1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
|
/* Copyright 2016 Google Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "platform.h"
#include "nsync.h"
#include "smprintf.h"
#include "testing.h"
#include "closure.h"
NSYNC_CPP_USING_
/* A cv_stress_data represents the data used by the threads of the tests below. */
typedef struct cv_stress_data_s {
nsync_mu mu; /* protects fields below */
uintmax_t count; /* incremented by the various threads */
uintmax_t timeouts; /* incremented on each timeout */
uintmax_t reader_loops; /* the number of loops executed by the reader threads, if any */
unsigned refs; /* ref count: one per normal test thread, decremented on its exit */
unsigned reader_refs; /* ref count: one per reader test thread, decremented on its exit */
int use_cv; /* threads are using CVs; under mu */
nsync_cv count_is_imod4[4]; /* element i signalled when count==i mod 4 if use_cv non-0. */
nsync_cv refs_is_zero; /* signalled when refs==0 */
nsync_cv reader_refs_is_zero; /* signalled when reader_refs==0 */
/* iterations per writer thread; under mu--increased until deadline exceeded */
uintmax_t loop_count;
/* number of various types of thread to create -- r/o after init */
uintmax_t cv_threads_per_value;
uintmax_t cv_reader_threads_per_value;
uintmax_t mu_threads_per_value;
uintmax_t mu_reader_threads_per_value;
/* end times */
nsync_time deadline; /* r/o after init */
} cv_stress_data;
/* --------------------------- */
/* The delays in cv_stress_inc_loop(), cv_stress_reader_loop(), mu_stress_inc_loop(),
and mu_stress_reader_loop() are uniformly distributed from 0 to
STRESS_MAX_DELAY_MICROS-1 microseconds. */
#define STRESS_MAX_DELAY_MICROS (4000) /* maximum delay */
#define STRESS_MEAN_DELAY_MICROS (STRESS_MAX_DELAY_MICROS / 2) /* mean delay */
#define STRESS_EXPECT_TIMEOUTS_PER_SEC (1000000 / STRESS_MEAN_DELAY_MICROS) /* expect timeouts/s*/
/* Acquire s.mu, then increment s.count n times, each time
waiting until condition is true. Use a random delay between 0us and 999us
for each wait; if the timeout expires, increment s.timeouts, and
retry the wait. Decrement s.refs before the returning. */
static void cv_stress_inc_loop (cv_stress_data *s, uintmax_t count_imod4) {
uintmax_t i;
nsync_mu_lock (&s->mu);
s->use_cv = 1;
nsync_mu_assert_held (&s->mu);
for (i = 0; i != s->loop_count; i++) {
nsync_mu_assert_held (&s->mu);
while ((s->count & 3) != count_imod4) {
nsync_time abs_deadline;
abs_deadline = nsync_time_add (nsync_time_now (),
nsync_time_us (rand () % STRESS_MAX_DELAY_MICROS));
while (nsync_cv_wait_with_deadline (
&s->count_is_imod4[count_imod4],
&s->mu, abs_deadline, NULL) != 0 &&
(s->count&3) != count_imod4) {
nsync_mu_assert_held (&s->mu);
s->timeouts++;
nsync_mu_assert_held (&s->mu);
abs_deadline = nsync_time_add (nsync_time_now (),
nsync_time_us (rand () % STRESS_MAX_DELAY_MICROS));
}
}
nsync_mu_assert_held (&s->mu);
s->count++;
nsync_cv_signal (&s->count_is_imod4[s->count&3]);
}
s->refs--;
if (s->refs == 0) {
if (s->reader_refs != 0) { /* wake any readers so they will exit */
for (i = 0; i != 4; i++) {
nsync_cv_broadcast (&s->count_is_imod4[i]);
}
}
nsync_cv_signal (&s->refs_is_zero);
}
nsync_mu_assert_held (&s->mu);
nsync_mu_unlock (&s->mu);
}
CLOSURE_DECL_BODY2 (cv_stress_inc_loop, cv_stress_data *, uintmax_t)
/* Acquires s.u in reader mode, and wait until a
condition is true or a timeout occurs on a random wait between 0us and 999us, repeatedly.
Every 16 times, release the reader lock, but immediately reacquire it.
Once the count of threads running cv_stress_inc_loop() reaches zero (s.refs == 0),
sum the number of loops complete into s.reader_loops, and
the number of timeouts experience into s.timeouts.
