File: lzz_pX.txt

package info (click to toggle)
ntl 10.5.0-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 7,460 kB
  • sloc: cpp: 84,947; sh: 10,577; ansic: 2,462; makefile: 804
file content (939 lines) | stat: -rw-r--r-- 28,639 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

/**************************************************************************\

MODULE: zz_pX

SUMMARY:

The class zz_pX implements polynomial arithmetic modulo p.

Polynomial arithmetic is implemented using a combination of classical
routines, Karatsuba, and FFT.

\**************************************************************************/

#include "zz_p.h"
#include "vec_zz_p.h"

class zz_pX {
public:

   zz_pX(); // initial value 0

   zz_pX(const zz_pX& a); // copy
   explicit zz_pX(zz_p a); // promotion
   explicit zz_pX(long a); // promotion

   zz_pX& operator=(const zz_pX& a); // assignment
   zz_pX& operator=(zz_p a); 
   zz_pX& operator=(long a); 

   ~zz_pX(); // destructor


   zz_pX(zz_pX&& a); 
   // move constructor (C++11 only)
   // declared noexcept unless NTL_EXCEPTIONS flag is set

   zz_pX& operator=(zz_pX&& a); 
   // move assignment (C++11 only)
   // declared noexcept unless NTL_EXCEPTIONS flag is set


   zz_pX(INIT_MONO_TYPE, long i, zz_p c); 
   zz_pX(INIT_MONO_TYPE, long i, long c); 
   // initialize to c*X^i, invoke as zz_pX(INIT_MONO, i, c)

   zz_pX(INIT_MONO_TYPE, long i); 
   // initialize to X^i, invoke as zz_pX(INIT_MONO, i)

   typedef zz_p coeff_type;

   // ...

   
};





/**************************************************************************\

                              Accessing coefficients

The degree of a polynomial f is obtained as deg(f),
where the zero polynomial, by definition, has degree -1.

A polynomial f is represented as a coefficient vector.
Coefficients may be accesses in one of two ways.

The safe, high-level method is to call the function
coeff(f, i) to get the coefficient of X^i in the polynomial f,
and to call the function SetCoeff(f, i, a) to set the coefficient
of X^i in f to the scalar a.

One can also access the coefficients more directly via a lower level 
interface.  The coefficient of X^i in f may be accessed using 
subscript notation f[i].  In addition, one may write f.SetLength(n)
to set the length of the underlying coefficient vector to n,
and f.SetMaxLength(n) to allocate space for n coefficients,
without changing the coefficient vector itself.

After setting coefficients using this low-level interface,
one must ensure that leading zeros in the coefficient vector
are stripped afterwards by calling the function f.normalize().


NOTE: the coefficient vector of f may also be accessed directly
as f.rep; however, this is not recommended. Also, for a properly
normalized polynomial f, we have f.rep.length() == deg(f)+1,
and deg(f) >= 0  =>  f.rep[deg(f)] != 0.

\**************************************************************************/



long deg(const zz_pX& a);  // return deg(a); deg(0) == -1.

const zz_p coeff(const zz_pX& a, long i);
// returns the coefficient of X^i, or zero if i not in range

const zz_p LeadCoeff(const zz_pX& a);
// returns leading term of a, or zero if a == 0

const zz_p ConstTerm(const zz_pX& a);
// returns constant term of a, or zero if a == 0

void SetCoeff(zz_pX& x, long i, zz_p a);
void SetCoeff(zz_pX& x, long i, long a);
// makes coefficient of X^i equal to a; error is raised if i < 0

void SetCoeff(zz_pX& x, long i);
// makes coefficient of X^i equal to 1;  error is raised if i < 0

void SetX(zz_pX& x); // x is set to the monomial X

long IsX(const zz_pX& a); // test if x = X




zz_p& zz_pX::operator[](long i); 
const zz_p& zz_pX::operator[](long i) const;
// indexing operators: f[i] is the coefficient of X^i ---
// i should satsify i >= 0 and i <= deg(f).
// No range checking (unless NTL_RANGE_CHECK is defined).

void zz_pX::SetLength(long n);
// f.SetLength(n) sets the length of the inderlying coefficient
// vector to n --- after this call, indexing f[i] for i = 0..n-1
// is valid.

void zz_pX::normalize();  
// f.normalize() strips leading zeros from coefficient vector of f

void zz_pX::SetMaxLength(long n);
// f.SetMaxLength(n) pre-allocate spaces for n coefficients.  The
// polynomial that f represents is unchanged.





