avoid the
tracing of the trace methods explicitly. 
</P>
<pre CLASS="code">
  <tt>Object</tt> <tt>instproc</tt> traceFilter args {
    <it># don't trace the Trace object</it>
    <tt>if</tt> {[string equal [<tt>self</tt>] ::Trace]} {return [<tt>next</tt>]}
    <tt>set</tt> context &quot;[<tt>self</tt> class]-&gt;[<tt>self</tt> callingproc]&quot;
    <tt>set</tt> method [<tt>self</tt> calledproc]
    switch -- $method {
      proc -
      instproc {::set dargs [<tt>list</tt> [lindex $args 0] [lindex $args 1] ...] }
      default  {::set dargs $args }
    }
    Trace::puts &quot;CALL $context&gt;  [<tt>self</tt>]-&gt;$method $dargs&quot;
    <tt>set</tt> result [<tt>next</tt>]
    Trace::puts &quot;EXIT $context&gt;  [<tt>self</tt>]-&gt;$method ($result)&quot;
    <tt>return</tt> $result
  }
</pre><P>
As trace message we write the callee&acute;s context (class and
proc), the invoked method (using <tt>calledproc</tt>), and the given
arguments. In the switch statement we avoid to print whole method
bodies. 
</P>
<P>With 
</P>
<pre CLASS="code">
  Trace add Room
</pre><P>
messages to all rooms, including all instances of <tt>Room</tt>&acute;s
subclasses, are surrounded with a CALL and an EXIT output. With
</P>
<pre CLASS="code">
  Trace add Object
</pre><P>
messages to all objects in an XOTcl environment are surrounded with a
CALL and an EXIT output. In general, it is possible to restrict the
trace to instances of certain classes, or to produce trace output for
only certain methods. This requires registration methods and a more
sophisticated implementation of the filter method. 
</P>
<P><BR><BR>
</P>

<H2><A NAME="mixins"></A>Mixin Classes
</H2>

<P>Per-object and per-class mixins (see <a
href="#xotcl-mixin">[Neumann and Zdun 1999c]</a> for more details) are
another interception technique of XOTcl to handle complex
data-structures dynamically. Here, we use mixin as a short form for
mixin class. All methods which are mixed into the execution of the
current method, by method chaining or through a mixin class, are
called <I>mixin methods</I>.  Mixin classes resembles the filter
presented in the preceding section. While the filters work on all
calls to all methods of an object/class hierarchy, the mixin classes
are applied on specific methods. The filter is defined in a single
method, while the mixin is composes several method in a class.
 
</P>
<H3><A NAME="mixin_supplemental"></A>Supplemental Classes 
</H3>
<P>Mixin classes cover a problem which is not solvable elegantly just
by the method chaining, introduced so far. To bring in an addition to
a class, the normal XOTcl way is to define a mixin method and chain
the methods through <tt>next</tt>, e.g.:
</P>
<pre CLASS="code">
  <tt>Class</tt> Basic
  Basic <tt>instproc</tt> someProc  {
    <it># do the basic computations</it>
  }
  <tt>Class</tt> Addition
  Addition <tt>instproc</tt> someProc {
    <it># do the additional computations</it>
    <tt>next</tt>
  }
</pre><P>
In order to mix-in the additional functionality of the <EM>supplemental</EM>
class <tt>Addition</tt> a new helper class (sometimes called
intersection class) has to be defined, like: 
</P>
<pre CLASS="code">
  Basic+Addition <tt>-superclass</tt> {Addition Basic}
</pre><P>
This is even applicable in a dynamical manner, every object of the
class <tt>Basic</tt> may be changed to class <tt>Basic+Addition</tt>
at arbitrary times, e.g.: 
</P>
<pre CLASS="code">
  Basic basicObj
  ...
  basicObj class Basic+Addition
</pre><P>
Now consider a situation with two addition classes. Then following
set of classes has to be defined to cover all possible combinations: 
</P>
<pre CLASS="code">
  <tt>Class</tt> Basic
  <tt>Class</tt> Addition1
  <tt>Class</tt> Addition2
  <tt>Class</tt> Basic+Addition1 <tt>-superclass</tt> {Addition1 Basic}
  <tt>Class</tt> Basic+Addition2 <tt>-superclass</tt> {Addition2 Basic}
  <tt>Class</tt> Basic+Addition1+Addition2 <tt>-superclass</tt> {Addition2 Addition1 Basic}
</pre><P>
The number of necessary helper classes rises exponential. For <I>n</I>
additions, 2<I><SUP>n-1</SUP></I> (or their permutations if order
matters) artificially constructed helper-classes are needed to
provide all combinations of additional mix-in functionality.
Furthermore it is possible that the number of additions is unlimited,
since the additions may produce other additions as side-effects. This
demonstrates clearly that the subclass mechanism provides only a
poor mechanism for mix-in of orthogonal functionality. Therefore we
provide an extension in the form of class-object mixin classes, which are
added in front of the search precedence of classes. 
</P>
<H3><A NAME="mixin-usage"></A>Per-Object Mixins 
</H3>
<P>The mix-ins methods extend the next-path of shadowed methods.
Therefore, per-object mix-in methods use the <tt>next</tt> primitive
to access the next shadowed method. Consider the following example: 
</P>
<pre CLASS="code">
  <tt>Class</tt> Agent
  Agent <tt>instproc</tt> move {x y} { 
    <it># do the movement</it>
  }
  <tt>Class</tt> InteractiveAgent <tt>-superclass</tt> Agent
  <it># Addition-Classes</it>
  <tt>Class</tt> MovementLog
  MovementLog <tt>instproc</tt> move {x y} { 
    <it># movement logging</it>
    <tt>next</tt>
  }
  <tt>Class</tt> MovementTest
  MovementTest <tt>instproc</tt> move {x y} {
    <it># movement testing</it>
    <tt>next</tt>
  }
</pre><P>
An agent class is defined, which allows agents to move around. Some
of the agents may need logging of the movements, some need a testing
of the movements, and some both (perhaps only for a while). These
functionalities are achieved through the additional classes, which we
will apply through per-object mixins. 
</P>
<P>Before we can use the per-object mix-ins on a particular object,
we must register the mixins on it with the <tt>mixin</tt> instance
method. It has the syntax: 
</P>
<pre CLASS="code">
  <em>objName</em> <tt>mixin</tt> <em>mixinList</em>
</pre><P>

For example we may create two interactive agents, where one is logged
and one is tested: 
</P>
<pre CLASS="code">
  InteractiveAgent i1; InteractiveAgent i2
  i1 <tt>mixin</tt> MovementLog
  i2 <tt>mixin</tt> MovementTest
</pre><P>
At arbitrary times the mixins can be changed dynamically. For example
<tt>i2</tt>'s movements can also be logged: 
</P>
<pre CLASS="code">
  i2 <tt>mixin</tt> MovementTest MovementLog
</pre><P STYLE="margin-bottom: 0in">
<BR>
</P>
<P ALIGN=CENTER STYLE="margin-bottom: 0in"><A NAME="per-obj-mixin"></A><A NAME="662"></A>
&#160;&#160; 
</P>
<P ALIGN=CENTER STYLE="margin-bottom: 0in"><STRONG>Figure 6:</STRONG>
Per-Object Mix-ins: Next-Path for the Example</P>
<CENTER>
	<TABLE WIDTH=315 BORDER=0 CELLPADDING=2 CELLSPACING=0>
		<COL WIDTH=311>
		<TR>
			<TD WIDTH=311>
				<P><FONT SIZE=1 STYLE="font-size: 2pt"><IMG SRC="next-path-mixin-movement.gif" NAME="Graphic16" ALIGN=BOTTOM WIDTH=307 HEIGHT=187 BORDER=0></FONT></P>
			</TD>
		</TR>
	</TABLE>
</CENTER>
<P><BR><BR>
</P>
<P>The <tt>mixin</tt> option of the <tt>info</tt> instance method
allows us to introspect the per-object mixins. It has the syntax: 
</P>
<pre CLASS="code">
  <em>objName</em> <tt>info</tt> mixin <em>?pattern?</em>
</pre>
<P STYLE="margin-bottom: 0in">
It returns the list of all mix-ins of the object, if <tt>pattern</tt>
is not specified, otherwise it returns the matching per class-object mixin classes.
</P>
	
The inverse operation of <tt>info mixin</tt> is <tt>mixinof</tt> finds
out, into which objects a per-object mixin class is mixed into.
	
<pre CLASS="code">
  <em>clsName</em> <tt>info</tt> mixinof <em>?pattern?</em>
</pre>
	
<P> Note that the constructors (init methods) of per-object mixins (and per-class mixins)
are only called, if the mixin is registered already during object
initialization (when <tt>init</tt> is called). For per-object mixins, one can 
achieve the initialization of a mixin via an idiom like 
<pre CLASS="code">
  <tt>Object</tt> o <tt>-mixin</tt> M <tt>-init</tt>
</pre> 
that registers the mixin before <tt>init</tt> is called. When a mixin is registered
after object creation and it needs initializations, it is necessary to
define special methods for this.  Note that the behavior described
here is introduced in version 0.84 to ensure consistent behavior of
intrinsic classes, per-object and per-class mixins, and to achieve
predictable behavior for dynamic registration for all kind of mixins,
and as well during recreations of objects having mixins
registered. Older versions used heuristics for the initialization of
per-object mixins.
</P>

<H3><A NAME="per-class-mixins"></A>Per-Class Mixins
</H3>

<P>Per-class mixins are exactly identical in their behavior to
per-object mixins, but they operate on classes. Thus they are the
class-specific variant of the per-object mixins, like instprocs are a
class-specific variant of procs. Therefore, in the language the
per-class mixins are called instmixins.
</p>

<P>
In general a per-class mixin is a class which is mixed into the
precedence order of all instances of the class and all its subclasses
it is registered for. It is also searched before the object's class
itself is searched, but after per-object mixins. 
</p>
<P>
Per-class mixins are <em>linearized</em> according to the 
<a href='#precedence order'>precedence order</a> 
like classes on the superclass hierarchy.  I.e. from the full
list of per-object mixins, per-class mixins, and intrinsic classes
(and all the superclasses of all these classes) always the last
occurrence is used.
</p>

<P>
From the point of view of language expressibility instmixins are not
required, because they cannot express anything that per-object mixins
cannot express already (like procs can express any instproc
feature). As alternative to instmixins, we could simply register the
per-object mixins in the constructor of the class.
</p>

<P>
But there at least the following reasons for instmixins as an
additional language construct:
<OL>
<LI> we can at runtime determine with <tt>info mixin</tt>
and <tt>info instmixin</tt> whether it is a class- or object-specific
mixin. Thus we get a better structuring at runtime. 
<LI> We have not to 'pollute' the constructors with per-class mixin
registrations. Therefore, the constructors get more understandable.
<LI>If it is required to add (and remove) dynamically interceptors
to a set of objects, which are instances of a certain type, per-class
mixins are much easier to handle (e.g. add an instmixin to Object
to intercept e.g. all calls to certain predefined methods).
<LI>The language is more 'symmetrical', since any object-specific
feature in XOTcl has a class-specific variant. 
</OL>
<P>

<P>The mix-ins methods of per-class mixins extend the next-path of
shadowed methods in the same way as per-object mixin methods. Before
we can use a per-class mix-in on a particular class, we must
register the mixin on it with the <tt>instmixin</tt> instance method. It
has the syntax:
</P>
<pre CLASS="code">
  <em>className</em> <tt>instmixin</tt> <em>mixinList</em>
</pre>
The inverse operation of <tt>info inmixin</tt> is <tt>instmixinof</tt> finds
out, into which objects a per-object mixin class is mixed into.
	
