File: SmartPtr.cpp.html

package info (click to toggle)
ntl 11.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 8,820 kB
  • sloc: cpp: 92,194; sh: 10,577; ansic: 3,058; makefile: 536
file content (1023 lines) | stat: -rw-r--r-- 55,609 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>~/ntl-11.4.2/doc/SmartPtr.cpp.html</title>
<meta name="Generator" content="Vim/8.0">
<meta name="plugin-version" content="vim7.4_v2">
<meta name="syntax" content="cpp">
<meta name="settings" content="use_css,pre_wrap,no_foldcolumn,expand_tabs,prevent_copy=">
<meta name="colorscheme" content="macvim">
<style type="text/css">
<!--
pre { white-space: pre-wrap; font-family: monospace; color: #000000; background-color: #ffffff; }
body { font-family: monospace; color: #000000; background-color: #ffffff; }
* { font-size: 1em; }
.Constant { color: #ff8c00; }
.Statement { color: #b03060; font-weight: bold; }
.Comment { color: #0000ee; font-style: italic; }
.Type { color: #008b00; font-weight: bold; }
-->
</style>

<script type='text/javascript'>
<!--

-->
</script>
</head>
<body>
<pre id='vimCodeElement'>


<span class="Comment">/*</span><span class="Comment">***************************************************************************</span>

<span class="Comment">SmartPtr: a smart pointer class.</span>

<span class="Comment">Synopsis: provides a reference counted smart pointer, similar to shared_ptr</span>
<span class="Comment">in the standard library.  It is provided here to minimize reliance</span>
<span class="Comment">on the standard library, especially for older C++ compilers, which may</span>
<span class="Comment">not provide shared_ptr, or it may be in TR1, which gets messy.</span>


<span class="Comment">Examples:</span>


<span class="Comment">  SmartPtr&lt;T&gt; p1;         // initialize to null</span>
<span class="Comment">  SmartPtr&lt;T&gt; p1(0); </span>

<span class="Comment">  SmartPtr&lt;T&gt; p2 = 0;     // 0/nullptr implicitly converts to SmartPtr&lt;T&gt;</span>

<span class="Comment">  SmartPtr&lt;T&gt; p3(p1);     // copy constructor</span>

<span class="Comment">  T *rp;</span>
<span class="Comment">  SmartPtr&lt;T&gt; p4(rp);     // construct using raw pointer (explicit): better </span>
<span class="Comment">                          // to use MakeSmart below</span>

<span class="Comment">  p1 = MakeSmart&lt;T&gt;(...); // build new T object by invoking constructor</span>
<span class="Comment">                          // T(...) with pseudo-variadic templates.</span>
<span class="Comment">                          // This is safer and more efficient that</span>
<span class="Comment">                          // using the raw-pointer constructor</span>
<span class="Comment">                        </span>
<span class="Comment">  p1 = p2;                // assignment</span>
<span class="Comment">  p1 = 0;                 // assign null</span>


<span class="Comment">  if (!p1) ...            //  test for null</span>
<span class="Comment">  if (p1 == 0) ... </span>

<span class="Comment">  if (p1) ...             // test for not null ... </span>
<span class="Comment">  if (p1 != 0) ... </span>

<span class="Comment">  if (p1 == p2) ...       // test for equality </span>
<span class="Comment">  if (p1 != p2) </span>

<span class="Comment">  *p1                     // dereferencing</span>
<span class="Comment">  p1-&gt;...</span>

<span class="Comment">  p1.get();               // return the underlying raw pointer...dangerous!</span>

<span class="Comment">  p1.swap(p2);            // fast swap</span>
<span class="Comment">  swap(p1, p2);</span>


<span class="Comment">Automatic Conversions:</span>

<span class="Comment">If S is another class, SmartPtr&lt;S&gt; converts to SmartPtr&lt;T&gt; if S* converts to T*</span>
<span class="Comment">(for example, if S is a subclass of T).  Similarly, SmartPtr&lt;S&gt; and SmartPtr&lt;T&gt;</span>
<span class="Comment">may be compared if S* and T* may be compared.</span>

<span class="Comment">0/nullptr automatically converts to SmartPtr&lt;T&gt;.</span>

<span class="Comment">MakeSmart:</span>

<span class="Comment">One can write SmartPtr&lt;T&gt; p = MakeSmart&lt;T&gt;(x1, ..., xn), and this will create a</span>
<span class="Comment">smart pointer to an object constructed as T(x1, ..., xn).  Besides notational</span>
<span class="Comment">convenience, it also reduces the number of memory allocations from 2 to 1, as</span>
<span class="Comment">the data and control block can be allocated in one chunck of memory.</span>

<span class="Comment">In C++11 mode, this is implemented using variadic templates and &quot;perfect</span>
<span class="Comment">forwarding&quot;.  Otherwise, this is implemented using macros, and there are some</span>
<span class="Comment">limitations: first, the number n of arguments is limited to 9; second, all</span>
<span class="Comment">arguments are pass by const reference, but you can work around this by using</span>
<span class="Comment">the helper function Fwd.  For example, if T has a 2-argument constructor where</span>
<span class="Comment">the second must be a non-const reference of some type, and x2 is a variable of</span>
<span class="Comment">that type, you can write MakeSmart&lt;T&gt;(x1, Fwd(x2)), to forward that reference</span>
<span class="Comment">through in a typesafe manner.  Note that for compatibility, the Fwd function is</span>
<span class="Comment">also available in C++11 mode, so you can write code that will work in either</span>
<span class="Comment">mode.</span>