Then decrement s.reader_refs before returning. */
static void cv_stress_reader_loop (cv_stress_data *s, uintmax_t count_imod4) {
uintmax_t loops;
uintmax_t timeouts = 0;
nsync_mu_lock (&s->mu);
s->use_cv = 1;
nsync_mu_unlock (&s->mu);
nsync_mu_rlock (&s->mu);
nsync_mu_rassert_held (&s->mu);
loops = 0;
while (s->refs != 0) {
nsync_mu_rassert_held (&s->mu);
while ((s->count&3) != count_imod4 && s->refs != 0) {
nsync_time abs_deadline;
abs_deadline = nsync_time_add (nsync_time_now (),
nsync_time_us (rand () % STRESS_MAX_DELAY_MICROS));
while (nsync_cv_wait_with_deadline (&s->count_is_imod4[count_imod4],
&s->mu, abs_deadline, NULL) != 0 &&
(s->count&3) != count_imod4 && s->refs != 0) {
nsync_mu_rassert_held (&s->mu);
timeouts++;
abs_deadline = nsync_time_add (nsync_time_now (),
nsync_time_us (rand () % STRESS_MAX_DELAY_MICROS));
}
}
nsync_mu_rassert_held (&s->mu);
loops++;
if ((loops & 0xf) == 0) {
nsync_mu_runlock (&s->mu);
if ((loops & 0xfff) == 0) {
nsync_time_sleep (nsync_time_ms (1));
}
nsync_mu_rlock (&s->mu);
}
}
nsync_mu_rassert_held (&s->mu);
nsync_mu_runlock (&s->mu);
nsync_mu_lock (&s->mu);
s->reader_loops += loops;
s->timeouts += timeouts;
s->reader_refs--;
if (s->reader_refs == 0) {
nsync_cv_signal (&s->reader_refs_is_zero);
}
nsync_mu_assert_held (&s->mu);
nsync_mu_unlock (&s->mu);
}
CLOSURE_DECL_BODY2 (cv_stress_reader_loop, cv_stress_data *, uintmax_t)
/* --------------------------- */
/* These tests use the data structure cv_stress_data defined above.
One test uses nsync_mu and nsync_cv, one nsync_mu and its conditional critical sections, while
a third mixes conditional critical sections and condition variables; they
all the routines above */
/* ---------------------------
The various conditions that threads wait for on cv_stress_data. */
static int count_is0mod4 (const void *v) {
const cv_stress_data *s = (const cv_stress_data *) v;
nsync_mu_rassert_held (&s->mu);
return ((s->count & 3) == 0);
}
static int count_is1mod4 (const void *v) {
const cv_stress_data *s = (const cv_stress_data *) v;
nsync_mu_rassert_held (&s->mu);
return ((s->count & 3) == 1);
}
static int count_is2mod4 (const void *v) {
const cv_stress_data *s = (const cv_stress_data *) v;
nsync_mu_rassert_held (&s->mu);
return ((s->count & 3) == 2);
}
static int count_is3mod4 (const void *v) {
const cv_stress_data *s = (const cv_stress_data *) v;
nsync_mu_rassert_held (&s->mu);
return ((s->count & 3) == 3);
}
static int count_is0mod4or_refs_is0 (const void *v) {
const cv_stress_data *s = (const cv_stress_data *) v;
nsync_mu_rassert_held (&s->mu);
return ((s->count&3) == 0 || s->refs == 0);
}
static int count_is1mod4or_refs_is0 (const void *v) {
const cv_stress_data *s = (const cv_stress_data *) v;
nsync_mu_rassert_held (&s->mu);
return ((s->count&3) == 1 || s->refs == 0);
}
static int count_is2mod4or_refs_is0 (const void *v) {
const cv_stress_data *s = (const cv_stress_data *) v;
nsync_mu_rassert_held (&s->mu);
return ((s->count&3) == 2 || s->refs == 0);
}
static int count_is3mod4or_refs_is0 (const void *v) {
const cv_stress_data *s = (const cv_stress_data *) v;
nsync_mu_rassert_held (&s->mu);
return ((s->count&3) == 3 || s->refs == 0);
}
/* --------------------------- */
typedef int (*condition_func) (const void *);
/* Acquire s.mu, then increment s.count n times, each time
waiting until condition is true. Use a random delay between 0us and 999us
for each wait; if the timeout expires, increment s.timeouts, and
the retry the wait. Decrement s.refs before returning. */
static void mu_stress_inc_loop (cv_stress_data *s, condition_func condition,
const void *condition_arg) {
uintmax_t i;
nsync_mu_lock (&s->mu);
nsync_mu_assert_held (&s->mu);