<pre CLASS="code">
  <em>className</em> <tt>info</tt> instmixinof <em>?-closure? ?pattern?</em>
</pre>
<P>
Now consider that in the given per-object mixin example all
interactive agents should be tested. We could either build a subclass
<tt>TestedInteractiveAgent</tt> or register the per-object mixin in
the constructor of the interactive agent class. The subclass solution
leads to the same combinatorial explosion of intersection classes as
discussed in the previous section, if more supplemental classes are
added. The per-object mixin solution pollutes the constructor and does
not prevail the structural semantics that the 'tested' property
belongs to the interactive agent class at runtime
</P>
<P>
Here, we can use a per-class mixin:
</P>
<pre CLASS="code">
  <tt>Class</tt> Agent
  Agent <tt>instproc</tt> move {x y} {<it># do the movement</it>}
  <tt>Class</tt> InteractiveAgent <tt>-superclass</tt> Agent
  <tt>Class</tt> MovementTest
  MovementTest <tt>instproc</tt> move {x y} {
    <it># movement testing</it>
    <tt>next</tt>
  }

  <it># now register the instmixin</it>
  InteractiveAgent <tt>instmixin</tt> MovementTest

</pre>

<P> The per-class mixin now operates on all interactive agent
including the instances of subclasses. E.g. for interactive agents
<tt>i1</tt> and <tt>i2</tt> we automatically have movement
testing. <tt>i2 </tt> is also logged, since it has the logging class
as object-specific mixin:
</P>
<pre CLASS="code">
  InteractiveAgent i1
  InteractiveAgent i2 <tt>-mixin</tt> MovementLog

  i1 move 3 4
  i2 move 1 2 
</pre>

<P>
At arbitrary times the instmixins can be changed dynamically.
</P>
<P>The <tt>instmixin</tt> option of the class <tt>info</tt> instance
method allows us to introspect the per-class mixins. It has the
syntax:
</P>
<pre CLASS="code">
  <em>className</em> <tt>info</tt> instmixin <em>?className2?</em>
</pre>
<P STYLE="margin-bottom: 0in">
It returns the list of all instmixins of the class, if <em>className2</em>
is not specified, otherwise it returns <tt>1</tt>, if <em>className2</em>
is a mixin of the object, or <tt>0</tt> if not. 
</P>

<p>Per-class mixins are applied transitively. That means the per-class
mixin A of a per-class mixin B is also applied for an objectin B's
scope. This is exactly the same as how superclasses are applied for
instances. Consider the following example</p>

<pre CLASS="code">
  <tt>Class</tt> X11 \
     <tt>-instproc</tt> test args {
	<tt>puts</tt> [<tt>self</tt> class]
	<tt>next</tt>
     }
  <tt>Class</tt> X12 \
    <tt>-instproc</tt> test args {
	<tt>puts</tt> [<tt>self</tt> class]
	<tt>next</tt>
    }
  <tt>Class</tt> X \
    <tt>-instmixin</tt> {X11 X12} \
    <tt>-instproc</tt> test args {
	<tt>puts</tt> [<tt>self</tt> class]
	<tt>next</tt>
    }

  <tt>Class</tt> Y \
    <tt>-instmixin</tt> X

  Y <tt>create</tt> y -test
  X <tt>create</tt> x -test
</pre>
<p> Here the application as a superclass (for x) yields the same
result as the application as an instmixin (for y): 
<pre CLASS="code">
  ::X11 
  ::X12 
  ::X
</pre>
<H2><A NAME="precedence order"></A>Precedence Order
</H2>

<P>The precedence order is composed by the precedence order of the
superclass hierarchy (as explained earlier) and the message
interceptors. In general, filters precede mixins and the superclass
hierarchy. They are applied in the order of the next path of the
object. Thus per-object filters are ordered before per-class
filters.</p>

<p>Mixins are processed after the filters. Again, they are applied in
the order of the next path of the object. Thus per-object mixins are
ordered before per-class mixins.</p>

<p>Finally, the object's own heritage order comes in the order: object,
class, superclasses.</p>

<p>The three precedence order lists (filters, mixins, and classes) are
pre-calculated and cached.</p>

<p>Filters as well as classes (mixins and ordinary classes) are
linearized. That means, each filter and each class can be only once on
a precedence order list. If a filter or class can be reached more than
once, than the last occurrence is used.</p>

<p>For instance, consider a class A is superclass, per-class mixin,
and per-object mixin. On the precedence order lists only the last
occurrence as a superclass is used after linearization.</P>


<H2><A NAME="guards"></A>Guards for Filters and Mixins
</H2>

Message interceptors, such as filters and mixins, are applied for
potentially huge number of messages. In many cases it is possible to
reduce the effective number of cases in which interceptors are
applied. Interceptor guards offer this functionality: they are boolean
conditions with which you can specify in which cases a registered
interceptor should be applied.

<H3><A NAME="filter_guards"></A> Filter Guards</H3>
<P>
A filter guard is a set of conditions that determine whether a filter
is to be executed upon a certain invocation or not. Syntactically we can
append a filter guard to the filter registration, or it can be
registered using the methods <tt>filterguard</tt> for filters and
<tt>instfilterguard</tt> for instfilters.

</P><P> Each filter guard is an ordinary condition. A filter guard is
executed in the call frame of the filter to be executed, if the filter
guard returns 1. Thus, the call-stack information are already set to
the values of the targeted filter - and these values can be used in
the filter guard.

</P><P>
Let us consider a simple program:
</P>
<pre CLASS="code">
<tt>Class</tt> Room
Room <tt>instproc</tt> enter {name} {<tt>puts</tt> [<tt>self proc</tt>]}
Room <tt>instproc</tt> leave {name} {<tt>puts</tt> [<tt>self proc</tt>]}
Room <tt>instproc</tt> loggingFilter args {
    <tt>puts</tt> [<tt>self calledproc</tt>]
    <tt>next</tt>
}
Room <tt>instfilter</tt> loggingFilter
</pre>

<P>
Now consider we only want to apply the logging filter for enter and
leave, not for any other message sent to Room instances. In the
following example, for instance, we do not want to log the <tt>set</tt>
message:
</p>

<pre CLASS="code">
Room r 
r enter Uwe
r leave Uwe
r <tt>set</tt> roomName "Office"
</pre>

<P>
In this example a filterguard can be applied to restrict the
application of the filter to those two methods:
</p>

<pre CLASS="code">
Room <tt>instfilterguard</tt> loggingFilter {
  <tt>[self calledproc</tt>] == "enter" || 
  [<tt>self calledproc</tt>] == "leave"}
</pre>

<P>
Here we limit the filter application of the logging filter on rooms to
calls to enter and leave. All other calls are not filtered at
all. Note that the same syntax can also be applied for
<tt>filterguard</tt>. Also, there is a short form to register filter
guards directly during filter registration. The following code has the
same semantics as the filter and filter guard definitions above:
</P>

<pre CLASS="code">
Room <tt>instfilter</tt> {{loggingFilter <tt>-guard</tt> {
    [<tt>self calledproc</tt>] == "enter" || 
    [<tt>self calledproc</tt>] == "leave"}}}
</pre><P>

The filter guard language construct is registration centric. It only
applies for the class or object on which a filter is registered, not
for all applications of the filter method. That is, if we use
loggingFilter on another class we may give no or completely
different filter guards.
</P><P>
If no filter guard is given for a filter, we assume that it is to be
applied on all methods (equivalent to the filter guard '1' which is
always true).
</P>

<P>
There are introspection options for filter guards. In particular, we
can use <tt>info filterguard</tt> and <tt>info instfilterguard</tt>
for getting the filter guards for a particular filter or instfilter
respectively. For instance:
</P>
<pre CLASS="code">
<tt>puts</tt> [Room <tt>info instfilterguard </tt>loggingFilter]
</pre><P>
This prints out the content of the above guard definition. 
We can also append <tt>-guard</tt> to <tt>info filter</tt> or 
<tt>info instfilter</tt> to obtain a filter definition with guards:
</P>
<pre CLASS="code">
<tt>puts</tt> [Room <tt>info instfilter -guards</tt>]
</pre><P>

<P>
If we call a method from within a filter guard, as for instance
callsMethod, we might require some parameters from the guard's
context, such as <tt>calledproc</tt>. These parameters can be passed
as references, as in the following example:
</P>

<pre CLASS="code">
  Room <tt>instfilter</tt> loggingFilter
  Room <tt>instfilterguard</tt> loggingFilter {[<tt>my</tt> callsMethod openURL [<tt>self calledproc</tt>]]}
</pre><P>
This example works because the filterguard is already set to the scope of the guard. Now we can use this dynamic  <tt>calledproc</tt> context in the called method:
</P>
<pre CLASS="code">
  Room <tt>instproc</tt> callsMethod {method calledproc} {
    <tt>return</tt>[<tt>string</tt> <tt>match</tt> $calledproc $method]
  }
</pre><P>
We simply check whether the called method
matches the given method name or not.

<H3><A NAME="mixin_guards"></A> Mixin Guards</H3>
<P>
Similar to filters, there are mixin guards, defined with
<tt>mixinguard</tt> and <tt>instmixinguard</tt>, or with
<tt>-guard</tt> during mixin registration. Consider a simple example:
there are a number of birds who have two mixins: Fly and Sing. For Fly
there are limitations: a bird can only fly if it is at least two years
old and is not a Penguin. Such problems are  be solved with
mixin guards:
</P>

<pre CLASS="code">
  <tt>Class</tt> Fly
  Fly <tt>instproc</tt> fly {} {<tt>puts</tt> "[<tt>my</tt> signature]: yippee, fly like an eagle!"}

  <tt>Class</tt> Sing
  Sing <tt>instproc</tt> sing {} {<tt>puts</tt> "[<tt>my</tt> signature]: what a difference a day makes"}

  <tt>Class</tt> Animal -parameter age
  Animal <tt>instproc</tt> unknown args { <tt>puts</tt> "[<tt>my</tt> signature]: how should I $args?"}
  Animal <tt>instproc</tt> signature {} {
    <tt>return</tt> "[<tt>self</tt>] [<tt>my info class</tt>] ([<tt>my</tt> age] years)"
  }

  <tt>Class</tt> Bird -superclass Animal
  <tt>Class</tt> Penguine -superclass Bird
  <tt>Class</tt> Parrot -superclass Bird
  <tt>Class</tt> Duck -superclass Bird

  Parrot tweedy -age 1
  Penguine pingo -age 5
  Duck donald -age 4
  Parrot lora -age 6

  Bird <tt>instmixin</tt> {{Fly <tt>-guard</tt> {[my age] > 2 && ![<tt>my istype</tt> Penguine]}} Sing}
</pre><P>
An invocation like:
</P>

<pre CLASS="code">
<tt>foreach</tt> bird {tweedy pingo donald lora} { $bird fly }
</pre><P>
yields the following result:
</P>
<pre CLASS="code">
::tweedy ::Parrot (1 years): how should I fly?
::pingo ::Penguine (5 years): how should I fly?
::donald ::Duck (4 years): yippee, fly like an eagle!
::lora ::Parrot (6 years): yippee, fly like an eagle!
</pre>

<P>
There are similar introspection options for mixin guards as those for
filter guards. In particular, we can use <tt>info mixinguard</tt> and
<tt>info instmixinguard</tt> for getting the mixin guards for a
particular mixin or instmixin respectively.
</P>

<H2><A NAME="updateinterceptors"></A>Querying, Setting, Altering Filter and Mixin Lists
</H2>

The methods <tt>mixin</tt>, <tt>instmixin</tt>, <tt>filter</tt> and
<tt>instfilter</tt> are <a href='#system-slots'>system slots</a>
having the same query and update interface. 
<UL>
<LI>If one of those methods is called without argument, it returns the current
setting. </LI>
<LI>If it is called with one argument, the argument is used to
set the specified list as indicated in the above examples. </LI>
<LI>If these methods are called with more than one argument, the first argument
is used to specify the action. Possible values for the action are
<tt>set</tt>, <tt>get</tt>, <tt>add</tt> and <tt>delete</tt>. See below for 
commonly used examples. 
</UL>
<P>
<CENTER>	
<TABLE BORDER='1' width='90%'>
<TR><TD nowrap='1'><tt>obj mixin</tt></TD>            <TD>same as: <tt>obj info mixin</tt></TD></TR>
<TR><TD nowrap='1'><tt>obj mixin {C1 C2}</tt></TD>    <TD>same as: <tt>obj mixin assign {C1 C2}</tt></TD></TR>
<TR><TD nowrap='1'><tt>obj mixin assign {C1 C2}</tt></TD><TD>sets the mixins for <tt>obj</tt></TD></TR>
<TR><TD nowrap='1'><tt>obj mixin add C3</tt></TD>     <TD>adds the mixin <tt>C3</tt> on front of the mixin list</TD></TR>
<TR><TD nowrap='1'><tt>obj mixin add C3 end</tt></TD> <TD>adds the mixin <tt>C3</tt> at the end the mixin list</TD></TR>
<TR><TD nowrap='1'><tt>obj mixin add C3 3</tt></TD>   <TD>adds the mixin <tt>C3</tt> at the 3rd position</TD></TR>
<TR><TD nowrap='1'><tt>obj mixin delete ::C3</tt></TD><TD>removes the mixin <tt>C3</tt> from the mixin list.
Use absolute class names. <tt>delete</tt> supports an optional flag <tt>-nocomplain</tt> that does not produce an error, when the specified class is not in the list. 
</TD></TR>
</TABLE>
</CENTER>	
</P>
<P>
Note that the list of possible actions can be
extended by extending the class <tt>::xotcl::Relations</tt>.
</P>

