File: GF2X.cpp.html

package info (click to toggle)
ntl 11.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 8,820 kB
  • sloc: cpp: 92,194; sh: 10,577; ansic: 3,058; makefile: 536
file content (860 lines) | stat: -rw-r--r-- 51,130 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>~/ntl-11.4.2/doc/GF2X.cpp.html</title>
<meta name="Generator" content="Vim/8.0">
<meta name="plugin-version" content="vim7.4_v2">
<meta name="syntax" content="cpp">
<meta name="settings" content="use_css,pre_wrap,no_foldcolumn,expand_tabs,prevent_copy=">
<meta name="colorscheme" content="macvim">
<style type="text/css">
<!--
pre { white-space: pre-wrap; font-family: monospace; color: #000000; background-color: #ffffff; }
body { font-family: monospace; color: #000000; background-color: #ffffff; }
* { font-size: 1em; }
.String { color: #4a708b; }
.PreProc { color: #1874cd; }
.Statement { color: #b03060; font-weight: bold; }
.Comment { color: #0000ee; font-style: italic; }
.Type { color: #008b00; font-weight: bold; }
-->
</style>

<script type='text/javascript'>
<!--

-->
</script>
</head>
<body>
<pre id='vimCodeElement'>

<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">MODULE: GF2X</span>

<span class="Comment">SUMMARY:</span>

<span class="Comment">The class GF2X implements polynomial arithmetic modulo 2.</span>

<span class="Comment">Polynomial arithmetic is implemented using a combination of classical</span>
<span class="Comment">routines and Karatsuba.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="PreProc">#include </span><span class="String">&lt;NTL/GF2.h&gt;</span>
<span class="PreProc">#include </span><span class="String">&lt;NTL/vec_GF2.h&gt;</span>

<span class="Type">class</span> GF2X {
<span class="Statement">public</span>:

   GF2X(); <span class="Comment">// initial value 0</span>

   GF2X(<span class="Type">const</span> GF2X&amp; a); <span class="Comment">// copy</span>
   <span class="Type">explicit</span> GF2X(<span class="Type">long</span> a); <span class="Comment">// promotion</span>
   <span class="Type">explicit</span> GF2X(GF2 a); <span class="Comment">// promotion</span>

   GF2X&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> GF2X&amp; a); <span class="Comment">// assignment</span>
   GF2X&amp; <span class="Statement">operator</span>=(GF2 a);
   GF2X&amp; <span class="Statement">operator</span>=(<span class="Type">long</span> a);

   ~GF2X(); <span class="Comment">// destructor</span>

   GF2X(GF2X&amp;&amp; a);
   <span class="Comment">// move constructor (C++11 only)</span>
   <span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>

<span class="PreProc">#ifndef NTL_DISABLE_MOVE_ASSIGN</span>
   GF2X&amp; <span class="Statement">operator</span>=(GF2X&amp;&amp; a);
   <span class="Comment">// move assignment (C++11 only)</span>
   <span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>
<span class="PreProc">#endif</span>

   GF2X(INIT_MONO_TYPE, <span class="Type">long</span> i, GF2 c);
   GF2X(INIT_MONO_TYPE, <span class="Type">long</span> i, <span class="Type">long</span> c);
   <span class="Comment">// initialize to c*X^i, invoke as GF2X(INIT_MONO, i, c)</span>

   GF2X(INIT_MONO_TYPE, <span class="Type">long</span> i);
   <span class="Comment">// initialize to c*X^i, invoke as GF2X(INIT_MONO, i)</span>

   <span class="Comment">// typedefs to aid in generic programming</span>
   <span class="Type">typedef</span> GF2 coeff_type;
   <span class="Type">typedef</span> GF2E residue_type;
   <span class="Type">typedef</span> GF2XModulus modulus_type;


   <span class="Comment">// ...</span>

};



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                              Accessing coefficients</span>

<span class="Comment">The degree of a polynomial f is obtained as deg(f),</span>
<span class="Comment">where the zero polynomial, by definition, has degree -1.</span>

<span class="Comment">A polynomial f is represented as a coefficient vector.</span>
<span class="Comment">Coefficients may be accesses in one of two ways.</span>

<span class="Comment">The safe, high-level method is to call the function</span>
<span class="Comment">coeff(f, i) to get the coefficient of X^i in the polynomial f,</span>
<span class="Comment">and to call the function SetCoeff(f, i, a) to set the coefficient</span>
<span class="Comment">of X^i in f to the scalar a.</span>

<span class="Comment">One can also access the coefficients more directly via a lower level </span>
<span class="Comment">interface.  The coefficient of X^i in f may be accessed using </span>
<span class="Comment">subscript notation f[i].  In addition, one may write f.SetLength(n)</span>
<span class="Comment">to set the length of the underlying coefficient vector to n,</span>
<span class="Comment">and f.SetMaxLength(n) to allocate space for n coefficients,</span>
<span class="Comment">without changing the coefficient vector itself.</span>