for (i = 0; i != s->loop_count; i++) {
nsync_time abs_deadline;
nsync_mu_assert_held (&s->mu);
abs_deadline = nsync_time_add (nsync_time_now (),
nsync_time_us (rand () % STRESS_MAX_DELAY_MICROS));
while (nsync_mu_wait_with_deadline (&s->mu, condition, condition_arg, NULL,
abs_deadline, NULL) != 0) {
nsync_mu_assert_held (&s->mu);
s->timeouts++;
nsync_mu_assert_held (&s->mu);
abs_deadline = nsync_time_add (nsync_time_now (),
nsync_time_us (rand () % STRESS_MAX_DELAY_MICROS));
}
nsync_mu_assert_held (&s->mu);
s->count++;
if (s->use_cv) {
nsync_cv_signal (&s->count_is_imod4[s->count&3]);
}
}
s->refs--;
if (s->refs == 0) {
if (s->use_cv && s->reader_refs != 0) { /* wake any readers so they will exit */
for (i = 0; i != 4; i++) {
nsync_cv_broadcast (&s->count_is_imod4[i]);
}
}
nsync_cv_signal (&s->refs_is_zero);
}
nsync_mu_assert_held (&s->mu);
nsync_mu_unlock (&s->mu);
}
CLOSURE_DECL_BODY3 (mu_stress_inc_loop, cv_stress_data *, condition_func, const void *)
/* Acquire s.u in reader mode, and wait until a
condition is true or a timeout occurs on a random wait between 0us and 999us, repeatedly.
Every 16 times, release the reader lock, but immediately reacquire it.
Once the count of threads running mu_stress_inc_loop() reaches zero (s.refs == 0),
sum the number of loops completed into s.reader_loops, and
the number of timeouts it experienced into s.timeouts.
Then decrement s.reader_refs before returning. */
static void mu_stress_reader_loop (cv_stress_data *s, condition_func condition,
const void *condition_arg) {
uintmax_t loops;
uintmax_t timeouts = 0;
nsync_mu_rlock (&s->mu);
nsync_mu_rassert_held (&s->mu);
loops = 0;
while (s->refs != 0) {
nsync_time abs_deadline;
nsync_mu_rassert_held (&s->mu);
abs_deadline = nsync_time_add (nsync_time_now (),
nsync_time_us (rand () % STRESS_MAX_DELAY_MICROS));
while (nsync_mu_wait_with_deadline (&s->mu, condition, condition_arg, NULL,
abs_deadline, NULL) != 0) {
nsync_mu_rassert_held (&s->mu);
s->timeouts++;
nsync_mu_rassert_held (&s->mu);
abs_deadline = nsync_time_add (nsync_time_now (),
nsync_time_us (rand () % STRESS_MAX_DELAY_MICROS));
}
nsync_mu_rassert_held (&s->mu);
loops++;
if ((loops & 0xf) == 0) {
nsync_mu_runlock (&s->mu);
if ((loops & 0xfff) == 0) {
nsync_time_sleep (nsync_time_ms (1));
}
nsync_mu_rlock (&s->mu);
}
}
nsync_mu_rassert_held (&s->mu);
nsync_mu_runlock (&s->mu);
nsync_mu_lock (&s->mu);
s->reader_loops += loops;
s->timeouts += timeouts;
s->reader_refs--;
if (s->reader_refs == 0) {
nsync_cv_signal (&s->reader_refs_is_zero);
}
nsync_mu_assert_held (&s->mu);
nsync_mu_unlock (&s->mu);
}
CLOSURE_DECL_BODY3 (mu_stress_reader_loop, cv_stress_data *, condition_func, const void *)
static const condition_func is_n_mod_4[] = {
&count_is0mod4,
&count_is1mod4,
&count_is2mod4,
&count_is3mod4
};
static const condition_func is_n_mod_4_or_refs0[] = {
&count_is0mod4or_refs_is0,
&count_is1mod4or_refs_is0,
&count_is2mod4or_refs_is0,
&count_is3mod4or_refs_is0
};
/* Create cv_threads_per_value threads using cv_stress_inc_loop(),
and mu_threads_per_value threads using mu_stress_inc_loop(), all trying to
increment s.count from 1 to 2 mod 4, plus the same from 2 to 3 mod 4, and
again from 3 to 0 mod 4, using random delays in their waits. Sleep a few seconds,
ensuring many random timeouts by these threads, because there is no thread
incrementing s.count from 0 (which is 0 mod 4). Then create
cv_threads_per_value threads using cv_stress_inc_loop(), and mu_threads_per_value
threads using mu_stress_inc_loop(), all trying to increment s.count from 0 to 1
mod 4. This allows all the threads to run to completion, since there are
equal numbers for each condition.
