File: ZZ_p.cpp

package info (click to toggle)
ntl 11.4.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,760 kB
  • sloc: cpp: 91,320; sh: 10,577; ansic: 2,998; makefile: 535
file content (358 lines) | stat: -rw-r--r-- 7,327 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358


#include <NTL/ZZ_p.h>
#include <NTL/FFT.h>



NTL_START_IMPL



NTL_TLS_GLOBAL_DECL(SmartPtr<ZZ_pInfoT>, ZZ_pInfo_stg)
NTL_TLS_GLOBAL_DECL(SmartPtr<ZZ_pTmpSpaceT>, ZZ_pTmpSpace_stg)

NTL_CHEAP_THREAD_LOCAL ZZ_pInfoT *ZZ_pInfo = 0;
NTL_CHEAP_THREAD_LOCAL ZZ_pTmpSpaceT *ZZ_pTmpSpace = 0;
NTL_CHEAP_THREAD_LOCAL bool ZZ_pInstalled = false;



ZZ_pInfoT::ZZ_pInfoT(const ZZ& NewP)
{
   if (NewP <= 1) LogicError("ZZ_pContext: p must be > 1");

   p = NewP;
   size = p.size();

   ExtendedModulusSize = 2*size + 
                 (NTL_BITS_PER_LONG + NTL_ZZ_NBITS - 1)/NTL_ZZ_NBITS;

}



// we use a lazy strategy for initializing and installing
// FFTInfo and TmpSpace related to a ZZ_p modulus.  
// The routines GetFFTInfo and GetTmpSpace make sure this process 
// is complete.

void ZZ_p::DoInstall()
{
   SmartPtr<ZZ_pTmpSpaceT> tmps; 

   do { // NOTE: thread safe lazy init 
      Lazy<ZZ_pFFTInfoT>::Builder builder(ZZ_pInfo->FFTInfo);
      if (!builder()) break;

      UniquePtr<ZZ_pFFTInfoT> FFTInfo;
      FFTInfo.make();

      ZZ B, M, M1, M2, M3;
      long n, i;
      long q, t;
      mulmod_t qinv;

      sqr(B, ZZ_pInfo->p);

      LeftShift(B, B, NTL_FFTMaxRoot+NTL_FFTFudge);

      // FIXME: the following is quadratic time...would
      // be nice to get a faster solution...
      // One could estimate the # of primes by summing logs,
      // then multiply using a tree-based multiply, then 
      // adjust up or down...

      // Assuming IEEE floating point, the worst case estimate
      // for error guarantees a correct answer +/- 1 for
      // numprimes up to 2^25...for sure we won't be
      // using that many primes...we can certainly put in 
      // a sanity check, though. 

      // If I want a more accuaruate summation (with using Kahan,
      // which has some portability issues), I could represent 
      // numbers as x = a + f, where a is integer and f is the fractional
      // part.  Summing in this representation introduces an *absolute*
      // error of 2 epsilon n, which is just as good as Kahan 
      // for this application.

      // same strategy could also be used in the ZZX HomMul routine,
      // if we ever want to make that subquadratic

      set(M);
      n = 0;
      while (M <= B) {
         UseFFTPrime(n);
         q = GetFFTPrime(n);
         n++;
         mul(M, M, q);
      }

      FFTInfo->NumPrimes = n;
      FFTInfo->MaxRoot = CalcMaxRoot(q);


      double fn = double(n);

      // NOTE: the following checks is somewhat academic,
      // but the implementation relies on it

      if (8.0*fn*(fn+48) > NTL_FDOUBLE_PRECISION)
         ResourceError("modulus too big");


      FFTInfo->rem_struct.init(n, ZZ_pInfo->p, GetFFTPrime);
      FFTInfo->crt_struct.init(n, ZZ_pInfo->p, GetFFTPrime);

      if (!FFTInfo->crt_struct.special()) {
         FFTInfo->prime.SetLength(n);
         FFTInfo->prime_recip.SetLength(n);
         FFTInfo->u.SetLength(n);
         FFTInfo->uqinv.SetLength(n);

         // montgomery
         FFTInfo->reduce_struct.init(ZZ_pInfo->p, ZZ(n) << NTL_SP_NBITS);

         ZZ qq, rr;

         DivRem(qq, rr, M, ZZ_pInfo->p);

         NegateMod(FFTInfo->MinusMModP, rr, ZZ_pInfo->p);

         // montgomery
         FFTInfo->reduce_struct.adjust(FFTInfo->MinusMModP);

         for (i = 0; i < n; i++) {
            q = GetFFTPrime(i);
            qinv = GetFFTPrimeInv(i);

            long tt = rem(qq, q);

            mul(M2, ZZ_pInfo->p, tt);
            add(M2, M2, rr); 
            div(M2, M2, q);  // = (M/q) rem p
            

            div(M1, M, q);
            t = rem(M1, q);
            t = InvMod(t, q);

            // montgomery
            FFTInfo->reduce_struct.adjust(M2);

            FFTInfo->crt_struct.insert(i, M2);

            FFTInfo->prime[i] = q;
            FFTInfo->prime_recip[i] = 1/double(q);
            FFTInfo->u[i] = t;
            FFTInfo->uqinv[i] = PrepMulModPrecon(FFTInfo->u[i], q, qinv);
         }