/**************************************************************************\

                                  Comparison

\**************************************************************************/


long operator==(const zz_pX& a, const zz_pX& b);
long operator!=(const zz_pX& a, const zz_pX& b);

long IsZero(const zz_pX& a); // test for 0
long IsOne(const zz_pX& a); // test for 1

// PROMOTIONS: operators ==, != promote {long, zz_p} to zz_pX on (a, b)


/**************************************************************************\

                                   Addition

\**************************************************************************/

// operator notation:

zz_pX operator+(const zz_pX& a, const zz_pX& b);
zz_pX operator-(const zz_pX& a, const zz_pX& b);

zz_pX operator-(const zz_pX& a); // unary -

zz_pX& operator+=(zz_pX& x, const zz_pX& a);
zz_pX& operator+=(zz_pX& x, zz_p a);
zz_pX& operator+=(zz_pX& x, long a);

zz_pX& operator-=(zz_pX& x, const zz_pX& a);
zz_pX& operator-=(zz_pX& x, zz_p a);
zz_pX& operator-=(zz_pX& x, long a);

zz_pX& operator++(zz_pX& x);  // prefix
void operator++(zz_pX& x, int);  // postfix

zz_pX& operator--(zz_pX& x);  // prefix
void operator--(zz_pX& x, int);  // postfix

// procedural versions:


void add(zz_pX& x, const zz_pX& a, const zz_pX& b); // x = a + b
void sub(zz_pX& x, const zz_pX& a, const zz_pX& b); // x = a - b
void negate(zz_pX& x, const zz_pX& a); // x = -a

// PROMOTIONS: binary +, - and procedures add, sub promote {long, zz_p}
// to zz_pX on (a, b).


/**************************************************************************\

                               Multiplication

\**************************************************************************/

// operator notation:

zz_pX operator*(const zz_pX& a, const zz_pX& b);

zz_pX& operator*=(zz_pX& x, const zz_pX& a);
zz_pX& operator*=(zz_pX& x, zz_p a);
zz_pX& operator*=(zz_pX& x, long a);

// procedural versions:


void mul(zz_pX& x, const zz_pX& a, const zz_pX& b); // x = a * b

void sqr(zz_pX& x, const zz_pX& a); // x = a^2
zz_pX sqr(const zz_pX& a);

// PROMOTIONS: operator * and procedure mul promote {long, zz_p} to zz_pX
// on (a, b).

void power(zz_pX& x, const zz_pX& a, long e);  // x = a^e (e >= 0)
zz_pX power(const zz_pX& a, long e);


/**************************************************************************\

                               Shift Operations

LeftShift by n means multiplication by X^n
RightShift by n means division by X^n

A negative shift amount reverses the direction of the shift.

\**************************************************************************/

// operator notation:

zz_pX operator<<(const zz_pX& a, long n);
zz_pX operator>>(const zz_pX& a, long n);

zz_pX& operator<<=(zz_pX& x, long n);
zz_pX& operator>>=(zz_pX& x, long n);

// procedural versions:

void LeftShift(zz_pX& x, const zz_pX& a, long n); 
zz_pX LeftShift(const zz_pX& a, long n);

void RightShift(zz_pX& x, const zz_pX& a, long n); 
zz_pX RightShift(const zz_pX& a, long n); 



/**************************************************************************\

                                  Division

\**************************************************************************/

// operator notation:

zz_pX operator/(const zz_pX& a, const zz_pX& b);
zz_pX operator%(const zz_pX& a, const zz_pX& b);

zz_pX& operator/=(zz_pX& x, const zz_pX& a);
zz_pX& operator/=(zz_pX& x, zz_p a);
zz_pX& operator/=(zz_pX& x, long a);

zz_pX& operator%=(zz_pX& x, const zz_pX& b);


// procedural versions:


void DivRem(zz_pX& q, zz_pX& r, const zz_pX& a, const zz_pX& b);
// q = a/b, r = a%b

void div(zz_pX& q, const zz_pX& a, const zz_pX& b);
// q = a/b

void rem(zz_pX& r, const zz_pX& a, const zz_pX& b);
// r = a%b

long divide(zz_pX& q, const zz_pX& a, const zz_pX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0

long divide(const zz_pX& a, const zz_pX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0

// PROMOTIONS: operator / and procedure div promote {long, zz_p} to zz_pX
// on (a, b).