<span class="Comment">MakeRaw:</span>

<span class="Comment">One can also write T *p = MakeRaw&lt;T&gt;(x1, ..., xn) to create a </span>
<span class="Comment">raw pointer.  This is the same as writing T *p = new T(x1, ..., xn),</span>
<span class="Comment">except that error handling is determined by the NTL_EXCEPTION</span>
<span class="Comment">flag (on =&gt; bad_alloc exception is thrown, off =&gt; error message</span>
<span class="Comment">and abort).</span>

<span class="Comment">MakeRawArray:</span>

<span class="Comment">Another utility routine: one can write T *p = MakeRawArray&lt;T&gt;(n)</span>
<span class="Comment">to make a plain array of n T objects.  Error handling is the same</span>
<span class="Comment">as for MakeRaw.</span>

<span class="Comment">Dynamic casting:</span>

<span class="Comment">I've also supplied a dynamic cast operation for smart pointers.</span>

<span class="Comment">   SmartPtr&lt;Derived&gt; d = MakeSmart&lt;Derived&gt;(); // d points to Derived</span>
<span class="Comment">   SmartPtr&lt;Base&gt; b = d; // implicit upcast: OK</span>

<span class="Comment">   SmartPtr&lt;Derived&gt; d1 = DynamicCast&lt;Derived&gt;(b);</span>
<span class="Comment">      // downcast to a Derived object -- returns null for a bad cast</span>

<span class="Comment">DeleterPolicy:</span>

<span class="Comment">Normally, when the object pointed to a SmartPtr needs to be destroyed, this is</span>
<span class="Comment">done by invoking delete on the raw pointer.  The user can override this</span>
<span class="Comment">behavior by specifying a &quot;deleter policy&quot;, which is a class P that defines a</span>
<span class="Comment">static member function deleter, which is invoked as P::deleter(p).  Such a</span>
<span class="Comment">policy can be attached to a SmartPtr using a specialized constructor (see</span>
<span class="Comment">below).</span>

<span class="Comment">A deleter policy can be useful, for example, in realizing the PIPL</span>
<span class="Comment">pattern, where the class T's definition is not visible.  The specified deleter</span>
<span class="Comment">can invoke a free-standing function that itself invokes delete.  A deleter</span>
<span class="Comment">policy can also be useful is memory is to be managed using some mechanism other</span>
<span class="Comment">than new/delete.</span>


<span class="Comment">Implementation notes:</span>

<span class="Comment">If NTL is compiled with the NTL_THREADS option, then the reference counting</span>
<span class="Comment">will be thread safe.</span>

<span class="Comment">The SmartPtrControl class heirarchy is used to make sure the right destructor</span>
<span class="Comment">is called when the ref count goes to zero.  This can be an issue for forward</span>
<span class="Comment">declared classes and for subclasses.  For example, if T is forward declared in</span>
<span class="Comment">a context where the ref count goes to zero, or if the object's actual type is a</span>
<span class="Comment">subclass of T and T's destructor was not declared virtual.  The implementation</span>
<span class="Comment">of SmartPtr guarantees correct behavior in these situations.</span>

<span class="Comment">The null tests p, !p, p == 0, are all effected via an implicit conversion from</span>
<span class="Comment">SmartPtr&lt;T&gt; to a funny pointer type (a pointer to a member function, which</span>
<span class="Comment">avoids other, unwanted implicit conversions: this is the so-called &quot;safe bool</span>
<span class="Comment">idiom&quot;);</span>

<span class="Comment">Also, there is an implicit conversion from another funny pointer type to</span>
<span class="Comment">SmartPtr&lt;T&gt;, which is how the implicit conversion from 0/nullptr is achieved.</span>

<span class="Comment">In C++11 both of the above effects could perhaps be achieved more directly.</span>
<span class="Comment">The new &quot;explict bool&quot; operator can replace the &quot;safe bool idiom&quot;, and </span>
<span class="Comment">the new nullptr_t type could be used to get the conversion from null to work.</span>

<span class="Comment">NOTES: See <a href="http://www.artima.com/cppsource/safebool.html">http://www.artima.com/cppsource/safebool.html</a> for more on the &quot;safe</span>
<span class="Comment">bool idiom&quot;.  </span>


<span class="Comment">****************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// The default &quot;deleter policy&quot;</span>
<span class="Type">struct</span> DefaultDeleterPolicy {

   <span class="Type">template</span>&lt;<span class="Type">class</span> T&gt;
   <span class="Type">static</span> <span class="Type">void</span> deleter(T *p) { <span class="Statement">delete</span> p; }

};

<span class="Comment">// A tagging class, for better readability in invoking constructor.</span>
<span class="Comment">// Usage: SmartPtr&lt;T&gt; p(r, ChoosePolicy&lt;MyDeleterPolicy&gt;());</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> P&gt;
<span class="Type">struct</span> ChoosePolicy { };