      }

      tmps = MakeSmart<ZZ_pTmpSpaceT>();
      tmps->crt_tmp_vec.fetch(FFTInfo->crt_struct);
      tmps->rem_tmp_vec.fetch(FFTInfo->rem_struct);

      builder.move(FFTInfo);
   } while (0);

   if (!tmps) {
      const ZZ_pFFTInfoT *FFTInfo = ZZ_pInfo->FFTInfo.get();
      tmps = MakeSmart<ZZ_pTmpSpaceT>();
      tmps->crt_tmp_vec.fetch(FFTInfo->crt_struct);
      tmps->rem_tmp_vec.fetch(FFTInfo->rem_struct);
   }

   NTL_TLS_GLOBAL_ACCESS(ZZ_pTmpSpace_stg);
   ZZ_pTmpSpace_stg = tmps; 
   ZZ_pTmpSpace = ZZ_pTmpSpace_stg.get();
}




void ZZ_p::init(const ZZ& p)
{
   ZZ_pContext c(p);
   c.restore();
}


void ZZ_pContext::save() 
{ 
   NTL_TLS_GLOBAL_ACCESS(ZZ_pInfo_stg);
   ptr = ZZ_pInfo_stg; 
}

void ZZ_pContext::restore() const
{
   if (ZZ_pInfo == ptr.get()) return; 
   // NOTE: this simple optimization could be useful in some situations,
   //    for example, a worker thread re-setting the current modulus
   //    in a multi-threaded build

   NTL_TLS_GLOBAL_ACCESS(ZZ_pInfo_stg);
   ZZ_pInfo_stg = ptr;
   ZZ_pInfo = ZZ_pInfo_stg.get();

   NTL_TLS_GLOBAL_ACCESS(ZZ_pTmpSpace_stg);
   ZZ_pTmpSpace_stg = 0;
   ZZ_pTmpSpace = 0;

   ZZ_pInstalled = false;
}



ZZ_pBak::~ZZ_pBak()
{
   if (MustRestore) c.restore();
}

void ZZ_pBak::save()
{
   c.save();
   MustRestore = true;
}


void ZZ_pBak::restore()
{
   c.restore();
   MustRestore = false;
}


const ZZ_p& ZZ_p::zero()
{
   static const ZZ_p z(INIT_NO_ALLOC); // GLOBAL (assumes C++11 thread-safe init)
   return z;
}

NTL_CHEAP_THREAD_LOCAL
ZZ_p::DivHandlerPtr ZZ_p::DivHandler = 0;

   

ZZ_p::ZZ_p(INIT_VAL_TYPE, const ZZ& a)  // NO_ALLOC
{
   conv(*this, a);
} 

ZZ_p::ZZ_p(INIT_VAL_TYPE, long a) // NO_ALLOC
{
   conv(*this, a);
}


void conv(ZZ_p& x, long a)
{
   if (a == 0)
      clear(x);
   else if (a == 1)
      set(x);
   else {
      NTL_ZZRegister(y);

      conv(y, a);
      conv(x, y);
   }
}

istream& operator>>(istream& s, ZZ_p& x)
{
   NTL_ZZRegister(y);

   NTL_INPUT_CHECK_RET(s, s >> y);
   conv(x, y);

   return s;
}

void div(ZZ_p& x, const ZZ_p& a, const ZZ_p& b)
{
   NTL_ZZ_pRegister(T);

   inv(T, b);
   mul(x, a, T);
}

void inv(ZZ_p& x, const ZZ_p& a)
{
   NTL_ZZRegister(T);

   if (InvModStatus(T, a._ZZ_p__rep, ZZ_p::modulus())) {
      if (!IsZero(a._ZZ_p__rep) && ZZ_p::DivHandler)
         (*ZZ_p::DivHandler)(a);

      InvModError("ZZ_p: division by non-invertible element",
                   a._ZZ_p__rep, ZZ_p::modulus());
   }

   x._ZZ_p__rep = T;
}

long operator==(const ZZ_p& a, long b)
{
   if (b == 0)
      return IsZero(a);

   if (b == 1)
      return IsOne(a);

   NTL_ZZ_pRegister(T);
   conv(T, b);
   return a == T;
}



void add(ZZ_p& x, const ZZ_p& a, long b)
{
   NTL_ZZ_pRegister(T);
   conv(T, b);
   add(x, a, T);
}

void sub(ZZ_p& x, const ZZ_p& a, long b)
{
   NTL_ZZ_pRegister(T);
   conv(T, b);
   sub(x, a, T);
}

void sub(ZZ_p& x, long a, const ZZ_p& b)
{
   NTL_ZZ_pRegister(T);
   conv(T, a);
   sub(x, T, b);
}

void mul(ZZ_p& x, const ZZ_p& a, long b)
{
   NTL_ZZ_pRegister(T);
   conv(T, b);
   mul(x, a, T);
}

void div(ZZ_p& x, const ZZ_p& a, long b)
{
   NTL_ZZ_pRegister(T);
   conv(T, b);
   div(x, a, T);
}

void div(ZZ_p& x, long a, const ZZ_p& b)
{
   if (a == 1) {
      inv(x, b);
   }
   else {
      NTL_ZZ_pRegister(T);
      conv(T, a);
      div(x, T, b);
   }
}

NTL_END_IMPL