/**************************************************************************\

                                   GCD's

These routines are intended for use when p is prime.

\**************************************************************************/


void GCD(zz_pX& x, const zz_pX& a, const zz_pX& b);
zz_pX GCD(const zz_pX& a, const zz_pX& b); 
// x = GCD(a, b),  x is always monic (or zero if a==b==0).


void XGCD(zz_pX& d, zz_pX& s, zz_pX& t, const zz_pX& a, const zz_pX& b);
// d = gcd(a,b), a s + b t = d 


// NOTE: A classical algorithm is used, switching over to a
// "half-GCD" algorithm for large degree


/**************************************************************************\

                                  Input/Output

I/O format:

   [a_0 a_1 ... a_n],

represents the polynomial a_0 + a_1*X + ... + a_n*X^n.

On output, all coefficients will be integers between 0 and p-1, amd
a_n not zero (the zero polynomial is [ ]).  On input, the coefficients
are arbitrary integers which are reduced modulo p, and leading zeros
stripped.

\**************************************************************************/

istream& operator>>(istream& s, zz_pX& x);
ostream& operator<<(ostream& s, const zz_pX& a);


/**************************************************************************\

                              Some utility routines

\**************************************************************************/


void diff(zz_pX& x, const zz_pX& a);
zz_pX diff(const zz_pX& a); 
// x = derivative of a


void MakeMonic(zz_pX& x); 
// if x != 0 makes x into its monic associate; LeadCoeff(x) must be
// invertible in this case.

void reverse(zz_pX& x, const zz_pX& a, long hi);
zz_pX reverse(const zz_pX& a, long hi);

void reverse(zz_pX& x, const zz_pX& a);
zz_pX reverse(const zz_pX& a);

// x = reverse of a[0]..a[hi] (hi >= -1);
// hi defaults to deg(a) in second version

void VectorCopy(vec_zz_p& x, const zz_pX& a, long n);
vec_zz_p VectorCopy(const zz_pX& a, long n);
// x = copy of coefficient vector of a of length exactly n.
// input is truncated or padded with zeroes as appropriate.





/**************************************************************************\

                             Random Polynomials

\**************************************************************************/

void random(zz_pX& x, long n);
zz_pX random_zz_pX(long n);
// x = random polynomial of degree < n 


/**************************************************************************\

                    Polynomial Evaluation and related problems

\**************************************************************************/


void BuildFromRoots(zz_pX& x, const vec_zz_p& a);
zz_pX BuildFromRoots(const vec_zz_p& a);
// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n =
// a.length()

void eval(zz_p& b, const zz_pX& f, zz_p a);
zz_p eval(const zz_pX& f, zz_p a);
// b = f(a)

void eval(vec_zz_p& b, const zz_pX& f, const vec_zz_p& a);
vec_zz_p eval(const zz_pX& f, const vec_zz_p& a);
//  b.SetLength(a.length());  b[i] = f(a[i]) for 0 <= i < a.length()

void interpolate(zz_pX& f, const vec_zz_p& a, const vec_zz_p& b);
zz_pX interpolate(const vec_zz_p& a, const vec_zz_p& b);
// interpolates the polynomial f satisfying f(a[i]) = b[i].  p should
// be prime.

/**************************************************************************\

                       Arithmetic mod X^n

It is required that n >= 0, otherwise an error is raised.

\**************************************************************************/

void trunc(zz_pX& x, const zz_pX& a, long n); // x = a % X^n
zz_pX trunc(const zz_pX& a, long n); 

void MulTrunc(zz_pX& x, const zz_pX& a, const zz_pX& b, long n);
zz_pX MulTrunc(const zz_pX& a, const zz_pX& b, long n);
// x = a * b % X^n

void SqrTrunc(zz_pX& x, const zz_pX& a, long n);
zz_pX SqrTrunc(const zz_pX& a, long n);
// x = a^2 % X^n

void InvTrunc(zz_pX& x, const zz_pX& a, long n);
zz_pX InvTrunc(const zz_pX& a, long n);
// computes x = a^{-1} % X^n.  Must have ConstTerm(a) invertible.

/**************************************************************************\

                Modular Arithmetic (without pre-conditioning)

Arithmetic mod f.

All inputs and outputs are polynomials of degree less than deg(f), and
deg(f) > 0.