<span class="Comment">After setting coefficients using this low-level interface,</span>
<span class="Comment">one must ensure that leading zeros in the coefficient vector</span>
<span class="Comment">are stripped afterwards by calling the function f.normalize().</span>

<span class="Comment">NOTE: unlike other polynomial classes, the coefficient vector</span>
<span class="Comment">for GF2X has a special representation, packing coefficients into </span>
<span class="Comment">words.  This has two consequences.  First, when using the indexing</span>
<span class="Comment">notation on a non-const polynomial f, the return type is ref_GF2,</span>
<span class="Comment">rather than GF2&amp;.  For the most part, a ref_GF2 may be used like</span>
<span class="Comment">a GF2&amp; --- see GF2.txt for more details.  Second, when applying </span>
<span class="Comment">f.SetLength(n) to a polynomial f, this essentially has the effect</span>
<span class="Comment">of zeroing out the coefficients of X^i for i &gt;= n.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">long</span> deg(<span class="Type">const</span> GF2X&amp; a);  <span class="Comment">// return deg(a); deg(0) == -1.</span>

<span class="Type">const</span> GF2 coeff(<span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> i);
<span class="Comment">// returns the coefficient of X^i, or zero if i not in range</span>

<span class="Type">const</span> GF2 LeadCoeff(<span class="Type">const</span> GF2X&amp; a);
<span class="Comment">// returns leading term of a, or zero if a == 0</span>

<span class="Type">const</span> GF2 ConstTerm(<span class="Type">const</span> GF2X&amp; a);
<span class="Comment">// returns constant term of a, or zero if a == 0</span>

<span class="Type">void</span> SetCoeff(GF2X&amp; x, <span class="Type">long</span> i, GF2 a);
<span class="Type">void</span> SetCoeff(GF2X&amp; x, <span class="Type">long</span> i, <span class="Type">long</span> a);
<span class="Comment">// makes coefficient of X^i equal to a; error is raised if i &lt; 0</span>

<span class="Type">void</span> SetCoeff(GF2X&amp; x, <span class="Type">long</span> i);
<span class="Comment">// makes coefficient of X^i equal to 1;  error is raised if i &lt; 0</span>

<span class="Type">void</span> SetX(GF2X&amp; x); <span class="Comment">// x is set to the monomial X</span>

<span class="Type">long</span> IsX(<span class="Type">const</span> GF2X&amp; a); <span class="Comment">// test if x = X</span>




ref_GF2 GF2X::<span class="Statement">operator</span>[](<span class="Type">long</span> i);
<span class="Type">const</span> GF2 GF2X::<span class="Statement">operator</span>[](<span class="Type">long</span> i) <span class="Type">const</span>;
<span class="Comment">// indexing operators: f[i] is the coefficient of X^i ---</span>
<span class="Comment">// i should satsify i &gt;= 0 and i &lt;= deg(f)</span>

<span class="Type">void</span> GF2X::SetLength(<span class="Type">long</span> n);
<span class="Comment">// f.SetLength(n) sets the length of the inderlying coefficient</span>
<span class="Comment">// vector to n --- after this call, indexing f[i] for i = 0..n-1</span>
<span class="Comment">// is valid.</span>

<span class="Type">void</span> GF2X::normalize();
<span class="Comment">// f.normalize() strips leading zeros from coefficient vector of f</span>

<span class="Type">void</span> GF2X::SetMaxLength(<span class="Type">long</span> n);
<span class="Comment">// f.SetMaxLength(n) pre-allocate spaces for n coefficients.  The</span>
<span class="Comment">// polynomial that f represents is unchanged.</span>





<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                  Comparison</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">long</span> <span class="Statement">operator</span>==(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);
<span class="Type">long</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);

<span class="Type">long</span> IsZero(<span class="Type">const</span> GF2X&amp; a); <span class="Comment">// test for 0</span>
<span class="Type">long</span> IsOne(<span class="Type">const</span> GF2X&amp; a); <span class="Comment">// test for 1</span>

<span class="Comment">// PROMOTIONS: operators ==, != promote {long, GF2} to GF2X on (a, b)</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                   Addition</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// operator notation:</span>

GF2X <span class="Statement">operator</span>+(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);
GF2X <span class="Statement">operator</span>-(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);

GF2X <span class="Statement">operator</span>-(<span class="Type">const</span> GF2X&amp; a); <span class="Comment">// unary -</span>

GF2X&amp; <span class="Statement">operator</span>+=(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a);
GF2X&amp; <span class="Statement">operator</span>+=(GF2X&amp; x, GF2 a);
GF2X&amp; <span class="Statement">operator</span>+=(GF2X&amp; x, <span class="Type">long</span> a);

GF2X&amp; <span class="Statement">operator</span>-=(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a);
GF2X&amp; <span class="Statement">operator</span>-=(GF2X&amp; x, GF2 a);
GF2X&amp; <span class="Statement">operator</span>-=(GF2X&amp; x, <span class="Type">long</span> a);