<span class="Type">template</span>&lt;<span class="Type">class</span> T&gt;
<span class="Type">class</span> SmartPtr {
<span class="Statement">public</span>:
<span class="Statement">public</span>:
   <span class="Type">template</span>&lt;<span class="Type">class</span> Y&gt; <span class="Type">explicit</span> SmartPtr(Y* p);
   <span class="Comment">// construct smart pointer from raw pointer with deleter policy</span>
   <span class="Comment">// DefaultDeleterPolicy (so p should be allocated using new).</span>

   <span class="Comment">// NOTE: Y* must convert to T*, but upon the original pointer is preserved</span>
   <span class="Comment">// so that when ref count drops to 0, the *original* object of type Y is destroyed.</span>

   <span class="Comment">// EXCEPTIONS: a control block is dynamically allocated;</span>
   <span class="Comment">//    if this allocation fails, the object pointed to by p is destroyed</span>
   <span class="Comment">//    and a bad_alloc exception is thrown</span>

   <span class="Type">template</span>&lt;<span class="Type">class</span> Y, <span class="Type">class</span> P&gt; SmartPtr(Y* p, ChoosePolicy&lt;P&gt;);
   <span class="Comment">// construct smart pointer from raw pointer with deleter policy P.</span>

   <span class="Comment">// NOTE: Y* must convert to T*, but upon the original pointer is preserved</span>
   <span class="Comment">// so that when ref count drops to 0, the *original* object of type Y is destroyed.</span>

   <span class="Comment">// EXCEPTIONS: a control block is dynamically allocated;</span>
   <span class="Comment">//    if this allocation fails, the object pointed to by p is destroyed</span>
   <span class="Comment">//    and a bad_alloc exception is thrown</span>

   SmartPtr();
   <span class="Comment">// initial value null</span>

   SmartPtr(fake_null_type1);
   <span class="Comment">// automatic conversion from 0/nullptr</span>

   ~SmartPtr();
   <span class="Comment">// destructor</span>

   SmartPtr(<span class="Type">const</span> SmartPtr&amp; other);
   SmartPtr&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> SmartPtr&amp; other);
   <span class="Comment">// copy and assignment</span>

   <span class="Type">template</span>&lt;<span class="Type">class</span> Y&gt; SmartPtr(<span class="Type">const</span> SmartPtr&lt;Y&gt;&amp; other);
   <span class="Type">template</span>&lt;<span class="Type">class</span> Y&gt; SmartPtr&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> SmartPtr&lt;Y&gt;&amp; other);
   <span class="Comment">// copy and assignment</span>

   SmartPtr(SmartPtr&amp;&amp; other) <span class="Statement">noexcept</span>;
   SmartPtr&amp; <span class="Statement">operator</span>=(SmartPtr&amp;&amp; other) <span class="Statement">noexcept</span>;
   <span class="Comment">// move semantics (C++11 only)</span>

   <span class="Type">template</span>&lt;<span class="Type">class</span> Y&gt; SmartPtr(SmartPtr&lt;Y&gt;&amp;&amp; other) <span class="Statement">noexcept</span>;
   <span class="Type">template</span>&lt;<span class="Type">class</span> Y&gt; SmartPtr&amp; <span class="Statement">operator</span>=(SmartPtr&lt;Y&gt;&amp;&amp; other);
   <span class="Comment">// move semantics (C++11 only)</span>

   T&amp; <span class="Statement">operator</span>*()  <span class="Type">const</span>;
   T* <span class="Statement">operator</span>-&gt;() <span class="Type">const</span>;
   <span class="Comment">// indirection</span>

   T* get() <span class="Type">const</span>;
   <span class="Comment">// get underlying raw pointer</span>

   <span class="Type">void</span> swap(SmartPtr&amp; other);

   SmartPtr(fake_null_type);
   <span class="Comment">// allows assignment and initialization from 0</span>

   <span class="Statement">operator</span> fake_null_type() <span class="Type">const</span>;
   <span class="Comment">// allows comparisons to 0</span>

   <span class="Type">template</span>&lt;<span class="Type">class</span> Y&gt; SmartPtr&lt;Y&gt; DynamicCast() <span class="Type">const</span>;
};


<span class="Comment">// free swap function</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> T&gt; <span class="Type">void</span> swap(SmartPtr&lt;T&gt;&amp; p, SmartPtr&lt;T&gt;&amp; q);

<span class="Comment">// free dynamic cast function</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> X, <span class="Type">class</span> Y&gt; SmartPtr&lt;X&gt; DynamicCast(<span class="Type">const</span> SmartPtr&lt;Y&gt;&amp; p);


<span class="Comment">// Equality testing</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> X, <span class="Type">class</span> Y&gt;
<span class="Type">bool</span> <span class="Statement">operator</span>==(<span class="Type">const</span> SmartPtr&lt;X&gt;&amp; a, <span class="Type">const</span> SmartPtr&lt;Y&gt;&amp; b);

<span class="Type">template</span>&lt;<span class="Type">class</span> X, <span class="Type">class</span> Y&gt;
<span class="Type">bool</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> SmartPtr&lt;X&gt;&amp; a, <span class="Type">const</span> SmartPtr&lt;Y&gt;&amp; b);

<span class="Comment">// MakeSmart variadic template</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> T, <span class="Type">class</span>... Args&gt;
SmartPtr&lt;T&gt; MakeSmart(Args&amp;&amp;... args);
<span class="Comment">// EXCEPTIONS: may throw an exception if constructor for T throws</span>
<span class="Comment">// or memory allocation fails</span>