At the same time, create cv_reader_threads_per_value threads using cv_stress_reader_loop
and mu_reader_threads_per_value using mu_stress_reader_loop, for each of the transitions
0 to 1, 1, to 2, 2 to 3, and 3 to 0 mod 4.
All these loops count how many timeouts they encounter. The reader loops
count how many times they manage to run.
These counts are tested against expected values.
Finally, it waits for all threads to exit.
It returns whether the deadlie has expired. */
static int run_stress_test (cv_stress_data *s, testing t,
const char *test_name) {
int done = 0;
uintmax_t expected_timeouts;
uintmax_t timeouts_seen;
uintmax_t expected_count;
uintmax_t i;
static const int sleep_seconds = 1;
nsync_mu_lock (&s->mu);
nsync_mu_assert_held (&s->mu);
/* Create threads trying to increment from 1, 2, and 3 mod 4.
They will continually hit their timeouts because s.count==0 */
for (i = 0; i != s->cv_threads_per_value; i++) {
nsync_mu_assert_held (&s->mu);
s->refs++;
closure_fork (closure_cv_stress_inc_loop (&cv_stress_inc_loop, s, 1));
s->refs++;
closure_fork (closure_cv_stress_inc_loop (&cv_stress_inc_loop, s, 2));
s->refs++;
closure_fork (closure_cv_stress_inc_loop (&cv_stress_inc_loop, s, 3));
}
for (i = 0; i != s->cv_reader_threads_per_value; i++) {
nsync_mu_assert_held (&s->mu);
s->reader_refs++;
closure_fork (closure_cv_stress_reader_loop (&cv_stress_reader_loop, s, 1));
s->reader_refs++;
closure_fork (closure_cv_stress_reader_loop (&cv_stress_reader_loop, s, 2));
s->reader_refs++;
closure_fork (closure_cv_stress_reader_loop (&cv_stress_reader_loop, s, 3));
}
for (i = 0; i != s->mu_threads_per_value; i++) {
nsync_mu_assert_held (&s->mu);
s->refs++;
closure_fork (closure_mu_stress_inc_loop (&mu_stress_inc_loop,
s, is_n_mod_4[1], s));
s->refs++;
closure_fork (closure_mu_stress_inc_loop (&mu_stress_inc_loop,
s, is_n_mod_4[2], s));
s->refs++;
closure_fork (closure_mu_stress_inc_loop (&mu_stress_inc_loop,
s, is_n_mod_4[3], s));
}
for (i = 0; i != s->mu_reader_threads_per_value; i++) {
nsync_mu_assert_held (&s->mu);
s->reader_refs++;
closure_fork (closure_mu_stress_reader_loop (&mu_stress_reader_loop,
s, is_n_mod_4_or_refs0[1], s));
s->reader_refs++;
closure_fork (closure_mu_stress_reader_loop (&mu_stress_reader_loop,
s, is_n_mod_4_or_refs0[2], s));
s->reader_refs++;
closure_fork (closure_mu_stress_reader_loop (&mu_stress_reader_loop,
s, is_n_mod_4_or_refs0[3], s));
}
nsync_mu_assert_held (&s->mu);
nsync_mu_unlock (&s->mu);
/* Sleep a while to cause many timeouts. */
nsync_time_sleep (nsync_time_ms (sleep_seconds * 1000));
nsync_mu_lock (&s->mu);
nsync_mu_assert_held (&s->mu);
/* Check that approximately the right number of timeouts have occurred.
The 3 below is the three classes of thread produced before the Sleep().