GF2X&amp; <span class="Statement">operator</span>++(GF2X&amp; x);  <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>++(GF2X&amp; x, <span class="Type">int</span>);  <span class="Comment">// postfix</span>

GF2X&amp; <span class="Statement">operator</span>--(GF2X&amp; x);  <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>--(GF2X&amp; x, <span class="Type">int</span>);  <span class="Comment">// postfix</span>

<span class="Comment">// procedural versions:</span>


<span class="Type">void</span> add(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b); <span class="Comment">// x = a + b</span>
<span class="Type">void</span> sub(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b); <span class="Comment">// x = a - b</span>
<span class="Type">void</span> negate(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a); <span class="Comment">// x = -a</span>

<span class="Comment">// PROMOTIONS: binary +, - and procedures add, sub promote {long, GF2}</span>
<span class="Comment">// to GF2X on (a, b).</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                               Multiplication</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// operator notation:</span>

GF2X <span class="Statement">operator</span>*(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);

GF2X&amp; <span class="Statement">operator</span>*=(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a);
GF2X&amp; <span class="Statement">operator</span>*=(GF2X&amp; x, GF2 a);
GF2X&amp; <span class="Statement">operator</span>*=(GF2X&amp; x, <span class="Type">long</span> a);

<span class="Comment">// procedural versions:</span>

<span class="Type">void</span> mul(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b); <span class="Comment">// x = a * b</span>

<span class="Type">void</span> sqr(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a); <span class="Comment">// x = a^2</span>
GF2X sqr(<span class="Type">const</span> GF2X&amp; a);

<span class="Comment">// PROMOTIONS: operator * and procedure mul promote {long, GF2} to GF2X</span>
<span class="Comment">// on (a, b).</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                               Shift Operations</span>

<span class="Comment">LeftShift by n means multiplication by X^n</span>
<span class="Comment">RightShift by n means division by X^n</span>

<span class="Comment">A negative shift amount reverses the direction of the shift.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// operator notation:</span>

GF2X <span class="Statement">operator</span>&lt;&lt;(<span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);
GF2X <span class="Statement">operator</span>&gt;&gt;(<span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);

GF2X&amp; <span class="Statement">operator</span>&lt;&lt;=(GF2X&amp; x, <span class="Type">long</span> n);
GF2X&amp; <span class="Statement">operator</span>&gt;&gt;=(GF2X&amp; x, <span class="Type">long</span> n);

<span class="Comment">// procedural versions:</span>

<span class="Type">void</span> LeftShift(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);
GF2X LeftShift(<span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);

<span class="Type">void</span> RightShift(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);
GF2X RightShift(<span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);

<span class="Type">void</span> MulByX(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a);
GF2X MulByX(<span class="Type">const</span> GF2X&amp; a);


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                  Division</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// operator notation:</span>

GF2X <span class="Statement">operator</span>/(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);
GF2X <span class="Statement">operator</span>%(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);

GF2X&amp; <span class="Statement">operator</span>/=(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a);
GF2X&amp; <span class="Statement">operator</span>/=(GF2X&amp; x, GF2 a);
GF2X&amp; <span class="Statement">operator</span>/=(GF2X&amp; x, <span class="Type">long</span> a);

GF2X&amp; <span class="Statement">operator</span>%=(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; b);


<span class="Comment">// procedural versions:</span>


<span class="Type">void</span> DivRem(GF2X&amp; q, GF2X&amp; r, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);
<span class="Comment">// q = a/b, r = a%b</span>

<span class="Type">void</span> div(GF2X&amp; q, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);
<span class="Comment">// q = a/b</span>

<span class="Type">void</span> rem(GF2X&amp; r, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);
<span class="Comment">// r = a%b</span>

<span class="Type">long</span> divide(GF2X&amp; q, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);
<span class="Comment">// if b | a, sets q = a/b and returns 1; otherwise returns 0</span>

<span class="Type">long</span> divide(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);
<span class="Comment">// if b | a, sets q = a/b and returns 1; otherwise returns 0</span>

<span class="Comment">// PROMOTIONS: operator / and procedure div promote {long, GF2} to GF2X</span>
<span class="Comment">// on (a, b).</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                   GCD's</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> GCD(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);
GF2X GCD(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);
<span class="Comment">// x = GCD(a, b) (zero if a==b==0).</span>


<span class="Type">void</span> XGCD(GF2X&amp; d, GF2X&amp; s, GF2X&amp; t, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b);
<span class="Comment">// d = gcd(a,b), a s + b t = d </span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                  Input/Output</span>

<span class="Comment">I/O format:</span>

<span class="Comment">   [a_0 a_1 ... a_n],</span>

<span class="Comment">represents the polynomial a_0 + a_1*X + ... + a_n*X^n.</span>

<span class="Comment">On output, all coefficients will be 0 or 1, and</span>
<span class="Comment">a_n not zero (the zero polynomial is [ ]).  On input, the coefficients</span>
<span class="Comment">may be arbitrary integers which are reduced modulo 2, and leading zeros</span>
<span class="Comment">stripped.</span>