<span class="Comment">// EXCEPTIONS: unless otherwise specified, the methods above</span>
<span class="Comment">// never throw an exception (under C++11 rules, if a destructor</span>
<span class="Comment">// is invoked that throws an exception, the program will terminate).</span>


<span class="Comment">/*</span><span class="Comment">***************************************************************************</span>

<span class="Comment">Experimantal: CloneablePtr&lt;T&gt; ...essentially same interface as SmartPtr, but </span>
<span class="Comment">allows cloning of complete objects.  The differences:</span>
<span class="Comment">*  must construct using MakeCloneable</span>
<span class="Comment">*  a clone method is provided</span>
<span class="Comment">*  implicit conversion from CloneablePtr to SmartPtr is allowed</span>

<span class="Comment">Example:</span>

<span class="Comment">   CloneablePtr&lt;Derived&gt; d = MakeCloneable&lt;Derived&gt;(); </span>
<span class="Comment">   // d points to Derived</span>

<span class="Comment">   CloneablePtr&lt;Base&gt; b = d; // implicit upcast: OK</span>

<span class="Comment">   CloneablePtr&lt;Base&gt; b1 = b.clone(); </span>
<span class="Comment">   // clone of b, which is really a Derived object</span>

<span class="Comment">   CloneablePtr&lt;Derived&gt; d1 = DynamicCast&lt;Derived&gt;(b1);</span>
<span class="Comment">   // downcast to a Derived object -- returns null for a bad cast</span>

<span class="Comment">   SmartPtr&lt;Base&gt; b2 = d1;</span>
<span class="Comment">   </span>


<span class="Comment">Implementation:</span>

<span class="Comment">In the clone method, the object is constructed using the copy constructor for</span>
<span class="Comment">the type T, where T is the compile-time type with which the first smart pointer</span>
<span class="Comment">to this object was was created, even if the pointer has been subsequently</span>
<span class="Comment">upcasted to a base type S.  Such objects must have been initially created using</span>
<span class="Comment">the MakeCloneable function.  It turns out, this is hard to do in a completely</span>
<span class="Comment">standards-compliant way, because of the type erasure going on.  So I settled on</span>
<span class="Comment">the current method, which does some low-level pointer arithmetic.  Even with</span>
<span class="Comment">fancy things like multiple and virtual inheritance, it should work, under the</span>
<span class="Comment">assumption that if two objects have the same (runtime) type, then their memory</span>
<span class="Comment">layout is the same.  I don't think anything like that is guaranteed by the</span>
<span class="Comment">standard, but this seems reasonable, and it seems to work.  Like I said, it is</span>
<span class="Comment">experimental, and I would appreciate feedback from C++ gurus.</span>

<span class="Comment">Note that NTL does not use this feature, but I do have applications where this</span>
<span class="Comment">is convenient.</span>


<span class="Comment">*********************************************************************************</span><span class="Comment">*/</span>


<span class="Type">template</span>&lt;<span class="Type">class</span> T&gt;
<span class="Type">class</span> CloneablePtr {
<span class="Statement">public</span>:
   CloneablePtr();
   <span class="Comment">// initial value null</span>

   ~CloneablePtr();
   <span class="Comment">// if ref count drops to zero, then delete referent</span>

   CloneablePtr(<span class="Type">const</span> CloneablePtr&amp; other);
   CloneablePtr&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> CloneablePtr&amp; other);
   <span class="Comment">// copy and assignment</span>

   <span class="Type">template</span>&lt;<span class="Type">class</span> Y&gt; CloneablePtr(<span class="Type">const</span> CloneablePtr&lt;Y&gt;&amp; other);
   <span class="Type">template</span>&lt;<span class="Type">class</span> Y&gt; CloneablePtr&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> CloneablePtr&lt;Y&gt;&amp; other);
   <span class="Comment">// copy and assignment</span>

   CloneablePtr(CloneablePtr&amp;&amp; other) <span class="Statement">noexcept</span>;
   CloneablePtr&amp; <span class="Statement">operator</span>=(CloneablePtr&amp;&amp; other) <span class="Statement">noexcept</span>;
   <span class="Comment">// move semantics (C++11 only)</span>

   <span class="Type">template</span>&lt;<span class="Type">class</span> Y&gt; CloneablePtr(CloneablePtr&lt;Y&gt;&amp;&amp; other) <span class="Statement">noexcept</span>;
   <span class="Type">template</span>&lt;<span class="Type">class</span> Y&gt; CloneablePtr&amp; <span class="Statement">operator</span>=(CloneablePtr&lt;Y&gt;&amp;&amp; other);
   <span class="Comment">// move semantics (C++11 only)</span>

   T&amp; <span class="Statement">operator</span>*()  <span class="Type">const</span>;
   T* <span class="Statement">operator</span>-&gt;() <span class="Type">const</span>;
   <span class="Comment">// indirection</span>

   T* get() <span class="Type">const</span>;
   <span class="Comment">// get underlying raw pointer</span>

   <span class="Type">void</span> swap(CloneablePtr&amp; other);

   CloneablePtr(fake_null_type);
   <span class="Comment">// allows assignment and initialization from 0</span>