<H2>
<A NAME="callstack_info"></A>Querying Call-stack Information
</H2>
<P STYLE="margin-bottom: 0in">Since the presented interceptors are
normal XOTcl instprocs they can access all XOTcl introspection
abilities introduced so far. In instprocs all recent information is
accessible within their scope. But the interceptors are mechanisms,
which cover more then their sole scope. The meaningful usage of the
meta-programming abilities often requires to go further and to get
information from the caller's and the callee's scope (e.g. for
delegation decisions). Therefore, we introduced rich call-stack
information for the interceptors. Note that these are also available
for ordinary methods, but the "called..." info options return empty
strings.
</P>
<P> All call-stack information are packed compactly into the
<tt>self</tt> primitive as additional options. Note, before XOTcl
version 0.84 these were implemented as a part of the <tt>info</tt>
method. They are part of the <tt>self</tt> command for conceptual
integrity: introspection options in <tt>info</tt> can be expected to
produce the same result, when they are not explicitly changed. In
contrast, all information provided by <tt>self</tt> are
call-stack dependent.
</P>

<CENTER>
      <P><STRONG>Querying Call-stack Information via <tt>self</tt> </STRONG></P>
      <TABLE BORDER=1>
	<TR>
	  <TD><tt>self activelevel</tt>
	  </TD>
	  <TD  VALIGN=TOP>
	    <P ALIGN=LEFT>Returns the stack level from where the
	    current command was invoked from, or where the last next
	    was called (whatever is closer to the invocation).
	      If the current command was invoked from
	    an XOTcl method the absolute level is returned (e.g. #4)
	    which can be used in the <tt>uplevel</tt> or
	    <tt>upvar</tt> Tcl command or XOTcl method. If the current
	    command was not invoked from an XOTcl method, the value 1
	    is returned.
	  </TD>
	</TR>

	<TR>
	  <TD width=25%><tt>self calledproc</tt>
	  </TD>
	  <TD  VALIGN=TOP>
	    <P ALIGN=LEFT>Returns the name of the method which was invoked in
	      the original call.
	  </TD>
	</TR>
	<TR>
	  <TD><tt>self calledclass</tt>
	  </TD>
	  <TD  VALIGN=TOP>
	    <P ALIGN=LEFT>Returns the name
	      of the class which presumably (if no dynamic class change occurs
	      afterwards) is invoked in
	      the original call.
	  </TD>
	</TR>
	<TR>
	  <TD><tt>self callingclass</tt>
	  </TD>
	  <TD  VALIGN=TOP>
	    <P ALIGN=LEFT>Returns the name of the class from which the
	      call was invoked (if one exists, otherwise an empty
	      string).
	  </TD>
	</TR>
	<TR>
	  <TD><tt>self callinglevel</tt>
	  </TD>
	  <TD  VALIGN=TOP>
	    <P ALIGN=LEFT>Returns the stack level from where the
	    current command was invoked from. In contrary to
	    <tt>activelevel</tt> next-calls are ignored in the
	    computation. If the current command was invoked from an
	    XOTcl method the absolute level is returned (e.g. #4)
	    which can be used in the <tt>uplevel</tt> or
	    <tt>upvar</tt> Tcl command or XOTcl method. If the current
	    command was not invoked from an XOTcl method, the value 1 is
	    returned.
	  </TD>
	</TR>
	<TR>
	  <TD><tt>self callingproc</tt>
	  </TD>
	  <TD  VALIGN=TOP>
	    <P ALIGN=LEFT>Returns the name of the method from which the
	      call was invoked (if one exists, otherwise an empty
	      string).
	  </TD>
	</TR>
	<TR>
	  <TD><tt>self callingobject</tt>
	  </TD>
	  <TD  VALIGN=TOP>
	    <P ALIGN=LEFT>Returns the name of the object from which the
	      call was invoked (if one exists, otherwise an empty
	      string).
	  </TD>
	</TR>
	<TR>
	  <TD><tt>self filterreg</tt>
	  </TD>
	  <TD VALIGN=TOP>
	    <P ALIGN=LEFT>In a filter:  returns the name
	      of the object/class on which the filter is registered. Returns either 
	      '<tt><em>objName</em> <tt>filter</tt> <em>filterName</em></tt>' or 
	      '<tt><em>className</em> instfilter <em>filterName</em></tt>'.
	  </TD>
	</TR>
	<TR>
	  <TD><tt>self isnextcall</tt>
	  </TD>
	  <TD VALIGN=TOP>
	    <P ALIGN=LEFT>Return 1 if this method
              was invoked via next, otherwise 0
	  </TD>
	</TR>
	<TR>
	  <TD><tt>self next</tt>
	  </TD>
	  <TD VALIGN=TOP>
	    <P ALIGN=LEFT>Return the
	      "next" method on the path as a string, i.e. the method which will be
	      called by [next].
	  </TD>
	</TR>
      </TABLE>
    </CENTER>
</P>
<p><br></p>
<P>Note that three options with the prefix <tt>calling</tt>
represent the values of <tt>self</tt>, <tt>self proc</tt>, and <tt>self
class</tt> in the scope where the original call was invoked. In the
following section we will show a simple program in which all of the
<tt>info</tt> options have different values.

<H3><A NAME="filter_info_example"></A><BR>Filter Call-stack Information Example 
</H3>
<P>Now we discuss a simple example that shows that all filter
introspection options may have different values: 
</P>
<pre CLASS="code">
  <tt>Class</tt> InfoTrace
  InfoTrace <tt>instproc</tt> infoTraceFilter args { 
    <tt>puts</tt> &quot;SELF:                [<tt>self</tt>]&quot;
    <tt>puts</tt> &quot;SELF PROC:           [<tt>self</tt> proc]&quot;
    <tt>puts</tt> &quot;SELF CLASS:          [<tt>self</tt> class]&quot;
    <tt>puts</tt> &quot;INFO CLASS:          [<tt>my</tt> <tt>info</tt> class]&quot;
    <tt>puts</tt> &quot;CALLED PROC:         [<tt>self</tt> calledproc]&quot;
    <tt>puts</tt> &quot;CALLING PROC:        [<tt>self</tt> callingproc]&quot;
    <tt>puts</tt> &quot;CALLING OBJECT:      [<tt>self</tt> callingobject]&quot;
    <tt>puts</tt> &quot;CALLING CLASS:       [<tt>self</tt> callingclass]&quot;
    <tt>puts</tt> &quot;REGISTRATION CLASS:  [<tt>self</tt> filterreg]&quot;
    <tt>puts</tt> &quot;CALLING LEVEL:       [<tt>self</tt> callinglevel]&quot;
    <tt>puts</tt> &quot;ACTIVE LEVEL:        [<tt>self</tt> activelevel]&quot;
    <tt>next</tt>
  }

  <tt>Class</tt> CallingObjectsClass
  CallingObjectsClass callingObject

  <tt>Class</tt> FilterRegClass <tt>-superclass</tt> InfoTrace
  <tt>Class</tt> FilteredObjectsClass <tt>-superclass</tt> FilterRegClass 
  FilteredObjectsClass  filteredObject 

  CallingObjectsClass <tt>instproc</tt> callingProc args {
     filteredObject <tt>set</tt> someVar 0
  }    
  FilterRegClass <tt>instfilter</tt> infoTraceFilter</pre><P>
The invocation of <tt>callingObject callingProc</tt> produces the
following output: 
</P>
<pre CLASS="code">
  SELF:                ::filteredObject
  SELF PROC:           infoTraceFilter
  SELF CLASS:          ::InfoTrace
  INFO CLASS:          ::FilteredObjectsClass
  CALLED PROC:         set
  CALLING PROC:        callingProc
  CALLING OBJECT:      ::callingObject
  CALLING CLASS:       ::CallingObjectsClass
  REGISTRATION CLASS:  ::FilterRegClass instfilter infoTraceFilter
  CALLING LEVEL:       #1
  ACTIVE LEVEL:        #1</pre><P>
The filter reports for <tt>self</tt> the value <tt>filteredObject</tt>,
since this is the object on which the <tt>set</tt> call is invoked;
<tt>infoTraceFilter</tt> is the method of the filter, and therefore,
the actual proc, while the actual class is <tt>InfoTrace</tt>, the
filter's class. The class of the actual object is
<tt>FilteredObjectsClass</tt>. 
</P>
<P>The called procedure is <tt>set</tt>. While the program stays in a
XOTcl-instproc all calling-info-options are set, the calling
procedure is <tt>callingProc</tt>, the calling class is the class,
where the method is defined (namely <tt>CallingObjectsClass</tt>),
and the object from which the call invoked is <tt>callingObject</tt>.
</P>
<P>In this example, the calling level is equal to the active level, both
are #1.
</P>

<!-- PAGE BREAK -->

<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055">
    <TR>
      <TD WIDTH=75%>
	<P><A NAME="slots"></A><FONT COLOR="#ffffff" FACE="Arial, Helvetica" SIZE=6>Slots</FONT>
	</P>
      </TD>
      <TD>
	<IMG SRC="logo-100.jpg" NAME="Graphic9" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
    </TR>
</TABLE>

<p>A slot is a meta-object that manages property-changes of objects. A
property is either an attribute or a role in an relation.  In a
nutshell, a slot has among other attributes:</p>

<ul>
<li>a <em>name</em> (which it used to access it), 
<li>a <em>domain</em> (object or class on which it can be used) , and
<li>can be <em>multivalued</em> or not.
</ul>

<p> We distinguish between <em>system slots</em> (predefined slots
  like <tt>class</tt>, <tt>superclass</tt>, <tt>mixin</tt>,
  <tt>instmixin</tt>, <tt>filter</tt>, <tt>instfilter</tt>) and
  <em>attribute slots</em> (e.g. attributes of classes).  </p>

<h2><a name='system-slots'></a>System Slots</h2>
<p>
System slots are predefined slots defining e.g. some relations
between classes, or between objects and classes. The predefined system slots
are:
<ul>
  
  <li> <tt>superclass</tt>: every class in XOTcl has one or more
  superclasses.  The name of this slot is <tt>superclass</tt>, the
  domain is <tt>::xotcl::Class</tt>, the slot is multivalued, since
  one object might have multiple superclasses.<p>

  <li> <tt>class</tt>: every object has a class; therefore, the domain
  of the slot is <tt>::xotcl::Class</tt>, the property is not multivalued.<p>

  <li> <tt>mixin</tt>: every object in XOTcl can have one or more
  mixin classes.  The name of this slot is <tt>mixin</tt>, the domain
  is <tt>::xotcl::Object</tt> , the slot is multivalued.<p>

  <li> <tt>instmixin</tt>: same as above, but the domain is
  <tt>::xotcl::Class</tt>.<p>

  <li> <tt>filter</tt>, <tt>instfilter</tt>: similar to <tt>mixin</tt>
  and <tt>instmixin</tt>.

</ul> <p>The system slots were introduced earlier with their
semantics.  Here we just point out, that they have all the same
interfaces for querying, setting, adding and removing of slot
values.</p>

<p>Every slot can be used set and query the property from its domain.
The syntax for setting values is
<pre CLASS="code">
  <em>object property newValue</em>
</pre>
	 and for getting its values is
<pre CLASS="code">
   <tt>set</tt> x [<em>object property</em>]
</pre>
where <em>property</em> denotes the slot name.
Every multivalued slot provides the methods <tt>add</tt> and
<tt>delete</tt>.