<span class="Comment">There is also a more compact hex I/O format.  To output in this</span>
<span class="Comment">format, set GF2X::HexOutput to a nonzero value.  On input, if the first</span>
<span class="Comment">non-blank character read is 'x' or 'X', then a hex format is assumed.</span>


<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

istream&amp; <span class="Statement">operator</span>&gt;&gt;(istream&amp; s, GF2X&amp; x);
ostream&amp; <span class="Statement">operator</span>&lt;&lt;(ostream&amp; s, <span class="Type">const</span> GF2X&amp; a);


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                              Some utility routines</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> diff(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a);
GF2X diff(<span class="Type">const</span> GF2X&amp; a);
<span class="Comment">// x = derivative of a</span>


<span class="Type">void</span> reverse(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> hi);
GF2X reverse(<span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> hi);

<span class="Type">void</span> reverse(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a);
GF2X reverse(<span class="Type">const</span> GF2X&amp; a);

<span class="Comment">// x = reverse of a[0]..a[hi] (hi &gt;= -1);</span>
<span class="Comment">// hi defaults to deg(a) in second version</span>


<span class="Type">void</span> VectorCopy(vec_GF2&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);
vec_GF2 VectorCopy(<span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);
<span class="Comment">// x = copy of coefficient vector of a of length exactly n.</span>
<span class="Comment">// input is truncated or padded with zeroes as appropriate.</span>

<span class="Comment">// Note that there is also a conversion routine from GF2X to vec_GF2</span>
<span class="Comment">// that makes the length of the vector match the number of coefficients</span>
<span class="Comment">// of the polynomial.</span>

<span class="Type">long</span> weight(<span class="Type">const</span> GF2X&amp; a);
<span class="Comment">// returns the # of nonzero coefficients in a</span>

<span class="Type">void</span> GF2XFromBytes(GF2X&amp; x, <span class="Type">const</span> <span class="Type">unsigned</span> <span class="Type">char</span> *p, <span class="Type">long</span> n);
GF2X GF2XFromBytes(<span class="Type">const</span> <span class="Type">unsigned</span> <span class="Type">char</span> *p, <span class="Type">long</span> n);
<span class="Comment">// conversion from byte vector to polynomial.</span>
<span class="Comment">// x = sum(p[i]*X^(8*i), i = 0..n-1), where the bits of p[i] are interpretted</span>
<span class="Comment">// as a polynomial in the natural way (i.e., p[i] = 1 is interpretted as 1,</span>
<span class="Comment">// p[i] = 2 is interpretted as X, p[i] = 3 is interpretted as X+1, etc.).</span>
<span class="Comment">// In the unusual event that characters are wider than 8 bits,</span>
<span class="Comment">// only the low-order 8 bits of p[i] are used.</span>

<span class="Type">void</span> BytesFromGF2X(<span class="Type">unsigned</span> <span class="Type">char</span> *p, <span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);
<span class="Comment">// conversion from polynomial to byte vector.</span>
<span class="Comment">// p[0..n-1] are computed so that </span>
<span class="Comment">//     a = sum(p[i]*X^(8*i), i = 0..n-1) mod X^(8*n),</span>
<span class="Comment">// where the values p[i] are interpretted as polynomials as in GF2XFromBytes</span>
<span class="Comment">// above.</span>

<span class="Type">long</span> NumBits(<span class="Type">const</span> GF2X&amp; a);
<span class="Comment">// returns number of bits of a, i.e., deg(a) + 1.</span>

<span class="Type">long</span> NumBytes(<span class="Type">const</span> GF2X&amp; a);
<span class="Comment">// returns number of bytes of a, i.e., floor((NumBits(a)+7)/8)</span>




<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                             Random Polynomials</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> random(GF2X&amp; x, <span class="Type">long</span> n);
GF2X random_GF2X(<span class="Type">long</span> n);
<span class="Comment">// x = random polynomial of degree &lt; n </span>



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                       Arithmetic mod X^n</span>

<span class="Comment">Required: n &gt;= 0; otherwise, an error is raised.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> trunc(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n); <span class="Comment">// x = a % X^n</span>
GF2X trunc(<span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);

<span class="Type">void</span> MulTrunc(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b, <span class="Type">long</span> n);
GF2X MulTrunc(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b, <span class="Type">long</span> n);
<span class="Comment">// x = a * b % X^n</span>

<span class="Type">void</span> SqrTrunc(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);
GF2X SqrTrunc(<span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);
<span class="Comment">// x = a^2 % X^n</span>

<span class="Type">void</span> InvTrunc(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);
GF2X InvTrunc(<span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> n);
<span class="Comment">// computes x = a^{-1} % X^n.  Must have ConstTerm(a) invertible.</span>

<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                Modular Arithmetic (without pre-conditioning)</span>