The factor of 1/8 is to allow for randomness and slow test machines. */
expected_timeouts = (s->cv_threads_per_value + s->mu_threads_per_value) * 3 *
sleep_seconds * STRESS_EXPECT_TIMEOUTS_PER_SEC / 8;
timeouts_seen = s->timeouts;
/* actual check is below. */
/* Create the threads that increment from 0 mod 4. s.count will then be incremented. */
for (i = 0; i != s->cv_threads_per_value; i++) {
nsync_mu_assert_held (&s->mu);
s->refs++;
closure_fork (closure_cv_stress_inc_loop (&cv_stress_inc_loop, s, 0));
}
for (i = 0; i != s->cv_reader_threads_per_value; i++) {
nsync_mu_assert_held (&s->mu);
s->reader_refs++;
closure_fork (closure_cv_stress_reader_loop (&cv_stress_reader_loop, s, 0));
}
for (i = 0; i != s->mu_threads_per_value; i++) {
nsync_mu_assert_held (&s->mu);
s->refs++;
closure_fork (closure_mu_stress_inc_loop (&mu_stress_inc_loop,
s, is_n_mod_4[0], s));
}
for (i = 0; i != s->mu_reader_threads_per_value; i++) {
nsync_mu_assert_held (&s->mu);
s->reader_refs++;
closure_fork (closure_mu_stress_reader_loop (&mu_stress_reader_loop,
s, is_n_mod_4_or_refs0[0], s));
}
/* wait for threads to exit. */
nsync_mu_assert_held (&s->mu);
while (s->refs != 0) {
nsync_cv_wait (&s->refs_is_zero, &s->mu);
}
while (s->reader_refs != 0) {
nsync_cv_wait (&s->reader_refs_is_zero, &s->mu);
}
nsync_mu_assert_held (&s->mu);
nsync_mu_unlock (&s->mu);
if (nsync_time_cmp (s->deadline, nsync_time_now ()) < 0) {
if (timeouts_seen < expected_timeouts && !testing_is_uniprocessor (t)) {
TEST_ERROR (t, ("%s: expected more than %d timeouts, got %d",
test_name, expected_timeouts, timeouts_seen));
}
/* Check that s.count has the right value. */
expected_count = s->loop_count * (s->cv_threads_per_value +
s->mu_threads_per_value) * 4;
if (s->count != expected_count) {
TEST_ERROR (t, ("%s: expected to increment s->count to %d, got %d",
test_name, expected_count, s->count));
}
/* Some timeouts should have happened while the counts were being incremented. */
expected_timeouts = timeouts_seen + 1;
if (s->timeouts < expected_timeouts) {
TEST_ERROR (t, ("%s: expected more than %d timeouts, got %d",
test_name, expected_timeouts, s->timeouts));
}
done = 1;
}
return (done);
}
/* Test many threads using a single lock, using
condition variables and timeouts. See run_stress_test() for details. */
static void test_cv_timeout_stress (testing t) {
uintmax_t loop_count = 3;
cv_stress_data s;
nsync_time deadline;
deadline = nsync_time_add (nsync_time_now (), nsync_time_ms (5000));
do {
memset ((void *) &s, 0, sizeof (s));
s.loop_count = loop_count;
s.cv_threads_per_value = 4;
s.cv_reader_threads_per_value = 2;
s.mu_threads_per_value = 0;
s.mu_reader_threads_per_value = 0;
s.deadline = deadline;
loop_count *= 2;
} while (!run_stress_test (&s, t, "test_cv_timeout_stress"));
}
/* Test many threads using a single lock, using
conditional critical sections and timeouts. See run_stress_test() for details. */
static void test_mu_timeout_stress (testing t) {
uintmax_t loop_count = 3;
cv_stress_data s;
nsync_time deadline;
deadline = nsync_time_add (nsync_time_now (), nsync_time_ms (5000));
do {
memset ((void *) &s, 0, sizeof (s));
s.loop_count = loop_count;
s.cv_threads_per_value = 0;
s.cv_reader_threads_per_value = 0;
s.mu_threads_per_value = 4;
s.mu_reader_threads_per_value = 2;
s.deadline = deadline;
loop_count *= 2;
} while (!run_stress_test (&s, t, "test_mu_timeout_stress"));
}
/* Like test_mu_timeout_stress() but has both threads that use conditional
critical sections and threads that use condition variables, to ensure that
they work together. */
static void test_mu_cv_timeout_stress (testing t) {
uintmax_t loop_count = 3;
cv_stress_data s;
nsync_time deadline;
deadline = nsync_time_add (nsync_time_now (), nsync_time_ms (5000));
do {
memset ((void *) &s, 0, sizeof (s));
s.loop_count = loop_count;
s.cv_threads_per_value = 4;
s.cv_reader_threads_per_value = 1;
s.mu_threads_per_value = 4;
s.mu_reader_threads_per_value = 1;
s.deadline = deadline;
loop_count *= 2;
} while (!run_stress_test (&s, t, "test_mu_cv_timeout_stress"));
}
int main (int argc, char *argv[]) {
testing_base tb = testing_new (argc, argv, 0);
TEST_RUN (tb, test_cv_timeout_stress);
TEST_RUN (tb, test_mu_timeout_stress);
TEST_RUN (tb, test_mu_cv_timeout_stress);
return (testing_base_exit (tb));
}
|