   <span class="Statement">operator</span> fake_null_type() <span class="Type">const</span>;
   <span class="Comment">// allows comparisons to 0</span>

   <span class="Type">template</span>&lt;<span class="Type">class</span> Y&gt; CloneablePtr&lt;Y&gt; DynamicCast() <span class="Type">const</span>;

   CloneablePtr clone() <span class="Type">const</span>;
   <span class="Comment">// construct a clone, using the copy constructor</span>
   <span class="Comment">// EXCEPTIONS: may throw if copy construction fails</span>


   <span class="Type">template</span>&lt;<span class="Type">class</span> Y&gt; <span class="Statement">operator</span> SmartPtr&lt;Y&gt;();
   <span class="Comment">// implicit conversion from CloneablePtr&lt;T&gt; to SmartPtr&lt;Y&gt;,</span>
   <span class="Comment">// allowed if T* converts implicitly to Y*.</span>
};


<span class="Comment">// free swap function</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> T&gt; <span class="Type">void</span> swap(CloneablePtr&lt;T&gt;&amp; p, CloneablePtr&lt;T&gt;&amp; q);

<span class="Comment">// free dynamic cast function</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> X, <span class="Type">class</span> Y&gt; CloneablePtr&lt;X&gt; DynamicCast(<span class="Type">const</span> CloneablePtr&lt;Y&gt;&amp; p);


<span class="Comment">// Equality testing</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> X, <span class="Type">class</span> Y&gt;
<span class="Type">bool</span> <span class="Statement">operator</span>==(<span class="Type">const</span> CloneablePtr&lt;X&gt;&amp; a, <span class="Type">const</span> CloneablePtr&lt;Y&gt;&amp; b);

<span class="Type">template</span>&lt;<span class="Type">class</span> X, <span class="Type">class</span> Y&gt;
<span class="Type">bool</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> CloneablePtr&lt;X&gt;&amp; a, <span class="Type">const</span> CloneablePtr&lt;Y&gt;&amp; b);

<span class="Comment">// MakeCloneable psuedo-variadic template</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> T, <span class="Type">class</span>... Args&gt;
CloneablePtr&lt;T&gt; MakeCloneable(Args&amp;&amp;... args);
<span class="Comment">// EXCEPTIONS: may throw an exception if constructor for T throws</span>
<span class="Comment">// or memory allocation fails</span>


<span class="Comment">// EXCEPTIONS: unless otherwise specified, the methods above</span>
<span class="Comment">// never throw an exception (under C++11 rules, if a destructor</span>
<span class="Comment">// is invoked that throws an exception, the program will terminate).</span>






<span class="Comment">/*</span><span class="Comment">*********************************************************************</span>

<span class="Comment">UniquePtr&lt;T&gt; -- unique pointer to object with copying disabled.</span>
<span class="Comment">Useful for pointers inside classes so that we can</span>
<span class="Comment">automatically destruct them.  </span>

<span class="Comment">Constructors:</span>
<span class="Comment">   UniquePtr&lt;T&gt; p1;     // initialize with null</span>
<span class="Comment">   UniquePtr&lt;T&gt; p1(0); </span>

<span class="Comment">   T* rp;</span>
<span class="Comment">   UniquePtr&lt;T&gt; p1(rp); // construct using raw pointer (explicit)</span>

<span class="Comment">   p1 = 0;              // destroy's p1's referent and assigns null</span>

<span class="Comment">   p1.make(...);        // destroy's p1's referent and assigns</span>
<span class="Comment">                        // a fresh objected constructed via T(...),</span>
<span class="Comment">                        // using psuedo-variadic templates</span>
<span class="Comment">                </span>
<span class="Comment">   p1.reset(rp);        // destroy's p1's referent and assign rp</span>

<span class="Comment">   if (!p1) ...         // test for null</span>
<span class="Comment">   if (p1 == 0) ...</span>

<span class="Comment">   if (p1) ...          // test for nonnull</span>
<span class="Comment">   if (p1 != 0) ...</span>

<span class="Comment">   if (p1 == p2) ...    // test for equality</span>
<span class="Comment">   if (p1 != p2) ...   </span>

<span class="Comment">   *p1                  // dereferencing</span>
<span class="Comment">   p1-&gt;...</span>


<span class="Comment">   rp = p1.get();       // fetch raw pointer</span>
<span class="Comment">   rp = p1.release();   // fetch raw pointer, and set to null</span>

<span class="Comment">   p1.move(p2);         // move p2 to p1, destroying p1's referent</span>
<span class="Comment">                        //   if p1 != p2</span>

<span class="Comment">   p1.swap(p2);         // swap pointers</span>
<span class="Comment">   swap(p1, p2);</span>


<span class="Comment">DeleterPolicy:</span>

<span class="Comment">UniquePtr supports a &quot;deleter policy&quot;, analogous to that used in SmartPtr.</span>

<span class="Comment">Normally, when the object pointed to a UniquePtr needs to be destroyed, this is</span>
<span class="Comment">done by invoking delete on the raw pointer.  The user can override this</span>
<span class="Comment">behavior by specifying a &quot;deleter policy&quot;, which is a class P that defines a</span>
<span class="Comment">static member function deleter, which is invoked as P::deleter(p).  </span>