Here are a few examples for using the system slot <tt>mixin</tt> which we have introduced already in the section of the <a href='#mixins'>mixins</a>
<pre CLASS="code">
  <tt>Object</tt> o; <tt>Class</tt> M; <tt>Class</tt> N
  o <tt>mixin</tt> ::M      <em>;# replacing the per-object mixins of o with M</em>
  o <tt>mixin reset</tt> ::M  <em>;# same as before</em>
  o <tt>mixin add</tt> ::N   <em>;# add N to the front of the mixin list</em>
  o <tt>mixin delete</tt> ::M <em>;# delete M from the mixin list</em>
  puts [o <tt>mixin</tt>]   <em>;# query the current mixin list</em>
</pre>         

Every system slot (e.g. superclass) has the exact same interface.

<h2><a name='attribute-slots'></a>Attribute Slots</h2>

<p> Attribute slots are used to manage the setting and querying of
instance variables. We define now a person with three attributes
<tt>name</tt>, <tt>salary</tt> and <tt>projects</tt>. </p>

<pre CLASS="code">
  <tt>Class</tt> Person <tt>-slots</tt> {
    <tt>Attribute</tt> name
    <tt>Attribute</tt> salary <tt>-default</tt> 0
    <tt>Attribute</tt> projects <tt>-default</tt> {} <tt>-multivalued</tt> true
  }
</pre>

<p>These attributes might have a default value or they might be 
      multivalued. When an instance of class Person is created, the
      slot names can be used for specifying values for the slots.</p>

<pre CLASS="code">
  Person p1 -name "Joe"	
</pre>

<p>Object p1 has three instance variables, namely <tt>name</tt>,
<tt>salary</tt> and <tt>projects</tt>. Since slot <tt>projects</tt> is
multivalued, we can add a value to the list of values the <tt>add</tt>
subcommand.</p>

<pre CLASS="code">
  Project project1 -name XOTcl \
     -description "A highly flexible OO scripting language"

  p1 projects <tt>add</tt> ::project1
  p1 projects <tt>add</tt> some-other-value
</pre>

<p>The value of the instance variable <tt>project</tt> of Person
<tt>p1</tt> is now the list <tt>{some-other-value ::project1}</tt>.
</p>

<p>Attribute slots are implemented via dynamic object aggregations
(see <a href='#nesting'>below</a>), where the Class objects contain
the slot objects with the information like default etc. In order to
prevent name clashes between the slot objects and the methods of a
class (like e.g. <tt>create</tt>), an intermediary object named
<tt>slot</tt> is used as a container of the slot objects. In the example above
we create an object structure of the following form:</p>
<pre CLASS="code">
  Person
  Person <tt>slot</tt> name
  Person <tt>slot</tt> salary
  Person <tt>slot</tt> projects
</pre>

<p> This object structure can be used to query and modify the slot
properties or to add additional methods to the slot objects. One
application is for example to used slot-specific methods for checking
slot values, as shown in the next section.

<pre CLASS="code">
  Person info vars  <it>;# results in the list of variables of ::Person</it>
  Person <tt>slot</tt> name info vars <it>;# list of variables of the slot object ::Person::slot::name</it>
</pre>
Since slot objects are ordinary XOTcl objects, they can have their own slots as well (such as <tt>default</tt>, <tt>name</tt> etc.).

The following example
sets and queries the default of the slot <tt>name</tt> of <tt>Person</tt>:
</p>

<pre CLASS="code">
  Person <tt>slot</tt> name <tt>default</tt> "gustaf"
  ? {Person <tt>slot</tt> name <tt>default</tt>} gustaf
</pre>

<p>However, due to the current implementation, it is necessary to
re-init the slot object when the slot properties (such as
e.g. <tt>default</tt>) are changed. This can be achieved by calling
the method <tt>init</tt> of the slot object.
</p>

<p>Note that a statement for creating a slot object like</p>
<pre CLASS="code">
  <em>...</em> {
    <tt>Attribute</tt> name
    <em>...</em>
  }
</pre>
<p>is a short hand notation for </p>
<pre CLASS="code">
  <em>...</em> {
    <tt>Attribute</tt> <tt>create</tt> name
    <em>...</em>
  }
</pre>
<p>This is exactly the same situation like every where else in XOTcl,
when an object/class is created. One has to use <tt>create</tt> explicitly,
when a name of a slot object conflicts with a method of the class
(e.g. one has to use "<tt>Attribute create class</tt>" if a slot named
<tt>class</tt> is created).</p>

<p>One cannot define on a meta-class an attribute named <tt>slot</tt>
or <tt>slots</tt> and use then "<tt>... MetaClass Foo -slots {
::xotcl::Attribute x}...</tt> to create the slot objects. To handle
this naming conflict, one has to create the slot objects outside of the
aggregation and to provide the values for the properties of Attribute
(domain, manager, .... ) by hand. </p>


<H3><A NAME="setter"></A>Setter and Getter Methods for Slots</H3>

<p>When a slot is called via its name, the call is delegated to the
slot object. Per default, the slot value is read via the <tt>get</tt>
method of the slot and it is set the <tt>assign</tt> method. By
redefining these methods, it is possible to provide custom setter and
getter methods. The following example redefines the setter methods
<tt>assign</tt> to check, whether an attribute value is within the
range between 1 and 99.</p>

<pre CLASS="code">
  Class <tt>create</tt> A <tt>-slots</tt> {
    Attribute foo <tt>-default</tt> 1 <tt>-proc</tt> assign {domain var value} {
      <tt>if</tt> {$value < 0 || $value > 99} {
        <tt>error</tt> "$value is not in the range of 0 .. 99"
      }  
      $domain <tt>set</tt> $var $value
    }
  }

  A <tt>create</tt> a1
  ? {a1 foo 10} 10
  ? {a1 foo} 10
  ? {catch {a1 foo -1}} 1
</pre>

<p>For the most common simple cases with single valued attributes,
where neither setter or getter are redefined, XOTcl optimizes the slot
access function and replaces the delegation to the slot object by the C-level implementation of <tt>instparametercmd</tt>.

<p>Note that it is possible to subclass <tt>Attribute</tt> (e.g. in
order to store more properties for attributes, like when attributes
are stored in a relational database) or to register mixin-classes or
filters.</p>


<H3><A NAME="parameter"></A>Backward-compatible Short-Hand Notation
for Attribute Slots</H3>

<p>XOTcl provides a short-hand notation for creating attribute slots,
which is backward compatible for the most important options of XOTcl
version prior to 1.5.0. Instead of writing</p>

<pre CLASS="code">
  <tt>Class</tt> Car <tt>-slots</tt> {
    Attribute owner
    Attribute doors -default 4
  }
</pre>
<p>one can use as well </p>
<pre CLASS="code">
  <tt>Class</tt> Car <tt>-parameter</tt> {
    owner
    {doors 4}
  }
</pre>
<p>The various features of the prior implementation of <tt>parameter</tt> are
deprecated and will be removed in future versions.
<P>

<h2><a name='slot-experimental'></a>Experimental Slot Features</h2>
<h3><a name='value-checking'></a>Value Checking</h3>

<p>Attribute slots can have types assigned which are tested whenever
the instance variable is altered.  The slot <tt>salary</tt> is defined
as integer whereas <tt>projects</tt> is defined to be a list of
instances of the class <tt>::Project</tt> (a list of instances, since
<tt>projects</tt> is defined as multivalued).  </p>

<pre CLASS="code">
  <tt>Class</tt> Person <tt>-slots</tt> {
    <tt>Attribute</tt> name
    <tt>Attribute</tt> salary <tt>-default</tt> 0 <tt>-type</tt> integer
    <tt>Attribute</tt> projects <tt>-default</tt> {} <tt>-multivalued</tt> true <tt>-type</tt> ::Project
    <em>...</em>
  }

  Person p2 -name "Sue"	-salary 1000
</pre>

<p>It is as well possible to define custom value checkers and to
normalize the input values.  We extend the previous example and define
"<tt>my sex</tt>" as value for <tt>type</tt>.  If the value checker
consists of multiple words, the type check compiler assumes that the
value is a Tcl command, to which the actual value is appended as
additional argument before invocation. <tt>my</tt> refers to the 
slot object. In the example below, we define for the slot object an
object specific method that returns 1 or 0 depending on the success of the
check. This method (a) checks the values via <tt>switch</tt>
and (b) normalizes and resets the value via <tt>uplevel</tt>. 
</p>

<pre CLASS="code">
  <tt>Class</tt> Person <tt>-slots</tt> {
    <em>...</em>
    <tt>Attribute</tt> sex <tt>-type</tt> "my sex" <tt>-proc</tt> sex {value} {
      <tt>switch -glob</tt> $value {
        m* {<tt>my uplevel</tt> {$obj <tt>set</tt> $var m}; <tt>return</tt> 1}
        f* {<tt>my uplevel</tt> {$obj <tt>set</tt> $var f}; <tt>return</tt> 1}
        <tt>default</tt> {<tt>return</tt> 0}
      }
    }
  }
</pre>


<p>The slot values are actually checked via Tcl variable traces whenever the
associated variable gets a new value assigned. This means that the values are
enforced now matter how the variables are set. Therefore, the
checks are performed in the following two commands as well, although
the slot values are not accessed via the slot names. The checks will
throw an error in the second command, since <tt>1100x</tt> is not an
integer.  </p>

<pre CLASS="code">
  p2 <tt>incr</tt> salary 100
  p2 <tt>append</tt> salary x
</pre>     

<p> Similarly the second command below will throw an error, since
<tt>some-other-value</tt> is not an instance of <tt>::Project</tt>.

<pre CLASS="code">
  p2 projects <tt>add</tt> ::project1
  p2 projects <tt>add</tt> some-other-value     
</pre>

<p> When a check throws an error, the instance variables 
     are reset to the previous value. To restore the original
     value, an associative array <tt>__oldvalue()</tt> is kept as 
     instance variable in the object.
</p>

**** NOCHECK is removed ****

<p>  In general, checking of variables can be turned off globally
     by
<pre CLASS="code">
  ::xotcl::Slot <tt>instmixin add</tt> ::xotcl::Slot::Nocheck
</pre>
<p>
     This mixin replaces the methods <tt>check</tt> and
     <tt>checkall</tt> as well as <tt>mk_type_checker</tt> by
     no-ops. When the mixin is active and the Attribute definitions
     are loaded, the specified <tt>type</tt> has no effect.
</p>
<p>
     Value checking can be turned off also selectively for each slot via
     using <tt>::xotcl::Slot::Nocheck</tt> as per-object-mixin; if
     attributes are subclassed, 
     it is possible to register the <tt>Nocheck</tt> mixin on a
     subclass of <tt>Attribute</tt>. 
</p>

<h3><a name='trace-commands'></a>Init Commands and Value Commands for Slot Values</h3>

<p>An init command (<tt>initcmd</tt>) of a slot is similar to a
default and is a command to be executed when the value of the
associated variable is read the first time. That means that when an
object is created the associated variable has no value. On the
contrary, when a default is used, the variable is set to the default
value, when the object is created. </p>

The primary advantage of slot init commands is <em>Lacy
initialization:</em> When an object has many slots and the
initialization of all slots is costly (e.g. the value of each slot is
fetched from a relational database), and not all of the values are
needed for each instance, only the relevant variables of the object
are initialized on demand.

<pre CLASS="code">
  Class C -slots {
    Attribute x -initcmd {puts {init}; set _ 101}
  }

  C c1
  c1 <tt>info</tt> vars  <it>;# ==&gt; returns ""</it>
  c1 <tt>set </tt> x     <it>;# ==&gt; puts init, returns 101</it>
  c1 <tt>info</tt> vars  <it>;# ==&gt; returns "x"</it>
</p>
</pre>

<p>The initcmd is executed only once, when the variable is read the first
time. For later reads of the variable contents, the values are returned.