NOTE: if you want to do many computations with a fixed f, use the
zz_pXModulus data structure and associated routines below for better
performance.

\**************************************************************************/

void MulMod(zz_pX& x, const zz_pX& a, const zz_pX& b, const zz_pX& f);
zz_pX MulMod(const zz_pX& a, const zz_pX& b, const zz_pX& f);
// x = (a * b) % f

void SqrMod(zz_pX& x, const zz_pX& a, const zz_pX& f);
zz_pX SqrMod(const zz_pX& a, const zz_pX& f);
// x = a^2 % f

void MulByXMod(zz_pX& x, const zz_pX& a, const zz_pX& f);
zz_pX MulByXMod(const zz_pX& a, const zz_pX& f);
// x = (a * X) mod f

void InvMod(zz_pX& x, const zz_pX& a, const zz_pX& f);
zz_pX InvMod(const zz_pX& a, const zz_pX& f);
// x = a^{-1} % f, error is a is not invertible

long InvModStatus(zz_pX& x, const zz_pX& a, const zz_pX& f);
// if (a, f) = 1, returns 0 and sets x = a^{-1} % f; otherwise,
// returns 1 and sets x = (a, f)


// for modular exponentiation, see below



/**************************************************************************\

                     Modular Arithmetic with Pre-Conditioning

If you need to do a lot of arithmetic modulo a fixed f, build
zz_pXModulus F for f.  This pre-computes information about f that
speeds up subsequent computations. Required: deg(f) > 0 and LeadCoeff(f)
invertible.

As an example, the following routine computes the product modulo f of a vector
of polynomials.

#include "zz_pX.h"

void product(zz_pX& x, const vec_zz_pX& v, const zz_pX& f)
{
   zz_pXModulus F(f);
   zz_pX res;
   res = 1;
   long i;
   for (i = 0; i < v.length(); i++)
      MulMod(res, res, v[i], F); 
   x = res;
}


Note that automatic conversions are provided so that a zz_pX can
be used wherever a zz_pXModulus is required, and a zz_pXModulus
can be used wherever a zz_pX is required.



\**************************************************************************/

class zz_pXModulus {
public:
   zz_pXModulus(); // initially in an unusable state
   ~zz_pXModulus();

   zz_pXModulus(const zz_pXModulus&);  // copy

   zz_pXModulus& operator=(const zz_pXModulus&);  // assignment

   zz_pXModulus(const zz_pX& f); // initialize with f, deg(f) > 0

   operator const zz_pX& () const; 
   // read-only access to f, implicit conversion operator

   const zz_pX& val() const; 
   // read-only access to f, explicit notation

};

void build(zz_pXModulus& F, const zz_pX& f);
// pre-computes information about f and stores it in F.
// Note that the declaration zz_pXModulus F(f) is equivalent to
// zz_pXModulus F; build(F, f).

// In the following, f refers to the polynomial f supplied to the
// build routine, and n = deg(f).

long deg(const zz_pXModulus& F);  // return deg(f)

void MulMod(zz_pX& x, const zz_pX& a, const zz_pX& b, const zz_pXModulus& F);
zz_pX MulMod(const zz_pX& a, const zz_pX& b, const zz_pXModulus& F);
// x = (a * b) % f; deg(a), deg(b) < n

void SqrMod(zz_pX& x, const zz_pX& a, const zz_pXModulus& F);
zz_pX SqrMod(const zz_pX& a, const zz_pXModulus& F);
// x = a^2 % f; deg(a) < n

void PowerMod(zz_pX& x, const zz_pX& a, const ZZ& e, const zz_pXModulus& F);
zz_pX PowerMod(const zz_pX& a, const ZZ& e, const zz_pXModulus& F);

void PowerMod(zz_pX& x, const zz_pX& a, long e, const zz_pXModulus& F);
zz_pX PowerMod(const zz_pX& a, long e, const zz_pXModulus& F);

// x = a^e % f; deg(a) < n (e may be negative)

void PowerXMod(zz_pX& x, const ZZ& e, const zz_pXModulus& F);
zz_pX PowerXMod(const ZZ& e, const zz_pXModulus& F);

void PowerXMod(zz_pX& x, long e, const zz_pXModulus& F);
zz_pX PowerXMod(long e, const zz_pXModulus& F);