<span class="Comment">Arithmetic mod f.</span>

<span class="Comment">All inputs and outputs are polynomials of degree less than deg(f), and</span>
<span class="Comment">deg(f) &gt; 0.</span>

<span class="Comment">NOTE: if you want to do many computations with a fixed f, use the</span>
<span class="Comment">GF2XModulus data structure and associated routines below for better</span>
<span class="Comment">performance.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> MulMod(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b, <span class="Type">const</span> GF2X&amp; f);
GF2X MulMod(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b, <span class="Type">const</span> GF2X&amp; f);
<span class="Comment">// x = (a * b) % f</span>

<span class="Type">void</span> SqrMod(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; f);
GF2X SqrMod(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; f);
<span class="Comment">// x = a^2 % f</span>

<span class="Type">void</span> MulByXMod(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; f);
GF2X MulByXMod(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; f);
<span class="Comment">// x = (a * X) mod f</span>

<span class="Type">void</span> InvMod(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; f);
GF2X InvMod(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; f);
<span class="Comment">// x = a^{-1} % f, error is a is not invertible</span>

<span class="Type">long</span> InvModStatus(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; f);
<span class="Comment">// if (a, f) = 1, returns 0 and sets x = a^{-1} % f; otherwise,</span>
<span class="Comment">// returns 1 and sets x = (a, f)</span>


<span class="Comment">// for modular exponentiation, see below</span>



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                     Modular Arithmetic with Pre-Conditioning</span>

<span class="Comment">If you need to do a lot of arithmetic modulo a fixed f, build</span>
<span class="Comment">GF2XModulus F for f.  This pre-computes information about f that</span>
<span class="Comment">speeds up subsequent computations.</span>

<span class="Comment">As an example, the following routine computes the product modulo f of a vector</span>
<span class="Comment">of polynomials.</span>

<span class="Comment">#include &lt;NTL/GF2X.h&gt;</span>

<span class="Comment">void product(GF2X&amp; x, const vec_GF2X&amp; v, const GF2X&amp; f)</span>
<span class="Comment">{</span>
<span class="Comment">   GF2XModulus F(f);</span>
<span class="Comment">   GF2X res;</span>
<span class="Comment">   res = 1;</span>
<span class="Comment">   long i;</span>
<span class="Comment">   for (i = 0; i &lt; v.length(); i++)</span>
<span class="Comment">      MulMod(res, res, v[i], F); </span>
<span class="Comment">   x = res;</span>
<span class="Comment">}</span>


<span class="Comment">Note that automatic conversions are provided so that a GF2X can</span>
<span class="Comment">be used wherever a GF2XModulus is required, and a GF2XModulus</span>
<span class="Comment">can be used wherever a GF2X is required.</span>

<span class="Comment">The GF2XModulus routines optimize several important special cases:</span>

<span class="Comment">  - f = X^n + X^k + 1, where k &lt;= min((n+1)/2, n-NTL_BITS_PER_LONG)</span>

<span class="Comment">  - f = X^n + X^{k_3} + X^{k_2} + X^{k_1} + 1,</span>
<span class="Comment">      where k_3 &lt;= min((n+1)/2, n-NTL_BITS_PER_LONG)</span>

<span class="Comment">  - f = X^n + g, where deg(g) is small</span>


<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">class</span> GF2XModulus {
<span class="Statement">public</span>:
   GF2XModulus(); <span class="Comment">// initially in an unusable state</span>
   ~GF2XModulus();

   GF2XModulus(<span class="Type">const</span> GF2XModulus&amp;);  <span class="Comment">// copy</span>

   GF2XModulus&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> GF2XModulus&amp;);   <span class="Comment">// assignment</span>

   GF2XModulus(<span class="Type">const</span> GF2X&amp; f); <span class="Comment">// initialize with f, deg(f) &gt; 0</span>

   <span class="Statement">operator</span> <span class="Type">const</span> GF2X&amp; () <span class="Type">const</span>;
   <span class="Comment">// read-only access to f, implicit conversion operator</span>

   <span class="Type">const</span> GF2X&amp; val() <span class="Type">const</span>;
   <span class="Comment">// read-only access to f, explicit notation</span>

   <span class="Type">long</span> WordLength() <span class="Type">const</span>;
   <span class="Comment">// returns word-length of resisues</span>
};

<span class="Type">void</span> build(GF2XModulus&amp; F, <span class="Type">const</span> GF2X&amp; f);
<span class="Comment">// pre-computes information about f and stores it in F; deg(f) &gt; 0.</span>
<span class="Comment">// Note that the declaration GF2XModulus F(f) is equivalent to</span>
<span class="Comment">// GF2XModulus F; build(F, f).</span>

<span class="Comment">// In the following, f refers to the polynomial f supplied to the</span>
<span class="Comment">// build routine, and n = deg(f).</span>

<span class="Type">long</span> deg(<span class="Type">const</span> GF2XModulus&amp; F);  <span class="Comment">// return deg(f)</span>