<p>A value command (<tt>valuecmd</tt>) of a slot is similar to a
init command, except that it is executed whenever the value of the
variable is read. A value command can be used e.g. to implement live
updates for variables or for abstracting from sql sequences or the
like.  </p>

<p>Finally the value changed command (<tt>valuechangedcmd</tt>) can be
used to specify the behavior, whenever the value of the variable is
altered. This option is used to implement the value checking described
in the last section.</p>

<p> The slot parameters <tt>default</tt>, <tt>initcmd</tt> and
<tt>valuecmd</tt> have to be used mutually exclusively.
</p>



<!-- PAGE BREAK -->

<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055">
	<TR>
		<TD WIDTH=75%>
			<P><A NAME="nesting"></A><FONT COLOR="#ffffff"><FONT FACE="Arial, Helvetica"><FONT SIZE=6>Nested Classes
			and Dynamic Object Aggregations </FONT></FONT></FONT>
			</P>
		</TD>
		<TD>
			<IMG SRC="logo-100.jpg" NAME="Graphic9" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
	</TR>
</TABLE>
<P>Most object-oriented analysis and design methods are based on the
concepts of generalization and aggregation. Generalization is
achieved through class hierarchies and inheritance, while static
aggregation is provided through embedding. Since version 8.0 Tcl
offers a namespace concept which can be used as a mechanism to
provide dynamic aggregations. 
</P>
<P>A <EM>namespace</EM> provides an encapsulation of variable and
procedure names in order to prevent unwanted name collisions with
other system components. Each namespace has a unique identifier which
becomes part of the fully qualified variable and procedure names.
Namespaces are therefore already object-based in the terminology of
Wegner. OTcl is object-oriented since it offers classes and class
inheritance. Its objects are also namespaces, but an object is more
than only a namespace. Therefore, two incompatible namespace concepts
have existed in OTcl in parallel. 
</P>
<P>In XOTcl every object and every class is
logically implemented as a separate Tcl namespace. The biggest benefit of this
design decision aside from performance advantages is the ability to
aggregate objects and nest classes. Contrary in OTcl every object has
a global identifier. Through the introspection abilities of
namespaces nested classes are also traceable at runtime and can be
changed dynamically. In XOTcl objects are allowed to contain nested
objects, which are dynamically changeable aggregates of the
containing object. 
</P>


<H3><A NAME="nested-classes"></A>Nested Classes</H3>

<P>The notation for nested classes follows the syntax of Tcl
namespaces by using ``::'' as a delimiter. For example the
description of a oval carpet and a desk can nest inside of the
<tt>OvalOffice</tt> class: 
</P>
<pre CLASS="code">
  <tt>Class</tt> OvalOffice
  <it># general carpet</it>
  <tt>Class</tt> Carpet
  <tt>Class</tt> OvalOffice::Desk
  <it># special oval carpet - no name collision</it>
  <tt>Class</tt> OvalOffice::Carpet <tt>-superclass</tt> ::Carpet
</pre><P>
Nested classes can be used exactly like ordinary classes, a user can
subclass it, derive instances, etc. The information about the
nesting structure of classes is available through the <tt>info</tt>
instance method: 
</P>
<pre CLASS="code">
  <em>className</em> <tt>info</tt> classchildren <em>?pattern?</em>
  <em>className</em> <tt>info</tt> classparent
</pre><P>
The <tt>classchildren</tt> option returns a list of children, if one
or more exist, otherwise it returns an empty string. <tt>classparent</tt>
results in the name of the parent class, if the class is nested.
Since nested classes are realized through namespaces, all
functionality offered by Tcl's <tt>namespace</tt> command is usable
from XOTcl as well. 
</P>
<H3><A NAME="obj-agg"></A>Dynamic Object Aggregations </H3>

<P>The nested classes only provide an aggregation of the descriptive
not of the runtime properties of an object. We have pointed out the
difference of object and class in XOTcl. Because of the splitting of a
class into class and class-object it is possible to give each object
its own namespace. The internal implementation of objects enable them
to contain nested objects, which are aggregates of the containing
object. In XOTcl these can be changed dynamically and introspected
through the language support of dynamic object aggregations <a
href="#xotcl-aggregation">[Neumann and Zdun 2000b]</a>. Suppose an
object of the class <tt>Agent</tt> should aggregate some property
objects of an agent, such as head and body:
</P>
<pre CLASS="code">
  <tt>Class</tt>Agent
  Agent myAgent

  <tt>Class</tt> Agent::Head
  <tt>Class</tt> Agent::Body

  Agent::Head ::myAgent::myHead
  Agent::Body ::myAgent::myBody
</pre><P>
Now the objects <tt>myHead</tt> and <tt>myBody</tt> are part of the
<tt>myAgent</tt> object and they are accessible through a
qualification using ``::'' (or through Tcl's namespace command). But
in the common case they will be accessed, as introduced so far: the
explicit full qualification is not necessary when such variables are
being accessed from within XOTcl methods, since the object changes to
its namespace. 
</P>
<P>The information about the part-of relationship of objects can be
obtained exactly the same way as for classes through the 
<tt>info</tt> interface: 
</P>
<pre CLASS="code">
  <em>objName</em> <tt>info</tt> children <em>?pattern?</em>
  <em>objName</em> <tt>info</tt> parent
</pre>

<H3><A NAME="nest-agg"></A>Relationship between Class Nesting and Object Aggregation</H3>

<P>The classes <tt>Head</tt> and <tt>Body</tt> are children of the
<tt>Agent</tt> class. It is likely that all agents, interactive or
not, have properties for head and body. This implies a static or
predetermined relationship between class nesting and object
aggregation. Such predetermination do not exist in XOTcl, but are
simply build, when specifying the relationship in the constructor,
e.g.: 
</P>
<pre CLASS="code">
  Agent <tt>instproc</tt> <tt>init</tt> args {
    ::Agent::Head [<tt>self</tt>]::myHead
    ::Agent::Body [<tt>self</tt>]::myBody
  }
</pre><P>
Now all agents derived from the class have the two property objects
aggregated after creation. But still they are changeable in a
dynamical manner, e.g. with: 
</P>
<pre CLASS="code">
  Agent myAgent
  myAgent::myHead <tt>destroy</tt>
</pre><P>
The agent turns into a headless agent. In companion of the
introspection mechanisms such constructions could be very useful.
Suppose, that in the virtual world the agents heads may be slashed
from their bodies. The graphical system simply needs to ask with <tt>info
children</tt> on the agent's object, whether it has a head or not and
can choose the appropriate graphical representation. 
</P>

<h3><A NAME="contains"></A>Simplified Syntax for Creating Nested Object Structures</h3>

To ease the generation of nested structures, one can use the
predefined method <tt>contains</tt>. In essence, <tt>contains</tt>
changes the namespace, where objects are created to the object,
on which it is executed. In the example below, we create three
nested rectangles, where two of these contain two more points.
The outer rectangle is <tt>r0</tt> containing rectangle <tt>r1</tt>
and <tt>r2</tt>.
 
<pre CLASS="code">
  <tt>Class</tt> Point <tt>-parameter</tt> {{x 100} {y 300}}
  <tt>Class</tt> Rectangle <tt>-parameter</tt> {color}

  Rectangle r0 -color pink <tt>-contains</tt> {
    Rectangle r1 -color red <tt>-contains</tt> {
      Point x1 -x 1 -y 2
      Point x2 -x 1 -y 2
    }
    Rectangle r2 -color green <tt>-contains</tt> {
      Point x1
      Point x2
    }
  }

  ? {r0 color} pink
  ? {r0 r1 color} red
  ? {r0 r1 x1 x} 1
  ? {r0 r1 x2 y} 2
  ? {r0 r2 color} green
</pre>

<p>Every object in XOTcl is realized as a Tcl command. If nested
objects are created, these commands are available as object specific
methods.  So, instead of calling the contained rectangle r1 via the
fully qualified name <tt>::r0::r1</tt>, one can use <tt>r0
r1</tt>. This is exactly the same situation as it arises, when e.g. a
global Tcl proc <tt>proc o1 {} {...}</tt> and an XOTcl object o1
(created via <tt>Object o1</tt>) is created. Both commands cannot
coexist in the same namespace.

</p>

<H3><A NAME="copy-move"></A>Copy/Move</H3>

Often an object has to be copied/moved. This is a very useful
functionality when XOTcl should be used as a prototyping language.
The XOTcl method <tt>move</tt> provides this functionality. Another
common behavior is implemented by the <tt>copy</tt> method which
clones the actual object to a destination object via a deep copy operation.
The two methods have the syntax:

<pre CLASS="code">
  <em>objName</em> <tt>move</tt> <em>destination</em>
  <em>objName</em> <tt>copy</tt> <em>destination</em>
</pre><P>

Copy and move operations work with all object/class information, i.e.,
information on filters, mixins, parameters, etc. are
automatically copied. Copy and move are integrated with class nesting
and object aggregations. All copy/move operations are deep copy
operations: all nested objects/classes are automatically copied/moved,
too.

E.g. if we want to reuse an imperial march object of star wars for
star wars 2, we can just copy the object:
<pre CLASS="code">
  starWars::imperialMarch <tt>copy</tt> starWars2::imperialMarch
</pre>

Note that move is implemented in current versions of xotcl
as a copy plus subsequent destroy operation.
<p>






<!-- PAGE BREAK -->

<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055">
    <TR>
      <TD WIDTH=75%>
	<P><A NAME="forwarding"></A><FONT COLOR="#ffffff" FACE="Arial, Helvetica" SIZE=6>Method Forwarding</FONT>
	</P>
      </TD>
      <TD>
	<IMG SRC="logo-100.jpg" NAME="Graphic9" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
    </TR>
</TABLE>
<P>As you have seen from many previous examples, XOTcl's primary command for
method forwarding is the <tt>next</tt> primitive.  <tt>next</tt> calls
the same-named method of the current object, usually with the same
argument list. However, frequently method forwarding is required
between different objects as well, commonly referred to as
<em>delegation</em>.</P>

<P>In general, delegation can be achieved in XOTcl without any special construct
using simple methods containing a few lines. However, In
several situations, forwarding is as well needed to plain
Tcl commands, for example, if object oriented stubs are implemented on
base of non-oo function calls. These functions might access instance
variables of the objects. XOTcl uses this functionality in various
situations, such as for instance in the implementation of the
<tt>set</tt>, <tt>unset</tt>, <tt>append</tt>, <tt>array</tt> methods among others.</p>

<p>The forwarding functionality is supported by XOTcl be the methods
<tt>forward</tt> and <tt>instforward</tt> that address these requirements
and provide an efficient implementation for these tasks.  </p>

<p>The forwarding command specifies that whenever <em>methodName</em> is called,
this invocation is delegated to <em>callee</em>, where the actual argument list
(from the invocation) is appended to the argument list specified in the forwarding command.
Like for procs and instprocs, we can distinguish between <tt>forward</tt> and
<tt>instforward</tt>, depending on we want to the method available for a single object
of for the instances of a class.</p>

<p>The general form of the forwarding commands is:
<pre CLASS="code">
  <em>obj</em> <tt> forward</tt> <em>methodName ?options? callee ?arglist?</em> 
  <em>cls</em> <tt> instforward</tt> <em>methodName ?options? callee ?arglist?</em> 
</pre>

where valid options are <tt>-objscope</tt>, <tt>-methodprefix</tt>,
<tt>-earlybinding</tt> and <tt>-default</tt>. The option
<tt>-objscope</tt> is used to specify that the command should be
executed in the scope of the calling object (i.e. instance variables apprear
as local variables), <tt>-methodprefix</tt> means that the called
method should be prefixed with the specified string (to avoid name
clashes), <tt>-earlybinding</tt> means that the function pointer of
the specified command (callee) is take at invocation time (should only
be done for (built-in) commands implemented in C), and
<tt>-default</tt> provides a means for providing default methods when
none are specified.</p>

<p>Each of the arguments after the method name (including
<tt>callee</tt>) can be be substituted an invocation time, or they are
taken literally. The arguments to be substituted are starting always
with a percent sign.  These arguments can be <tt>%self</tt>,
<tt>%proc</tt>, <tt>%1</tt>, <tt>%argclindex</tt>, or <tt>%</tt>
followed by a Tcl command, and it can be prefixed with a positional
prefix <tt>%@</tt>.  We will introduce the usage of these options and
argument substitutions based on examples.</P>

<p>In our first example we define an object <tt>dog</tt> and an object
<tt>tail</tt>. If the <tt>dog</tt> receives the call <tt>wag</tt> it
delegates this call to the <tt>tail</tt> and returns its result.  In
this introductory example, the method <tt>tail</tt> simply returns its
arguments. </p>

<p>In this example, forwarding is achieved through the method
<tt>forward</tt> that creates a forwarder command. This method
receives as first argument the name, under which the forwarder is
registered, followed by the object that receives the delegation (the
"callee"), followed my the (optional) method name and optional
arguments. More about this later. Here we register the forwarder under
the name <tt>wag</tt>, the callee is <tt>tail</tt>, and the method is
defined to have the name of the forwarder. We could have written here
<tt>dog forward wag tail wag</tt> as well, be we use <tt>%proc</tt>
which refers to the name of the forwarder. Using <tt>%proc</tt> is
slightly more general in cases the forwarder is renamed.
</p>