// x = X^e % f (e may be negative)

void PowerXPlusAMod(zz_pX& x, const zz_p& a, const ZZ& e, 
                    const zz_pXModulus& F);

zz_pX PowerXPlusAMod(const zz_p& a, const ZZ& e, 
                           const zz_pXModulus& F);

void PowerXPlusAMod(zz_pX& x, const zz_p& a, long e, 
                    const zz_pXModulus& F);

zz_pX PowerXPlusAMod(const zz_p& a, long e, 
                           const zz_pXModulus& F);

// x = (X + a)^e % f (e may be negative)


void rem(zz_pX& x, const zz_pX& a, const zz_pXModulus& F);
// x = a % f

void DivRem(zz_pX& q, zz_pX& r, const zz_pX& a, const zz_pXModulus& F);
// q = a/f, r = a%f

void div(zz_pX& q, const zz_pX& a, const zz_pXModulus& F);
// q = a/f

// operator notation:

zz_pX operator/(const zz_pX& a, const zz_pXModulus& F);
zz_pX operator%(const zz_pX& a, const zz_pXModulus& F);

zz_pX& operator/=(zz_pX& x, const zz_pXModulus& F);
zz_pX& operator%=(zz_pX& x, const zz_pXModulus& F);




/**************************************************************************\


                        More Pre-Conditioning

If you need to compute a * b % f for a fixed b, but for many a's, it
is much more efficient to first build a zz_pXMultiplier B for b, and
then use the MulMod routine below.

Here is an example that multiplies each element of a vector by a fixed
polynomial modulo f.

#include "zz_pX.h"

void mul(vec_zz_pX& v, const zz_pX& b, const zz_pX& f)
{
   zz_pXModulus F(f);
   zz_pXMultiplier B(b, F);
   long i;
   for (i = 0; i < v.length(); i++)
      MulMod(v[i], v[i], B, F);
}

Note that a (trivial) conversion operator from zz_pXMultiplier to zz_pX
is provided, so that a zz_pXMultiplier can be used in a context
where a zz_pX is required.


\**************************************************************************/


class zz_pXMultiplier {
public:
   zz_pXMultiplier(); // initially zero

   zz_pXMultiplier(const zz_pX& b, const zz_pXModulus& F);
      // initializes with b mod F, where deg(b) < deg(F)

   zz_pXMultiplier(const zz_pXMultiplier&);
   zz_pXMultiplier& operator=(const zz_pXMultiplier&);

   ~zz_pXMultiplier();

   const zz_pX& val() const; // read-only access to b

};

void build(zz_pXMultiplier& B, const zz_pX& b, const zz_pXModulus& F);
// pre-computes information about b and stores it in B; deg(b) <
// deg(F)

void MulMod(zz_pX& x, const zz_pX& a, const zz_pXMultiplier& B,
                                      const zz_pXModulus& F);

zz_pX MulMod(const zz_pX& a, const zz_pXMultiplier& B, 
             const zz_pXModulus& F);

// x = (a * b) % F; deg(a) < deg(F)

/**************************************************************************\

                             vectors of zz_pX's

\**************************************************************************/


typedef Vec<zz_pX> vec_zz_pX; // backward compatibility



/**************************************************************************\

                              Modular Composition

Modular composition is the problem of computing g(h) mod f for
polynomials f, g, and h.

The algorithm employed is that of Brent & Kung (Fast algorithms for
manipulating formal power series, JACM 25:581-595, 1978), which uses
O(n^{1/2}) modular polynomial multiplications, and O(n^2) scalar
operations.



\**************************************************************************/

void CompMod(zz_pX& x, const zz_pX& g, const zz_pX& h, const zz_pXModulus& F);
zz_pX CompMod(const zz_pX& g, const zz_pX& h, const zz_pXModulus& F);
// x = g(h) mod f; deg(h) < n

void Comp2Mod(zz_pX& x1, zz_pX& x2, const zz_pX& g1, const zz_pX& g2,
              const zz_pX& h, const zz_pXModulus& F);
// xi = gi(h) mod f (i=1,2), deg(h) < n.

void CompMod3(zz_pX& x1, zz_pX& x2, zz_pX& x3, 
              const zz_pX& g1, const zz_pX& g2, const zz_pX& g3,
              const zz_pX& h, const zz_pXModulus& F);
// xi = gi(h) mod f (i=1..3), deg(h) < n


/**************************************************************************\

                     Composition with Pre-Conditioning

If a single h is going to be used with many g's then you should build
a zz_pXArgument for h, and then use the compose routine below.  The
routine build computes and stores h, h^2, ..., h^m mod f.  After this
pre-computation, composing a polynomial of degree roughly n with h
takes n/m multiplies mod f, plus n^2 scalar multiplies.  Thus,
increasing m increases the space requirement and the pre-computation
time, but reduces the composition time.