<span class="Type">void</span> MulMod(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X MulMod(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; b, <span class="Type">const</span> GF2XModulus&amp; F);
<span class="Comment">// x = (a * b) % f; deg(a), deg(b) &lt; n</span>

<span class="Type">void</span> SqrMod(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X SqrMod(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2XModulus&amp; F);
<span class="Comment">// x = a^2 % f; deg(a) &lt; n</span>

<span class="Type">void</span> MulByXMod(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X MulByXMod(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2XModulus&amp; F);
<span class="Comment">// x = (a * X) mod F</span>

<span class="Type">void</span> PowerMod(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> ZZ&amp; e, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X PowerMod(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> ZZ&amp; e, <span class="Type">const</span> GF2XModulus&amp; F);

<span class="Type">void</span> PowerMod(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> e, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X PowerMod(<span class="Type">const</span> GF2X&amp; a, <span class="Type">long</span> e, <span class="Type">const</span> GF2XModulus&amp; F);

<span class="Comment">// x = a^e % f; deg(a) &lt; n (e may be negative)</span>

<span class="Type">void</span> PowerXMod(GF2X&amp; x, <span class="Type">const</span> ZZ&amp; e, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X PowerXMod(<span class="Type">const</span> ZZ&amp; e, <span class="Type">const</span> GF2XModulus&amp; F);

<span class="Type">void</span> PowerXMod(GF2X&amp; x, <span class="Type">long</span> e, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X PowerXMod(<span class="Type">long</span> e, <span class="Type">const</span> GF2XModulus&amp; F);

<span class="Comment">// x = X^e % f (e may be negative)</span>


<span class="Type">void</span> rem(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2XModulus&amp; F);
<span class="Comment">// x = a % f</span>

<span class="Type">void</span> DivRem(GF2X&amp; q, GF2X&amp; r, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2XModulus&amp; F);
<span class="Comment">// q = a/f, r = a%f</span>

<span class="Type">void</span> div(GF2X&amp; q, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2XModulus&amp; F);
<span class="Comment">// q = a/f</span>

<span class="Comment">// operator notation:</span>

GF2X <span class="Statement">operator</span>/(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X <span class="Statement">operator</span>%(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2XModulus&amp; F);

GF2X&amp; <span class="Statement">operator</span>/=(GF2X&amp; x, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X&amp; <span class="Statement">operator</span>%=(GF2X&amp; x, <span class="Type">const</span> GF2XModulus&amp; F);


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                             vectors of GF2X's</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">typedef</span> Vec&lt;GF2X&gt; vec_GF2X; <span class="Comment">// backward compatibility</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                              Modular Composition</span>

<span class="Comment">Modular composition is the problem of computing g(h) mod f for</span>
<span class="Comment">polynomials f, g, and h.</span>

<span class="Comment">The algorithm employed is that of Brent &amp; Kung (Fast algorithms for</span>
<span class="Comment">manipulating formal power series, JACM 25:581-595, 1978), which uses</span>
<span class="Comment">O(n^{1/2}) modular polynomial multiplications, and O(n^2) scalar</span>
<span class="Comment">operations.</span>



<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> CompMod(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2X&amp; h, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X CompMod(<span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2X&amp; h, <span class="Type">const</span> GF2XModulus&amp; F);
<span class="Comment">// x = g(h) mod f; deg(h) &lt; n</span>

<span class="Type">void</span> Comp2Mod(GF2X&amp; x1, GF2X&amp; x2, <span class="Type">const</span> GF2X&amp; g1, <span class="Type">const</span> GF2X&amp; g2,
              <span class="Type">const</span> GF2X&amp; h, <span class="Type">const</span> GF2XModulus&amp; F);
<span class="Comment">// xi = gi(h) mod f (i=1,2), deg(h) &lt; n.</span>

<span class="Type">void</span> CompMod3(GF2X&amp; x1, GF2X&amp; x2, GF2X&amp; x3,
              <span class="Type">const</span> GF2X&amp; g1, <span class="Type">const</span> GF2X&amp; g2, <span class="Type">const</span> GF2X&amp; g3,
              <span class="Type">const</span> GF2X&amp; h, <span class="Type">const</span> GF2XModulus&amp; F);
<span class="Comment">// xi = gi(h) mod f (i=1..3), deg(h) &lt; n</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                     Composition with Pre-Conditioning</span>

<span class="Comment">If a single h is going to be used with many g's then you should build</span>
<span class="Comment">a GF2XArgument for h, and then use the compose routine below.  The</span>
<span class="Comment">routine build computes and stores h, h^2, ..., h^m mod f.  After this</span>
<span class="Comment">pre-computation, composing a polynomial of degree roughly n with h</span>
<span class="Comment">takes n/m multiplies mod f, plus n^2 scalar multiplies.  Thus,</span>
<span class="Comment">increasing m increases the space requirement and the pre-computation</span>
<span class="Comment">time, but reduces the composition time.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">struct</span> GF2XArgument {
   vec_GF2X H;
};