<pre CLASS="code">
  <it>###########################################</it>
  <it># trivial object delegation</it>
  <it>###########################################</it>
  <tt>Object</tt> dog
  <tt>Object</tt> tail
  tail <tt>proc</tt> wag args { <tt>return</tt> $args }
  dog <tt>forward</tt> wag tail %proc
</pre>

<p> With these definitions a call to "<tt>dog wag 100</tt>" calls
actually "<tt>tail wag 100</tt>" which returns the result of
<tt>100</tt>.</p>

<p>The following command shows the delegation to a Tcl command
(instead of delegation to an object). We define a simple forwarder
that forwards a call to the Tcl command <tt>expr</tt> with some
arguments.</p>

<pre CLASS="code">
  <it>###########################################</it>
  <it># adding </it>
  <it>###########################################</it>
  <tt>Object</tt> obj
  obj <tt>forward</tt> addOne <tt>expr</tt> 1 +
</pre>
The invocation <tt>obj addOne 5</tt> returns 6 as value.<p>


<p>In our next example we want additionally that the Tcl command
should to be evaluated in the context of the current object. This
means that the method can easily access instance variables of the
delegating object. We define a forwarder for the class <tt>X</tt> with
the name <tt>Incr</tt> (to avoid confusion with the already defined
method <tt>incr</tt>), we use the <tt>-objscope</tt> option and
specify <tt>incr</tt> as the callee.  Since the forwarder is defined
via <tt>instforward</tt> the forwarder is available to all instances
of the class.
<pre CLASS="code">
  <it>###########################################</it>
  <it># evaluating in scope </it>
  <it>###########################################</it>
  <tt>Class</tt> X <tt>-parameter</tt> {{x 1}}
  X <tt>instforward</tt> Incr <tt>-objscope</tt> incr
  
  X x1 -x 100
  x1 Incr x
  x1 Incr x
  x1 Incr x
</pre>
After the three calls to <tt>Incr</tt> the call <tt>x1 x</tt>
returns the value 103.</p>

<p>In our next example, we show the usage of the
<tt>%</tt>-substitution more advanced argument handling. This example
sketches the implementation of the <tt>mixin add</tt>, <tt>mixin
set</tt> methods as shown above. In order to obtain extensible
subcommands (such as <tt>mixin add</tt>, <tt>mixin delete</tt>, etc.), we
define an object for which the subcommands are defined as methods. We
will use this object as callee for the appropriate methods. So, we
define an object named <tt>mixin</tt> and define a forwarder with the
name <tt>Mixin</tt> (again we capitalize <tt>Mixin</tt> to avoid name clashes
with the already defined method<tt>mixin</tt> ).
<pre CLASS="code">
  <it>###########################################</it>
  <it># mixin example</it>
  <it>###########################################</it>
  <tt>Object create</tt> mixin
  mixin <tt>proc</tt> unknown {m args} {<tt>return</tt> [concat [self] $m $args]}
  obj <tt>forward</tt> Mixin mixin %1 %self
</pre>
We define here the method <tt>unknown</tt> to see what arguments are
passed. The following invocation will lead to the call in noted in the comment.
<pre CLASS="code">
  obj Mixin add M1       <it>;# calls ::mixin add ::obj M1</it>
</pre>
You see that <tt>%1</tt> was substituted by the first argument of the
invocation (here <tt>add</tt>) and <tt>%self</tt> was substituted by
the name of the current object (here <tt>::obj</tt>). The second
argument of the invocation (here <tt>M1</tt>) was appended as
usual. However, in calls like
<pre CLASS="code">
  obj Mixin
</pre>
we have to deal with cases, where the used argument (<tt>%1</tt>) is 
not given at the invocation. In this case we get either an
error message, or we can specify a default argument via the 
option <tt>-default</tt>:
<pre CLASS="code">
  obj <tt>forward</tt> Mixin <tt>-default</tt> {getter setter} mixin %1 %self
</pre>
This definition means that if no argument is specified in the
invocation we call the method <tt>getter</tt>, if one argument is
given the method <tt>setter</tt>, in other cases we use the specified
arguments. Therefore the following three invocations are delegated as
indicated in the comments.
<pre CLASS="code">
  obj Mixin              <it>;# calls ::mixin getter ::obj</it>
  obj Mixin M1           <it>;# calls ::mixin setter ::obj M1</it>
  obj Mixin add M1       <it>;# calls ::mixin add ::obj M1</it>
</pre>

<p>When we implement subcommands by delegating to other commands
(as shown in the last example), there can be situations where naming
conflicts might arise. For example, if we want to implement a
subcommand method <tt>class</tt> we might not want to implement a new
method <tt>class</tt> on the callee, since this would overwrite the
standard definition of <tt>class</tt>. To overcome such difficulties,
we provide the option <tt>-methodprefix</tt>. The following example
shows how to prefix every called method with the prefix <tt>@</tt>.
</p>
<pre CLASS="code">
  <it>###########################################</it>
  <it># sketching extensible info</it>
  <it>###########################################</it>
  <tt>Object</tt> Info
  Info <tt>proc</tt> @mixin {o} {
    $o <tt>info</tt> mixin
  }
  Info <tt>proc</tt> @class {o} { <it>;# without prefix, doing here a [Info class] would be wrong</it>
    $o <tt>info</tt> class
  }
  Info <tt>proc</tt> @help {o} { <it>;# define a new subcommand for info</it>
    <tt>foreach</tt> c [my <tt>info</tt> procs] {<tt>lappend</tt> result [<tt>string range</tt> $c 1 end]}
    <tt>return</tt> $result
  }
  Object <tt>instforward</tt> Info -methodprefix @ Info %1 %self 
</pre>
With this definitions, the following call is rewritten as indicated in the comment.
<pre CLASS="code">
  x1 Info class          <it>;# ::Info @class ::x1</it>
</pre>

<p>When a forwarder is defined, the callee (the target command) can be
omitted. When the callee is not specified, the method-name is used
instead. When the method-name has a namespace prefix, the method name
is the tail and the callee is the fully qualified name.
</p>
<pre CLASS="code">
  <it>###########################################</it>
  <it># optional callee</it>
  <it>###########################################</it>
  obj <tt>set</tt> x 2
  obj <tt>forward</tt> append -objscope
  <tt>Object</tt> n; <tt>Object</tt> n::x
  obj <tt>forward</tt> ::n::x
</pre>
With this definitions of the forwarder <tt>append</tt> and <tt>x</tt>,
the following calls are rewritten as indicated in the comment.
<pre CLASS="code">
  obj append x y z        <it>;# ::append x y z ... returning  2yz</it>
  obj x self              <it>;# ::n::x self    ... returning  ::n::x</it>
</pre>
<p>The forwarder <tt>append</tt> forwards the call to the Tcl command
<tt>append</tt>, which accesses the instance variable <tt>x</tt> and
appends the specified values.</p>

<p>The list of tokens executed by the forwarder might
contain Tcl commands executed during every invocations. This makes it
for instance possible to pass instances variables to the callee. In
the next example the object has the instvar named <tt>x</tt> which is
multiplied by a factor of 10 when the method <tt>x*</tt> is invoked.
<pre CLASS="code">
  <it>###########################################</it>
  <it># command substitution</it>
  <it>###########################################</it>
  obj <tt>set</tt> x 10
  obj <tt>forward</tt> x* <tt>expr</tt> {%my <tt>set</tt> x} *
</pre>
With this definitions, the following call is rewritten as indicated in the comment.
<pre CLASS="code">
  obj x* 10               <it>;# expr 10 * 10 ... returning  100</it>
</pre>

<p>In certain situations it is necessary to insert arguments always at
the same position (e.g. at the second to last position). The
positional addressing can be achieved by prefixing the arguments of
the forward specification by <tt>%@POS </tt>, where <tt>POS</tt> is
either a positive (argument positing from the beginning) or negative
integer (argument counting from the end) or the constant <tt>end</tt>
(denoting the last position). After <em>POS</em> a single space is
used as a delimiter for the rest of the argument, which might be
some other %-substitution or a constant. The positional arguments 
are evaluated from left to right and should be used in ascending order. 
</p>

<p>The following examples show a few usages of the positional arguments
in the forwarder. The forwarders f1 to f5 are created, followed by
one or more usages. The first argument of the usage is the call to forewarder, the second argument is the result.
</p>
<pre CLASS="code">
  <it>###########################################</it>
  <it># forwarding with positional arguments</it>
  <it>###########################################</it>
  <tt>Object</tt> obj
  obj <tt>forward</tt> f1 list {%@end 13}
  ? {obj f1 1 2 3 } [<tt>list</tt> 1 2 3 13]

  obj <tt>forward</tt> f2 list {%@-1 13}
  ? {obj f2 1 2 3 } [<tt>list</tt> 1 2 13 3]

  obj <tt>forward</tt> f3 list {%@1 13}
  ? {obj f3 1 2 3 } [<tt>list</tt> 13 1 2 3]
  ? {obj f3} [list 13]

  obj <tt>forward</tt> f4 list {%@2 13}
  ? {obj f4 1 2 3 } [<tt>list</tt> 1 13 2 3]

  obj <tt>forward</tt> f5 {%@end 99} {%@0 list} 10
  ? {obj f5} [<tt>list</tt> 10 99]
  ? {obj f5 a b c} [<tt>list</tt> 10 a b c 99]
</pre>

<p> The construct <tt>%argclindex LIST</tt> can be used to substitute an argument
depending on the number of arguments when the forwarder is
invoked. For example, it is possible to call forward to a different
method depending on how many arguments are specified. The number of arguments
is used as an index in the specified list. When the number of arguments is larger
than the number of elements in the specified list, an error is generated.</p>

<pre CLASS="code">
  <it>###############################################</it>
  <it># substitution depending on number of arguments</it>
  <it>###############################################</it>
  obj <tt>forward</tt> f %self [list %argclindex [list a b c]]
  obj <tt>proc</tt> a args {<tt>return</tt> [<tt>list</tt> [<tt>self proc</tt>] $args]}
  obj <tt>proc</tt> b args {<tt>return</tt> [<tt>list</tt> [<tt>self proc</tt>] $args]}
  obj <tt>proc</tt> c args {<tt>return</tt> [<tt>list</tt> [<tt>self proc</tt>] $args]}
  ? {obj f} [list a {}]
  ? {obj f 1 } [list b 1]
  ? {obj f 1 2} [list c {1 2}]
  ? {catch {obj f 1 2 3}} 1
</pre>

<p>Finally, the concluding example defines a class <tt>chan</tt> to use the
I/O-commands in an OO-manner. The proc open is used to create a
<tt>chan</tt> instance. For the channel object we provide the method
<tt>close</tt> (to close a channel and to destroy the channel object),
<tt>puts</tt> (to write on a stream), <tt>blocked</tt> (to check
whether last command exhausted all input), and <tt>fconfigure</tt> (to
configure the stream). Note that for <tt>puts</tt> we specified that
the actual stream should be inserted as the second to last argument.
</p>
<pre CLASS="code">
  <tt>Class</tt> chan <tt>-parameter</tt> stream
  <it># create stream and object</it>
  chan <tt>proc</tt> open args { 
    <tt>set</tt> stream [<tt>eval</tt> open $args]
    <tt>my create</tt> $stream -stream $stream  ;# make an object
  }
  <it># close stream and destroy object</it>
  chan <tt>instproc</tt> close {} {
    <tt>close</tt> [<tt>my</tt> stream]
    [<tt>self</tt>] <tt>destroy</tt>
  }
  <it># handle other subcommands (methods) via unknown</it>
  chan <tt>instproc</tt> unknown {m args} {
    <tt>set</tt> valid [<tt>lsort</tt> [chan <tt>info</tt> instcommands]]
    stderr puts "unknown chan method '$m' $args called; 
      	defined methods: $valid"
  }
  chan <tt>create</tt> stdout -stream stdout   <it>;# define standard stream</it>
  chan <tt>create</tt> stderr -stream stderr   <it>;# define standard stream</it>

  chan <tt>instforward</tt> puts puts {%@-1 %my stream}
  chan <tt>instforward</tt> blocked fblocked {%my stream}
  chan <tt>instforward</tt> fconfigure fconfigure {%my stream} 