<span class="Comment">Unlike with a SmartPtr, the deleter policy must be attached to the type.</span>
<span class="Comment">The default policy is the same DefaultDeleterPolicy, defined above.</span>

<span class="Comment">A deleter policy can be useful, for example, in realizing the PIPL</span>
<span class="Comment">pattern, where the class T's definition is not visible.  The specified deleter</span>
<span class="Comment">can invoke a free-standing function that itself invokes delete.  A deleter</span>
<span class="Comment">policy can also be useful is memory is to be managed using some mechanism other</span>
<span class="Comment">than new/delete.</span>

<span class="Comment">   </span>
<span class="Comment">*********************************************************************</span><span class="Comment">*/</span>


<span class="Type">template</span>&lt;<span class="Type">class</span> T, <span class="Type">class</span> P=DefaultDeleterPolicy&gt;
<span class="Type">class</span> UniquePtr {
<span class="Statement">public</span>:
   <span class="Type">explicit</span> UniquePtr(T *p);
   <span class="Comment">// construct UniquePtr from raw pointer (allocated with new)</span>

   UniquePtr();
   <span class="Comment">// initial value is null</span>

   UniquePtr(UniquePtr&amp;&amp; other) <span class="Statement">noexcept</span>;
   UniquePtr&amp; <span class="Statement">operator</span>=(UniquePtr&amp;&amp; other) <span class="Statement">noexcept</span>;
   <span class="Comment">// move semantics (C++11 only)</span>

   UniquePtr&amp; <span class="Statement">operator</span>=(fake_null_type1);
   <span class="Comment">// allows assignment of 0; equivalent to calling reset()</span>

   ~UniquePtr();
   <span class="Comment">// destroys referent by calling P::deleter</span>

   <span class="Type">void</span> reset(T* p = <span class="Constant">0</span>);
   <span class="Comment">// reset underlying pointer to p, destroying original referent</span>
   <span class="Comment">// by calling P::deleter</span>

   <span class="Type">template</span>&lt;<span class="Type">class</span> T, <span class="Type">class</span>... Args&gt;
   <span class="Type">void</span> make(Args&amp;&amp;... args);
   <span class="Comment">// pseudo-variadic template, roughly equivalent to</span>
   <span class="Comment">// reset(new T(std::forward&lt;args&gt; args...))</span>
   <span class="Comment">// EXCEPTIONS: this may throw (but provides strong ES guarantee)</span>

   T&amp; <span class="Statement">operator</span>*()  <span class="Type">const</span>;
   T* <span class="Statement">operator</span>-&gt;() <span class="Type">const</span>;
   <span class="Comment">// indirection</span>

   T* get() <span class="Type">const</span>;
   <span class="Comment">// get raw pointer</span>

   T* release();
   <span class="Comment">// returns raw pointer, and sets the raw pointer to null</span>

   <span class="Type">void</span> move(UniquePtr&amp; other);
   <span class="Comment">// move other to *this, destroying original referent</span>
   <span class="Comment">// by calling P::deleter</span>

   <span class="Type">void</span> swap(UniquePtr&amp; other);
   <span class="Comment">// swap raw pointers</span>

   <span class="Statement">operator</span> fake_null_type() <span class="Type">const</span>;
   <span class="Comment">// allows comparison with 0</span>

<span class="Statement">private</span>:
   UniquePtr(<span class="Type">const</span> UniquePtr&amp;); <span class="Comment">// disabled</span>
   <span class="Type">void</span> <span class="Statement">operator</span>=(<span class="Type">const</span> UniquePtr&amp;); <span class="Comment">// disabled</span>
};


<span class="Comment">// free swap function</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> T&gt; <span class="Type">void</span> swap(UniquePtr&lt;T&gt;&amp; p, UniquePtr&lt;T&gt;&amp; q);



<span class="Comment">// Equality testing</span>

<span class="Type">template</span>&lt;<span class="Type">class</span> X, <span class="Type">class</span> P&gt; <span class="Type">bool</span> <span class="Statement">operator</span>==(<span class="Type">const</span> UniquePtr&lt;X,P&gt;&amp; a, <span class="Type">const</span> UniquePtr&lt;X,P&gt;&amp; b);
<span class="Type">template</span>&lt;<span class="Type">class</span> X, <span class="Type">class</span> P&gt; <span class="Type">bool</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> UniquePtr&lt;X,P&gt;&amp; a, <span class="Type">const</span> UniquePtr&lt;X,P&gt;&amp; b);


<span class="Comment">// EXCEPTIONS: unless otherwise specified, the methods above</span>
<span class="Comment">// never throw an exception (under C++11 rules, if a destructor</span>
<span class="Comment">// is invoked that throws an exception, the program will terminate).</span>


<span class="Comment">/*</span><span class="Comment">*********************************************************************</span>

<span class="Comment">CopiedPtr&lt;T&gt; -- essentially the same interface and implemetation as UniquePtr,</span>
<span class="Comment">with the following exceptions:</span>

<span class="Comment"> * copy constructor is defined: by default, it will create a copy</span>
<span class="Comment">   of the referrent using T's copy constructor (but this bahavior</span>
<span class="Comment">   can be overridden -- see below)</span>

<span class="Comment"> * assignment operator is defined (and implemented in terms of the</span>
<span class="Comment">   copy constructor)</span>