<span class="Type">void</span> build(GF2XArgument&amp; H, <span class="Type">const</span> GF2X&amp; h, <span class="Type">const</span> GF2XModulus&amp; F, <span class="Type">long</span> m);
<span class="Comment">// Pre-Computes information about h.  m &gt; 0, deg(h) &lt; n</span>

<span class="Type">void</span> CompMod(GF2X&amp; x, <span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XArgument&amp; H,
             <span class="Type">const</span> GF2XModulus&amp; F);

GF2X CompMod(<span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XArgument&amp; H,
             <span class="Type">const</span> GF2XModulus&amp; F);


<span class="Type">extern</span> <span class="Type">thread_local</span> <span class="Type">long</span> GF2XArgBound;

<span class="Comment">// Initially 0.  If this is set to a value greater than zero, then</span>
<span class="Comment">// composition routines will allocate a table of no than about</span>
<span class="Comment">// GF2XArgBound KB.  Setting this value affects all compose routines</span>
<span class="Comment">// and the power projection and minimal polynomial routines below, </span>
<span class="Comment">// and indirectly affects many routines in GF2XFactoring.</span>

<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                     Power Projection routines</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> project(GF2&amp; x, <span class="Type">const</span> vec_GF2&amp; a, <span class="Type">const</span> GF2X&amp; b);
GF2 project(<span class="Type">const</span> vec_GF2&amp; a, <span class="Type">const</span> GF2X&amp; b);
<span class="Comment">// x = inner product of a with coefficient vector of b</span>


<span class="Type">void</span> ProjectPowers(vec_GF2&amp; x, <span class="Type">const</span> vec_GF2&amp; a, <span class="Type">long</span> k,
                   <span class="Type">const</span> GF2X&amp; h, <span class="Type">const</span> GF2XModulus&amp; F);

vec_GF2 ProjectPowers(<span class="Type">const</span> vec_GF2&amp; a, <span class="Type">long</span> k,
                   <span class="Type">const</span> GF2X&amp; h, <span class="Type">const</span> GF2XModulus&amp; F);

<span class="Comment">// Computes the vector </span>

<span class="Comment">//   (project(a, 1), project(a, h), ..., project(a, h^{k-1} % f).  </span>

<span class="Comment">// Restriction: must have a.length &lt;= deg(F) and deg(h) &lt; deg(F).</span>
<span class="Comment">// This operation is really the &quot;transpose&quot; of the modular composition </span>
<span class="Comment">// operation.</span>

<span class="Type">void</span> ProjectPowers(vec_GF2&amp; x, <span class="Type">const</span> vec_GF2&amp; a, <span class="Type">long</span> k,
                   <span class="Type">const</span> GF2XArgument&amp; H, <span class="Type">const</span> GF2XModulus&amp; F);

vec_GF2 ProjectPowers(<span class="Type">const</span> vec_GF2&amp; a, <span class="Type">long</span> k,
                   <span class="Type">const</span> GF2XArgument&amp; H, <span class="Type">const</span> GF2XModulus&amp; F);

<span class="Comment">// same as above, but uses a pre-computed GF2XArgument</span>


<span class="Comment">// lower-level routines for transposed modular multiplication:</span>

<span class="Type">class</span> GF2XTransMultiplier { <span class="Comment">/*</span><span class="Comment"> ... </span><span class="Comment">*/</span> };

<span class="Type">void</span> build(GF2XTransMultiplier&amp; B, <span class="Type">const</span> GF2X&amp; b, <span class="Type">const</span> GF2XModulus&amp; F);

<span class="Comment">// build a GF2XTransMultiplier to use in the following routine:</span>

<span class="Type">void</span> UpdateMap(vec_GF2&amp; x, <span class="Type">const</span> vec_GF2&amp; a, <span class="Type">const</span> GF2XTransMultiplier&amp; B,
         <span class="Type">const</span> GF2XModulus&amp; F);

vec_GF2 UpdateMap(<span class="Type">const</span> vec_GF2&amp; a, <span class="Type">const</span> GF2XTransMultiplier&amp; B,
         <span class="Type">const</span> GF2XModulus&amp; F);

<span class="Comment">// Computes the vector</span>

<span class="Comment">//   project(a, b), project(a, (b*X)%f), ..., project(a, (b*X^{n-1})%f)</span>

<span class="Comment">// Restriction: must have a.length() &lt;= deg(F) and deg(b) &lt; deg(F).</span>
<span class="Comment">// This is really the transpose of modular multiplication.</span>
<span class="Comment">// Input may have &quot;high order&quot; zeroes stripped.</span>
<span class="Comment">// Output always has high order zeroes stripped.</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                              Minimum Polynomials</span>