  <tt>set</tt> c [chan open /tmp/junk w]
  $c puts -nonewline "hello"
  $c puts -nonewline " world"
  $c puts ""
  $c xxx                                       <it>;# trigger unknown</it>
  <it># The stream instances denote the currently open streams</it>
  stderr puts "currently open streams: [chan info instances]" 
  $c close
  stderr puts "currently open streams: [chan info instances]"
</pre>




<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055">
	<TR>
		<TD WIDTH=75%>
			<P><A NAME="assertions"></A><FONT COLOR="#ffffff"><FONT FACE="Arial, Helvetica"><FONT SIZE=6>Assertions
			</FONT></FONT></FONT>
			</P>
		</TD>
		<TD>
			<IMG SRC="logo-100.jpg" NAME="Graphic10" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
	</TR>
</TABLE>
<P>In order to improve reliability and self documentation we added
assertions to XOTcl. The implemented assertions are modeled after the
``design by contract'' concept of Bertrand Meyer. In XOTcl assertions
can be specified in form of formal and informal pre- and
post-conditions for each method. The conditions are defined as a list
of and-combined constraints. The formal conditions have the form of
normal Tcl conditions, while the informal conditions are defined as
comments (specified with a starting ``<tt>#</tt>''). The lists
containing the pre- and post-conditions are appended to the method
definition (see example below). 
</P>
<P>Since XOTcl offers per-object specialization it is desirable to
specify conditions within objects as well (this is different to the
concept of Meyer). Furthermore there may be conditions which must be
valid for the whole class or object at any visible state (that means
in every pre- and post-condition). These are called invariants and
may be defined with following syntax for class invariants: 
</P>
<pre CLASS="code">
  <em>className</em> instinvar <em>invariantList</em>
</pre><P>
or for objects invariants: 
</P>
<pre CLASS="code">
  <em>objName</em> invar <em>invariantList</em>
</pre><P>
Logically all invariants are appended to the pre- and post-conditions
with a logical ``and''. All assertions can be introspected. 
</P>
<P>Since assertions are contracts they need not to be tested if one
can be sure that the contracts are fulfilled by the partners. But for
example when a component has changed or a new one is developed the
assertions could be checked on demand. For this purpose the <tt>check</tt>
method can be used either to test the pre- or the post-conditions.
The syntax is: 
</P>
<pre CLASS="code">
  <em>objName</em> check <em>?all? ?instinvar? ?invar? ?pre? ?post?</em>
</pre><P>
Per default all options are turned off. <tt>check all</tt> turns all
assertion options for an object on, an arbitrary list (maybe empty)
can be used for the selection of certain options. Assertion options
are introspected by the <tt>info check</tt> option. The following
class is equipped with assertions: 
</P>
<pre CLASS="code">
  <tt>Class</tt> Sensor <tt>-parameter</tt> {{value 1}}
  Sensor instinvar {
    {[regexp {^[0-9]$} [<tt>my</tt> value]] == 1}
  }
  Sensor <tt>instproc</tt> incrValue {} {
    <tt>my</tt> <tt>incr</tt> value
  } {
    {# pre-condition:} 
    {[<tt>my</tt> value] &gt; 0}
  } {
    {# post-condition:} 
    {[<tt>my</tt> value] &gt; 1}
  }
</pre><P>
The <tt>parameter</tt> instance method defines an instance variable
<tt>value</tt> with value <tt>1</tt>. The invariant expresses the
condition (using the Tcl command <tt>regexp</tt>), that the value
must be a single decimal digit. The method definition expresses the
formal contract between the class and its clients that the method
<tt>incrValue</tt> only gets input-states in which the value of the
variable <tt>value</tt> is positive. If this contract is fulfilled by
the client, the class commits itself to supply a post-condition where
the variable's value is larger than 1. The formal conditions are
ordinary Tcl conditions. If checking is turned on for sensor <tt>s</tt>:
</P>
<pre CLASS="code">
  s check all
</pre><P>
the pre-conditions and invariants are tested at the beginning and the
post-condition and invariants are tested at the end of the method
execution automatically. A broken assertion, like calling <tt>incrValue</tt>
9 times (would break the invariant of being a single digit) results
in an error message. 
</P>
<p>
In assertions we do not check methods that modify or introspect
assertions. These are
<tt>check</tt>,<tt>info</tt>,<tt>proc</tt>,<tt>instproc</tt>,<tt>invar</tt>,
and <tt>instinvar</tt>. The reason for this is that we want to be able
to recover a malicious action in a <tt>catch</tt> error handler, like:
</P>
<pre CLASS="code">
  ...
  <tt>if</tt> {[<tt>catch</tt> {<tt>my</tt> assertionBreakingAction} errMsg]} {
    <tt>puts</tt> "CAUGHT ERROR: $errMsg"
    <it># remember checking options, for turning them on later again</it>
    <tt>set</tt> check [<tt>my</tt> <tt>info</tt> check]
    <tt>my</tt> check {}
    <it># recover from broken assertion</it>
    ...
    <it># turning checking on again </it>
    $fb check $check
  }
</pre>

<!-- PAGE BREAK -->

<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055">
	<TR>
		<TD WIDTH=75%>
			<P><A NAME="meta-data"></A><FONT
COLOR="#ffffff"><FONT FACE="Arial, Helvetica"><FONT SIZE=6>Meta-Data
and Automatic Documentation
			</FONT></FONT></FONT>
			</P>
		</TD>
		<TD>
			<IMG SRC="logo-100.jpg" NAME="Graphic11" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
	</TR>
</TABLE>
<P>To enhance the understandability and the consistency between
documentation and program it is useful to have a facility to make the
documentation a part of the program. There are several kinds of
meta-data which are interesting for a class, e.g. the author, a
description, the version, etc. 
</P>
<P>
Older versions of XOTcl have contained a special meta-data command
<tt>metadata</tt>. This command is now (from version 0.83) deprecated
and replaced by an integrated solution with XOTcl's API documentation
functionality. The object <tt>@</tt> is used for documentation and
metadata issues. Per default it is not evaluated at all. Everything
that is send to <tt>@</tt> is simply ignored. That way we do not waste
memory/performance at runtime, if we do not require to parse the
metadata/documentation.
</P>
<P>
If we have to know the meta-data/documentation, as for instance in the
<tt>xoDoc</tt> component and the <tt>makeDoc</tt> tool, that handle
XOTcl's internal documentation, we have to re-define the documentation
object. Alternatively, we can partially parse the source code for
<tt>@</tt> commands.
</P>
<P>
With <tt>@</tt> the meta-data/documentation is handled by first class
XOTcl objects. By defining alternate @ implementations - as in
<tt>xoDoc</tt>/<tt>makeDoc</tt> - we can evaluate the
meta-data/documentation arbitrarily. <tt>xoDoc</tt>/<tt>makeDoc</tt>
are only an HTML back-end, but the basic idea is to provide support for
several other usages as well (e.g. XML, RDF, on-line help,
documentation of dynamic structures, etc).
</P>
<P>
The object<tt>@</tt> handles comments via its <tt>unknown</tt>
method. <tt>xoDoc</tt> adds the appropriate instprocs to t<tt>@</tt> to produce HTML
output. The appropriate command is:
</P>
<pre CLASS="code">
  tclsh src/lib/makeDoc.xotcl <em>DOCDIR DOCFILES</em>
</pre><P>

The source of a documentation is structurally very similar to the
XOTcl constructs being commented. E.g. one can copy an instproc and
add comments at the right places, like:
</P>
<pre CLASS="code">
    <tt>Class</tt> C
    C <tt>instproc</tt> m {a1 a2} {
       <tt>return</tt> [<tt>expr</tt> {$a1+$a2}]
    }
</pre><P>

    can be commented as follows
 </P>
<pre CLASS="code">
    @ <tt>Class</tt> C { description { "<tt>my</tt> sample class"} }
    @ C <tt>instproc</tt> m {a1 "first number" a2 "second number"} {
       description "add two numbers"
       <tt>return</tt> "sum of a1 and a2"
    }
</pre></P>
<P>
 One can do essentially a copy+paste of the source and add the
 comments via attribute value pairs.  Every basic language construct
 can have a "description". If you want to include other properties to
 the description, you can add them like:
  </P>
<pre CLASS="code">
    @ C <tt>instproc</tt> m {a1 "first number" a2 "second number"} {
       author "GN+UZ"
       date "Feb 31"
       description "add two numbers"
       <tt>return</tt> "sum of a1 and a2"
    }
</pre><P>
 
    This way, author and date are added automatically to the generated
    HTML file.
    
    In addition, there is a <tt>@File</tt> hook for a per file
description, like:
  </P>
<pre CLASS="code">
@ @File {
  description {
    This is a file which provides a regression test
    for the features of the XOTcl - Language. 
  }
}
</pre><P>

<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055">
	<TR>
		<TD WIDTH=75%>
			<P><A NAME="additional-functionalities"></A><FONT COLOR="#ffffff"><FONT FACE="Arial, Helvetica"><FONT SIZE=6>Additional
			Functionalities </FONT></FONT></FONT>
			</P>
		</TD>
		<TD>
			<IMG SRC="logo-100.jpg" NAME="Graphic12" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
	</TR>
</TABLE>
<H2><A NAME="abstract-classes"></A>Abstract Classes 
</H2>
<P>In XOTcl a class is defined abstract if at least one method of
this class is abstract. The instance method <tt>abstract</tt> defines
an abstract method and specifies its interface. Direct calls to
abstract methods produce an error message. E.g. a <tt>Storage</tt> class
provides an abstract interface for access to different storage forms:
</P>
<pre CLASS="code">
  <tt>Class</tt> Storage
  Storage abstract <tt>instproc</tt> open  {name}       
  Storage abstract <tt>instproc</tt> store {key value}
  Storage abstract <tt>instproc</tt> list  {}         
  Storage abstract <tt>instproc</tt> fetch key        
  Storage abstract <tt>instproc</tt> close {}         
  Storage abstract <tt>instproc</tt> delete {k} 
</pre><P>
All kinds of storage have to implement every method from the
interface. E.g. a GNU Database Access, a relational database access,
and several other storage forms may be derived by subclassing
(therefore, all conform to the same storage access interface). 
</P>

<H2><A NAME="cmdCheck"></A>Checking Commands for being Objects,
Classes, or Meta-Classes 
</H2>
<P>Since XOTcl is a hybrid language containing several Tcl commands,
sometimes its necessary for applications to distinguish between Tcl
commands and object commands for XOTcl. </tt>method of the
<tt>Object</tt> class looks up an <tt>objName</tt> and returns 1 if it
is an object and 0 if not:

<pre CLASS="code">
  <em>objName1</em> <tt>isobject</tt> <em>objName2</em>
</pre><P> 

If one can be sure that a command represents an
object, it might be unsure if the command is only an object or also
class or even meta-class. The two instance methods <tt>isclass</tt>
and <tt>ismetaclass</tt> check in the same manner, whether a class or
meta-class is given (since ever XOTcl class is an object, they also
return 0, when objName is not an XOTcl object).