<span class="Comment"> * The policy managing a CopiedPtr specifier deleter and copier functions:</span>
<span class="Comment">   the deleter is used to delete objects and the copies is used for making</span>
<span class="Comment">   copies (see below).</span>

<span class="Comment">NOTE: this class is meant to replace the OptionalVal class, whose</span>
<span class="Comment">interface is not so nice.  For backwards compatibility, OptionalVal will</span>
<span class="Comment">be maintained, however.</span>
<span class="Comment">   </span>
<span class="Comment">*********************************************************************</span><span class="Comment">*/</span>


<span class="Comment">// This class specifies the default copier</span>
<span class="Type">struct</span> DefaultCopierPolicy {

   <span class="Type">template</span>&lt;<span class="Type">class</span> T&gt;
   <span class="Type">static</span> T* copier(T *p) { <span class="Statement">return</span> (p ?  MakeRaw&lt;T&gt;(*p) : <span class="Constant">0</span>); }

};

<span class="Comment">// This class specifies an alternative copier, which is meant</span>
<span class="Comment">// to perform &quot;deep&quot; copies on class heirarchies that support an</span>
<span class="Comment">// appropriate clone() method.</span>
<span class="Type">struct</span> CloningCopier {

   <span class="Type">template</span>&lt;<span class="Type">class</span> T&gt;
   <span class="Type">static</span> T* copier(T *p) { <span class="Statement">return</span> (p ?  p-&gt;clone() : <span class="Constant">0</span>); }

};

<span class="Type">struct</span> DefaultCopiedPtrPolicy : DefaultDeleterPolicy, DefaultCopierPolicy { };
<span class="Type">struct</span> CloningCopiedPtrPolicy : DefaultDeleterPolicy, CloningCopier { };



<span class="Type">template</span>&lt;<span class="Type">class</span> T, <span class="Type">class</span> P=DefaultCopiedPtrPolicy&gt;
<span class="Type">class</span> CopiedPtr {
<span class="Statement">public</span>:
   <span class="Type">explicit</span> CopiedPtr(T *p);
   <span class="Comment">// construct CopiedPtr from raw pointer (allocated with new)</span>

   CopiedPtr();
   <span class="Comment">// initial value is null</span>

   CopiedPtr(<span class="Type">const</span> CopiedPtr&amp; other);
   <span class="Comment">// creates a copy of other's referent by calling P::copier</span>

   <span class="Type">void</span> <span class="Statement">operator</span>=(<span class="Type">const</span> CopiedPtr&amp;);
   <span class="Comment">// creates a copy of other's referent by calling P::copier,</span>
   <span class="Comment">// and destroys original referent by calling P::deleter</span>

   CopiedPtr&amp; <span class="Statement">operator</span>=(fake_null_type1);
   <span class="Comment">// allows assignment of 0; equivalent to calling reset()</span>

   ~CopiedPtr();
   <span class="Comment">// destroys referent by calling P::deleter</span>

   CopiedPtr(CopiedPtr&amp;&amp; other) <span class="Statement">noexcept</span>;
   CopiedPtr&amp; <span class="Statement">operator</span>=(CopiedPtr&amp;&amp; other) <span class="Statement">noexcept</span>;
   <span class="Comment">// move semantics (C++11 only)</span>

   <span class="Type">void</span> reset(T* p = <span class="Constant">0</span>);
   <span class="Comment">// reset underlying pointer to p, destroying original referent</span>
   <span class="Comment">// by calling P::deleter</span>

   <span class="Type">template</span>&lt;<span class="Type">class</span> T, <span class="Type">class</span>... Args&gt;
   <span class="Type">void</span> make(Args&amp;&amp;... args);
   <span class="Comment">// pseudo-variadic template, roughly equivalent to</span>
   <span class="Comment">// reset(new T(std::forward&lt;args&gt; args...))</span>
   <span class="Comment">// EXCEPTIONS: this may throw (but provides strong ES guarantee)</span>

   T&amp; <span class="Statement">operator</span>*()  <span class="Type">const</span>;
   T* <span class="Statement">operator</span>-&gt;() <span class="Type">const</span>;
   <span class="Comment">// indirection</span>

   T* get() <span class="Type">const</span>;
   <span class="Comment">// get raw pointer</span>

   T* release();
   <span class="Comment">// returns raw pointer, and sets the raw pointer to null</span>

   <span class="Type">void</span> move(CopiedPtr&amp; other);
   <span class="Comment">// move other to *this, destroying original referent</span>
   <span class="Comment">// by calling P::deleter</span>


   <span class="Type">void</span> swap(CopiedPtr&amp; other);
   <span class="Comment">// swap raw pointers</span>

   <span class="Statement">operator</span> fake_null_type() <span class="Type">const</span>;
   <span class="Comment">// allows comparison with 0</span>

};


<span class="Comment">// free swap function</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> T&gt; <span class="Type">void</span> swap(CopiedPtr&lt;T&gt;&amp; p, CopiedPtr&lt;T&gt;&amp; q);