<span class="Comment">All of these routines implement the algorithm from [Shoup, J. Symbolic</span>
<span class="Comment">Comp. 17:371-391, 1994] and [Shoup, J. Symbolic Comp. 20:363-397,</span>
<span class="Comment">1995], based on transposed modular composition and the</span>
<span class="Comment">Berlekamp/Massey algorithm.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> MinPolySeq(GF2X&amp; h, <span class="Type">const</span> vec_GF2&amp; a, <span class="Type">long</span> m);
<span class="Comment">// computes the minimum polynomial of a linealy generated sequence; m</span>
<span class="Comment">// is a bound on the degree of the polynomial; required: a.length() &gt;=</span>
<span class="Comment">// 2*m</span>

<span class="Type">void</span> ProbMinPolyMod(GF2X&amp; h, <span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XModulus&amp; F, <span class="Type">long</span> m);
GF2X ProbMinPolyMod(<span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XModulus&amp; F, <span class="Type">long</span> m);

<span class="Type">void</span> ProbMinPolyMod(GF2X&amp; h, <span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X ProbMinPolyMod(<span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XModulus&amp; F);

<span class="Comment">// computes the monic minimal polynomial if (g mod f).  m = a bound on</span>
<span class="Comment">// the degree of the minimal polynomial; in the second version, this</span>
<span class="Comment">// argument defaults to n.  The algorithm is probabilistic; it always</span>
<span class="Comment">// returns a divisor of the minimal polynomial, possibly a proper divisor.</span>

<span class="Type">void</span> MinPolyMod(GF2X&amp; h, <span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XModulus&amp; F, <span class="Type">long</span> m);
GF2X MinPolyMod(<span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XModulus&amp; F, <span class="Type">long</span> m);

<span class="Type">void</span> MinPolyMod(GF2X&amp; h, <span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X MinPolyMod(<span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XModulus&amp; F);

<span class="Comment">// same as above, but guarantees that result is correct</span>

<span class="Type">void</span> IrredPolyMod(GF2X&amp; h, <span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XModulus&amp; F, <span class="Type">long</span> m);
GF2X IrredPolyMod(<span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XModulus&amp; F, <span class="Type">long</span> m);

<span class="Type">void</span> IrredPolyMod(GF2X&amp; h, <span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XModulus&amp; F);
GF2X IrredPolyMod(<span class="Type">const</span> GF2X&amp; g, <span class="Type">const</span> GF2XModulus&amp; F);

<span class="Comment">// same as above, but assumes that F is irreducible, or at least that</span>
<span class="Comment">// the minimal poly of g is itself irreducible.  The algorithm is</span>
<span class="Comment">// deterministic (and is always correct).</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                Traces</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> TraceMod(GF2&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2XModulus&amp; F);
GF2 TraceMod(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2XModulus&amp; F);

<span class="Type">void</span> TraceMod(GF2&amp; x, <span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; f);
GF2 TraceMod(<span class="Type">const</span> GF2X&amp; a, <span class="Type">const</span> GF2X&amp; f);
<span class="Comment">// x = Trace(a mod f); deg(a) &lt; deg(f)</span>


<span class="Type">void</span> TraceVec(vec_GF2&amp; S, <span class="Type">const</span> GF2X&amp; f);
vec_GF2 TraceVec(<span class="Type">const</span> GF2X&amp; f);
<span class="Comment">// S[i] = Trace(X^i mod f), i = 0..deg(f)-1; 0 &lt; deg(f)</span>

<span class="Comment">// The above routines implement the asymptotically fast trace</span>
<span class="Comment">// algorithm from [von zur Gathen and Shoup, Computational Complexity,</span>
<span class="Comment">// 1992].</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                           Miscellany</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> clear(GF2X&amp; x) <span class="Comment">// x = 0</span>
<span class="Type">void</span> set(GF2X&amp; x); <span class="Comment">// x = 1</span>


<span class="Type">void</span> GF2X::kill();
<span class="Comment">// f.kill() sets f to 0 and frees all memory held by f.  </span>

GF2X::GF2X(INIT_SIZE_TYPE, <span class="Type">long</span> n);
<span class="Comment">// GF2X(INIT_SIZE, n) initializes to zero, but space is pre-allocated</span>
<span class="Comment">// for n coefficients</span>

<span class="Type">static</span> <span class="Type">const</span> GF2X&amp; zero();
<span class="Comment">// GF2X::zero() is a read-only reference to 0</span>

<span class="Type">void</span> GF2X::swap(GF2X&amp; x);
<span class="Type">void</span> swap(GF2X&amp; x, GF2X&amp; y);
<span class="Comment">// swap (via &quot;pointer swapping&quot; -- if possible)</span>

GF2X::GF2X(<span class="Type">long</span> i, GF2 c);
GF2X::GF2X(<span class="Type">long</span> i, <span class="Type">long</span> c);
<span class="Comment">// initialize to c*X^i, provided for backward compatibility</span>

<span class="Comment">// SIZE INVARIANT: for any f in GF2X, deg(f)+1 &lt; 2^(NTL_BITS_PER_LONG-4).</span>
</pre>
</body>
</html>
<!-- vim: set foldmethod=manual : -->