\**************************************************************************/


struct zz_pXArgument {
   vec_zz_pX H;
};

void build(zz_pXArgument& H, const zz_pX& h, const zz_pXModulus& F, long m);
// Pre-Computes information about h.  m > 0, deg(h) < n

void CompMod(zz_pX& x, const zz_pX& g, const zz_pXArgument& H, 
             const zz_pXModulus& F);

zz_pX CompMod(const zz_pX& g, const zz_pXArgument& H, 
             const zz_pXModulus& F);


extern long zz_pXArgBound;

// Initially 0.  If this is set to a value greater than zero, then
// composition routines will allocate a table of no than about
// zz_pXArgBound KB.  Setting this value affects all compose routines
// and the power projection and minimal polynomial routines below, 
// and indirectly affects many routines in zz_pXFactoring.


/**************************************************************************\

                     power projection routines

\**************************************************************************/

void project(zz_p& x, const zz_pVector& a, const zz_pX& b);
zz_p project(const zz_pVector& a, const zz_pX& b);
// x = inner product of a with coefficient vector of b


void ProjectPowers(vec_zz_p& x, const vec_zz_p& a, long k,
                   const zz_pX& h, const zz_pXModulus& F);

vec_zz_p ProjectPowers(const vec_zz_p& a, long k,
                   const zz_pX& h, const zz_pXModulus& F);

// Computes the vector

//    project(a, 1), project(a, h), ..., project(a, h^{k-1} % f).  

// This operation is the "transpose" of the modular composition operation.
// Input and output may have "high order" zeroes stripped.

void ProjectPowers(vec_zz_p& x, const vec_zz_p& a, long k,
                   const zz_pXArgument& H, const zz_pXModulus& F);

vec_zz_p ProjectPowers(const vec_zz_p& a, long k,
                   const zz_pXArgument& H, const zz_pXModulus& F);

// same as above, but uses a pre-computed zz_pXArgument


void UpdateMap(vec_zz_p& x, const vec_zz_p& a,
               const zz_pXMultiplier& B, const zz_pXModulus& F);

vec_zz_p UpdateMap(const vec_zz_p& a,
               const zz_pXMultiplier& B, const zz_pXModulus& F);

// Computes the vector

//    project(a, b), project(a, (b*X)%f), ..., project(a, (b*X^{n-1})%f)

// Restriction: a.length() <= deg(F).
// This is "transposed" MulMod by B.
// Input vector may have "high order" zeroes striped.
// The output will always have high order zeroes stripped.


/**************************************************************************\

        Faster Composition and Projection with Pre-Conditioning

A new, experimental version of composition with preconditioning.
This interface was introduced in NTL v10.2.0, and it should be 
considered a preliminary interface and subject to change.

The class zz_pXNewArgument is similar to zz_pXArgument, but with
a different internal layout.  Copy constructor and assignment work.

Note that all NTL modular composition and power projection routines, 
as well as other routines that use modular composition power projection 
internally, now use this new class.

Note also that these routines do not pay any attention to the
zz_pXArgBound variable.

\**************************************************************************/

class zz_pXNewArgument { 
 // ...
};

void build(zz_pXNewArgument& H, const zz_pX& h, const zz_pXModulus& F, long m);
// same functionality as the corresponding zz_pXArgument-based routine

void CompMod(zz_pX& x, const zz_pX& g, const zz_pXNewArgument& H,
             const zz_pXModulus& F);
// same functionality as the corresponding zz_pXArgument-based routine

void ProjectPowers(vec_zz_p& x, const vec_zz_p& a, long k,
                   const zz_pXNewArgument& H, const zz_pXModulus& F);
// same functionality as the corresponding zz_pXArgument-based routine



/**************************************************************************\

                              Minimum Polynomials

These routines should be used with prime p.

All of these routines implement the algorithm from [Shoup, J. Symbolic
Comp. 17:371-391, 1994] and [Shoup, J. Symbolic Comp. 20:363-397,
1995], based on transposed modular composition and the
Berlekamp/Massey algorithm.