<pre CLASS="code">
  <em>objName1</em> <tt>isclass</tt> <em>objName2</em>
  <em>objName1</em> <tt>ismetaclass</tt> </em>objName2</em>
</em></pre>

<H2>
<A NAME="Exit Handler"></A>Exit Handler 
</H2>
<P>A task for a programming language, sometimes of similar importance
as object creation, is the object destruction. XOTcl ensures that all
objects are destroyed and their destructors are invoked when XOTcl
applications terminate. For that reason objects and classes are
destroyed in the order objects, classes, meta-classes. Sometimes
further destruction order is of importance. For these cases, the XOTcl
language provides an exit handler, which is a user-defined proc, which
invokes user-defined exit handling just before the destruction of
objects, classes, meta-classes is invoked. For instance, the exit
handler lets the user specify objects which have to be destroyed
before all other objects.
</P>
<P> The exit handler is defined as a proc of <tt>Object</tt>, which is per default empty:
<pre CLASS="code">
  ::xotcl::Object <tt>proc</tt> __exitHandler {} {
    <it># clients should append exit handlers to this proc body</it>
    ;
  }
</pre>

<P> There are some procs of the <tt>Object</tt> class pre-defined,
which let us specify an exit handler conveniently:
</P>
<pre CLASS="code">
   <tt>Object</tt> setExitHandler body
   <tt>Object</tt> getExitHandler
   <tt>Object</tt> unsetExitHandler
</pre><P STYLE="margin-bottom: 0in">
<tt>setExitHandler</tt> lets us specify
a proc body that actually contains the user-defined exit handling:
<pre CLASS="code">
   <tt>Object</tt> setExitHandler {
     aObj <tt>destroy</tt>
     <tt>puts</tt> "exiting"
   }
</pre><P STYLE="margin-bottom: 0in">
destroys the object <tt>aObj</tt> before
all other objects and prints the message existing to the screen. With
<tt>getExitHandler</tt> the exit
handler can be introspected. E.g. if we just want to append the
destruction of object <tt>bObj</tt> to
an existing exit handler, we use <tt>getExitHandler</tt>:
</P>
<pre CLASS="code">
   <tt>Object</tt> setExitHandler &quot;[<tt>Object</tt> getExitHandler]; bObj <tt>destroy</tt>&quot;
</pre>
<P STYLE="margin-bottom: 0in">
<tt>unsetExitHandler</tt> deletes the exit handler. 
</P>
<pre STYLE="margin-top: 0.17in; margin-bottom: 0.2in; page-break-after: avoid">
</pre>
<H2><A NAME="autonames">Automatic Name Creation</A>
</H2>
The XOTcl <FONT SIZE=2>autoname</FONT>
instance method provides a simple way to take the task of
automatically creating names out of the responsibility of the
programmer. The example below shows how to create on each invocation
of method <FONT SIZE=2>new</FONT> an agent with a fresh name
(prefixed with <FONT SIZE=2>agent</FONT>): 
</P>
<pre CLASS="code">
  Agent <tt>proc</tt> new args {
    <tt>eval</tt> <tt>my</tt> [<tt>my</tt> <tt>autoname</tt> agent] $args
  }
</pre>
<p>
Autonames may have format strings as in the Tcl 'format' command.
E.g.: 
</P>
<pre CLASS="code">
  <em>objName</em> <tt>autoname</tt> a%06d
</pre>
<p>
produces 
<pre CLASS="code">
  a000000, a000001, a000002, ...
</pre>
</P>

<!-- PAGE BREAK -->

<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055">
	<TR>
		<TD WIDTH=75%>
			<P><A NAME="cext"></A><FONT COLOR="#ffffff"><FONT FACE="Arial, Helvetica"><FONT SIZE=6>Integrating XOTcl Programs with C Extensions (such as TK)
			</FONT></FONT></FONT>
			</P>
		</TD>
		<TD>
			<IMG SRC="logo-100.jpg" NAME="Graphic2" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
	</TR>
</TABLE>

<p>Because all XOTcl commands are in the ::xotcl namespace, it is
usually no problem to integrate XOTcl with other Tcl extensions. Most
often it works to import the XOTcl commands (like Object, Class) into
the current namespace because there are no name-clashes with the
commands defined by other extensions.</p>

<p>Consider you want to perform a deeper integration of another
extension and XOTcl because you want to benefit from XOTcl's object
system. For instance, you might want to introduce composite TK widgets
(sometimes called mega-widgets) as classes and inherit from these
classes. Here, you have two options: you can change or extend the C
code of that other extension to provide XOTcl classes or objects, or
you can write an XOTcl wrapper in Tcl.  For the first alternative,
there are some examples provided in the XOTcl distribution. XOTclGdbm
provides an OO Tcl interface to the GDBM database, for
instance. XOTclSdbm does the same for SDBM, and the TclExpat wrapper
provides a class-based interface to the TclExpat XML parser.</p>

<p>Consider you do not want to change the C code of a Tcl
extension. Then you can write an OO wrapper in XOTcl for the commands
of the other extension. For stateless commands, you can simply write
forwarder methods. If the extension maintains some state, you
typically associate the state handle with an XOTcl parameter, acquire
the state in the XOTcl constructor, and align the XOTcl destructor
with the stateful instance.</p>

<p>Consider you want to wrap the Tk button widget. You can acquire the
widget in the constructor, and maintain the widget ID in a
parameter. You now can forward invocations to this widget ID
(e.g. when using "pack"), or register command callbacks (like
buttonPressed). Note that we let the "self" command be replaced in the
scope of the current method so that TK receives the correct object ID
for the callback.  In the destructor we destroy the widget as well (we
use "catch" because sometimes widgets can destroyed by other means as
well (e.g. by their parent widget, when a widget/object hierarchy is
destroyed at once).</p>

<pre CLASS="code">
  <tt>Class</tt> MyButton <tt>-parameter</tt> {button}
  MyButton <tt>instproc</tt> buttonPressed args {
    <tt>puts</tt> "pressed [<tt>my</tt> button]"
  }
  MyButton <tt>instproc</tt> <tt>init</tt> args {
    <tt>set</tt> ID [<tt>namespace</tt> tail [<tt>self</tt>]]
    <tt>my</tt> <tt>instvar</tt> button
    <tt>set</tt> button [button .$ID \
      -text "My Button $ID" \
      -command [<tt>list</tt> [<tt>self</tt>] buttonPressed]] 
    pack $button
    <tt>next</tt>
  }
  MyButton <tt>instproc</tt> <tt>destroy</tt> args {
     <tt>catch</tt> {destroy [<tt>my</tt> button]}
     <tt>next</tt>
  }

  <it># a test -> 3 buttons, destroy one of them</it>
  <tt>foreach</tt> b {a b c} {
    MyButton $b
  }
  b <tt>destroy</tt>
</pre>

<p> The "trick" to substitute "self" within the current method scope
works for all kinds of command callbacks. Extensions such as TK,
however, often work with bindings to (global) variables as well. Using
global variables is frowned upon in the OO community. Instead you
should use instance variables of objects. As Tcl can only bind to
existing namespace variables (and XOTcl acquires the namespace of an
object on demand), you have to make sure that the namespace of an
object exists before binding a variable. That can be done with
"requireNamespace":</p>
<pre CLASS="code">
  GUIClass <tt>instproc</tt> buildEntry win {
    <tt>my</tt> <tt>requireNamespace</tt>
    <tt>entry</tt> $win -textvariable [<tt>self</tt>]::entryValue
    <tt>my</tt> <tt>set</tt> entryValue {Init Value}
  }
</pre>

<p>Note that in the above example we have used to tail of the object ID
as ID for the widget. Usually, it is a good idea to the object name,
if possible, for TK (and other extensions) IDs as well. Another option
is to use a autoname to get a unique name for the ID.</p>

<p>Sometimes you want to simply send all invocations, not implemented by
XOTcl, to the wrapped command. Here, it is tedious to write a wrapper
for each of these methods. Instead you can use "unknown" to handle
automatic forwarding. Consider you want to wrap TK commands like pack
and replace XOTcl object names with their TK widget ID, so that you can
use both IDs synonymously. You can rename the respective TK commands in
the following way:

<pre CLASS="code">
  <tt>foreach</tt> tkCommand {bell bind bindtags clipboard event 
    focus font grid image lower option pack place raise 
    selection send tk tkwait winfo wm} { 
   <tt> rename</tt> ::$tkCommand __tk_$tkCommand
    TkCommand ::$tkCommand
    ::$tkCommand <tt>set</tt> wrapped __tk_$tkCommand
  }
</pre>

<p>The XOTcl class handling the ID substitution for the TK command
might look as follows:</p>

<pre CLASS="code">
  <tt>Class</tt> TkCommand <tt>-parameter</tt> wrapped
  TkCommand <tt>instproc</tt> unknown args {
      <tt>my</tt> <tt>instvar</tt> wrapped
      <tt>set</tt> args [Widget replaceWithWidgetIDs $args]
      <it># now call the command</it>
      <tt>eval</tt> $wrapped $args
  }
</pre>

<p></p>

<!-- PAGE BREAK -->

<TABLE COLS=2 WIDTH=100% BORDER=0 CELLPADDING=2 CELLSPACING=0 BGCOLOR="#000055">
	<TR>
		<TD WIDTH=75%>
			<P><A NAME="references"></A><FONT COLOR="#ffffff"><FONT FACE="Arial, Helvetica"><FONT SIZE=6>References
			</FONT></FONT></FONT>
			</P>
		</TD>
		<TD>
			<IMG SRC="logo-100.jpg" NAME="Graphic2" ALIGN=RIGHT WIDTH=102 HEIGHT=42 BORDER=0></TD>
	</TR>
</TABLE>


<P></P> <STRONG>[Zdun, Strembeck, Neumann 2007]</STRONG> U. Zdun,
M. Strembeck, G. Neumann: Object-Based and Class-Based Composition of
Transitive Mixins, <em>Information and Software Technology</em>, 49(8) 2007 .

<P></P>
<A NAME="xotcl-filter"><STRONG>[Neumann and Zdun 1999a]</STRONG></A>
G. Neumann and U. Zdun.
Filters as a language support for design patterns in object-oriented
  scripting languages.
In <EM>Proceedings of COOTS'99, 5th Conference on Object-Oriented
  Technologies and Systems</EM>, San Diego, May 1999.

<P></P><A NAME="xotcl-objpattern"><STRONG>[Neumann and Zdun 1999b]</STRONG></A>
G. Neumann and U. Zdun.
Implementing object-specific design patterns using per-object mixins.
In <EM>Proc. of NOSA`99, Second Nordic Workshop on Software
  Architecture</EM>, Ronneby, Sweden, August 1999.

<P></P><A NAME="xotcl-mixin"><STRONG>[Neumann and Zdun 1999c]</STRONG></A>
G. Neumann and U. Zdun.
Enhancing object-based system composition through per-object mixins.
In <EM>Proceedings of Asia-Pacific Software Engineering Conference
  (APSEC)</EM>, Takamatsu, Japan, December 1999.

<P></P><A NAME="xotcl"><STRONG>[Neumann and Zdun 2000a]</STRONG></A>
G. Neumann and U. Zdun.
 XOT<SMALL>CL</SMALL>, an object-oriented scripting language.
In <EM>Proceedings of Tcl2k: The 7th USENIX Tcl/Tk Conference</EM>,
  Austin, Texas, February 2000.

<P></P><A NAME="xotcl-aggregation"><STRONG>[Neumann and Zdun 2000b]</STRONG></A>
G. Neumann and U. Zdun. Towards the Usage of Dynamic Object
                  Aggregations as a Form of Composition
In: <EM>Proceedings of Symposium of Applied Computing (SAC'00)</EM>, Como, Italy, Mar 19-21, 2000.

<P></P><A NAME="xotcl2"><strong>[Neumann and Sobernig 2009]</strong></A>
G. Neumann, S. Sobernig: XOTcl 2.0 - A Ten-Year Retrospective and Outlook, in: <em>Proceedings of the Sixteenth Annual Tcl/Tk Conference</em>, Portland, Oregon, October, 2009. 


<P></P><A NAME="tcl"><STRONG>[Ousterhout 1990]</STRONG></A>
J. K. Ousterhout.
Tcl: An embeddable command language.
In <EM>Proc. of the 1990 Winter USENIX Conference</EM>, January 1990.

<P></P><A NAME="ousterhout"><STRONG>[Ousterhout 1998]</STRONG></A>
J. K. Ousterhout.
Scripting: Higher Level Programming for the 21st Century, IEEE Computer 31(3), March 1998.

<P></P><A NAME="otcl"><STRONG>[Wetherall and Lindblad 1995]</STRONG></A>
D. Wetherall and C. J. Lindblad. Extending Tcl for Dynamic
    Object-Oriented Programming. Proc. of the Tcl/Tk Workshop '95, July 1995.
</BODY>
</HTML>
<!--  LocalWords:  mixins mixin instproc instmixins superclasses XOTcl Zdun Tcl
 -->
<!--  LocalWords:  Wetherall Lindblad OTcl glueing namespaces Beckenbauer procs
 -->
<!--  LocalWords:  Bayern instprocs CLOS args incr namespace instfilter RDF
 -->
<!--  LocalWords:  instmixin calledclass calledproc callingclass callingproc
 -->
<!--  LocalWords:  callingobject filterreg instcommands isclass isobject eval
 -->
<!--  LocalWords:  ismetaclass destructors autoname Ousterhout
 -->