\**************************************************************************/


void MinPolySeq(zz_pX& h, const vec_zz_p& a, long m);
// computes the minimum polynomial of a linealy generated sequence; m
// is a bound on the degree of the polynomial; required: a.length() >=
// 2*m

void ProbMinPolyMod(zz_pX& h, const zz_pX& g, const zz_pXModulus& F, long m);
zz_pX ProbMinPolyMod(const zz_pX& g, const zz_pXModulus& F, long m);

void ProbMinPolyMod(zz_pX& h, const zz_pX& g, const zz_pXModulus& F);
zz_pX ProbMinPolyMod(const zz_pX& g, const zz_pXModulus& F);

// computes the monic minimal polynomial if (g mod f).  m = a bound on
// the degree of the minimal polynomial; in the second version, this
// argument defaults to n.  The algorithm is probabilistic, always
// returns a divisor of the minimal polynomial, and returns a proper
// divisor with probability at most m/p.

void MinPolyMod(zz_pX& h, const zz_pX& g, const zz_pXModulus& F, long m);
zz_pX MinPolyMod(const zz_pX& g, const zz_pXModulus& F, long m);

void MinPolyMod(zz_pX& h, const zz_pX& g, const zz_pXModulus& F);
zz_pX MinPolyMod(const zz_pX& g, const zz_pXModulus& F);
// same as above, but guarantees that result is correct

void IrredPoly(zz_pX& h, const zz_pX& g, const zz_pXModulus& F, long m);
zz_pX IrredPoly(const zz_pX& g, const zz_pXModulus& F, long m);

void IrredPoly(zz_pX& h, const zz_pX& g, const zz_pXModulus& F);
zz_pX IrredPoly(const zz_pX& g, const zz_pXModulus& F);

// same as above, but assumes that f is irreducible, or at least that
// the minimal poly of g is itself irreducible.  The algorithm is
// deterministic (and is always correct).


/**************************************************************************\

                   Traces, norms, resultants

These routines should be used with prime p.

\**************************************************************************/


void TraceMod(zz_p& x, const zz_pX& a, const zz_pXModulus& F);
zz_p TraceMod(const zz_pX& a, const zz_pXModulus& F);

void TraceMod(zz_p& x, const zz_pX& a, const zz_pX& f);
zz_p TraceMod(const zz_pX& a, const zz_pXModulus& f);
// x = Trace(a mod f); deg(a) < deg(f)


void TraceVec(vec_zz_p& S, const zz_pX& f);
vec_zz_p TraceVec(const zz_pX& f);
// S[i] = Trace(X^i mod f), i = 0..deg(f)-1; 0 < deg(f)

// The above routines implement the asymptotically fast trace
// algorithm from [von zur Gathen and Shoup, Computational Complexity,
// 1992].

void NormMod(zz_p& x, const zz_pX& a, const zz_pX& f);
zz_p NormMod(const zz_pX& a, const zz_pX& f);
// x = Norm(a mod f); 0 < deg(f), deg(a) < deg(f)


void resultant(zz_p& x, const zz_pX& a, const zz_pX& b);
zz_pX resultant(zz_p& x, const zz_pX& a, const zz_pX& b);
// x = resultant(a, b)


void CharPolyMod(zz_pX& g, const zz_pX& a, const zz_pX& f);
zz_pX CharPolyMod(const zz_pX& a, const zz_pX& f);
// g = charcteristic polynomial of (a mod f); 0 < deg(f), deg(g) <
// deg(f).  This routine works for arbitrary f.  For irreducible f,
// is it faster to use IrredPolyMod, and then exponentiate as
// necessary, since in this case the characterstic polynomial
// is a power of the minimal polynomial.


/**************************************************************************\

                           Miscellany


\**************************************************************************/


void clear(zz_pX& x) // x = 0
void set(zz_pX& x); // x = 1

void zz_pX::kill();
// f.kill() sets f to 0 and frees all memory held by f.  Equivalent to
// f.rep.kill().

zz_pX::zz_pX(INIT_SIZE_TYPE, long n);
// zz_pX(INIT_SIZE, n) initializes to zero, but space is pre-allocated
// for n coefficients

static const zz_pX& zero();
// zz_pX::zero() is a read-only reference to 0

void swap(zz_pX& x, zz_pX& y); 
// swap x and y (via "pointer swapping")


zz_pX::zz_pX(long i, zz_p c); 
zz_pX::zz_pX(long i, long c); 
 // initialize to c*X^i, provided for backward compatibility