<span class="Comment">// Equality testing</span>

<span class="Type">template</span>&lt;<span class="Type">class</span> X, <span class="Type">class</span> P&gt; <span class="Type">bool</span> <span class="Statement">operator</span>==(<span class="Type">const</span> CopiedPtr&lt;X,P&gt;&amp; a, <span class="Type">const</span> CopiedPtr&lt;X,P&gt;&amp; b);
<span class="Type">template</span>&lt;<span class="Type">class</span> X, <span class="Type">class</span> P&gt; <span class="Type">bool</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> CopiedPtr&lt;X,P&gt;&amp; a, <span class="Type">const</span> CopiedPtr&lt;X,P&gt;&amp; b);


<span class="Comment">// EXCEPTIONS: unless otherwise specified, the methods above</span>
<span class="Comment">// never throw an exception (under C++11 rules, if a destructor</span>
<span class="Comment">// is invoked that throws an exception, the program will terminate).</span>




<span class="Comment">/*</span><span class="Comment">*********************************************************************</span>

<span class="Comment">UniqueArray&lt;T&gt; -- similar to UniquePtr, but for arrays.  These arrays cannot be</span>
<span class="Comment">resized -- for that, you should use the Vec class.</span>

<span class="Comment">Constructors:</span>
<span class="Comment">   UniqueArray&lt;T&gt; p1;     // initialize with null</span>
<span class="Comment">   UniqueArray&lt;T&gt; p1(0); </span>

<span class="Comment">   T* rp;</span>
<span class="Comment">   UniqueArray&lt;T&gt; p1(rp); // construct using raw pointer (explicit)</span>

<span class="Comment">   p1 = 0;              // destroy's p1's referent and assigns null</span>

<span class="Comment">   p1.SetLength(n);     // destroy's p1's referent and assigns</span>
<span class="Comment">                        // a fresh objected constructed via new T[n]</span>
<span class="Comment">                </span>
<span class="Comment">   p1.reset(rp);        // destroy's p1's referent and assign rp</span>

<span class="Comment">   if (!p1) ...         // test for null</span>
<span class="Comment">   if (p1 == 0) ...</span>

<span class="Comment">   if (p1) ...          // test for nonnull</span>
<span class="Comment">   if (p1 != 0) ...</span>

<span class="Comment">   if (p1 == p2) ...    // test for equality</span>
<span class="Comment">   if (p1 != p2) ...   </span>

<span class="Comment">   p1[i]                // array indexing</span>

<span class="Comment">   rp = p1.get();       // fetch raw pointer</span>
<span class="Comment">   rp = p1.release();   // fetch raw pointer, and set to null</span>
<span class="Comment">   p1.move(p2);         // move p2 to p1, destroying p1's referent </span>
<span class="Comment">                        //   if p1 != p2</span>

<span class="Comment">   p1.swap(p2);         // fast swap</span>
<span class="Comment">   swap(p1, p2);</span>

<span class="Comment">   </span>
<span class="Comment">*********************************************************************</span><span class="Comment">*/</span>


<span class="Type">template</span>&lt;<span class="Type">class</span> T&gt;
<span class="Type">class</span> UniqueArray {
<span class="Statement">public</span>:
   <span class="Type">explicit</span> UniqueArray(T *p);
   <span class="Comment">// construct from raw pointer (allocated with new[])</span>

   UniqueArray();
   <span class="Comment">// initially null</span>

   UniqueArray&amp; <span class="Statement">operator</span>=(fake_null_type1);
   <span class="Comment">// allows of 0</span>

   ~UniqueArray();

   UniqueArray(UniqueArray&amp;&amp; other) <span class="Statement">noexcept</span>;
   UniqueArray&amp; <span class="Statement">operator</span>=(UniqueArray&amp;&amp; other) <span class="Statement">noexcept</span>;
   <span class="Comment">// move semantics (C++11 only)</span>

   <span class="Type">void</span> reset(T* p = <span class="Constant">0</span>);
   <span class="Comment">// reset with raw pointer, destroying referent</span>

   <span class="Type">void</span> SetLength(<span class="Type">long</span> n);
   <span class="Comment">// destroys referent and allocates an array of size n</span>
   <span class="Comment">// EXCEPTIONS: this may throw (but provides strong ES guarantee)</span>

   T&amp; <span class="Statement">operator</span>[](<span class="Type">long</span> i) <span class="Type">const</span>;
   <span class="Comment">// accesses ith element in the array (currently no range checking)</span>

   T* get() <span class="Type">const</span>;
   <span class="Comment">// get raw pointer</span>

   T* elts() <span class="Type">const</span>;
   <span class="Comment">// get raw pointer (for compatibility with the Vec class)</span>

   T* release();
   <span class="Comment">// get raw pointer and reset to null</span>

   <span class="Type">void</span> move(UniqueArray&amp; other);
   <span class="Comment">// move raw pointer</span>

   <span class="Type">void</span> swap(UniqueArray&amp; other);
   <span class="Comment">// swap raw pointer</span>

   <span class="Statement">operator</span> fake_null_type() <span class="Type">const</span>;
   <span class="Comment">// allows comparison to 0</span>

<span class="Statement">private</span>:
   UniqueArray(<span class="Type">const</span> UniqueArray&amp;); <span class="Comment">// disabled</span>
   <span class="Type">void</span> <span class="Statement">operator</span>=(<span class="Type">const</span> UniqueArray&amp;); <span class="Comment">// disabled</span>

};



<span class="Comment">// free swap function</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> T&gt; <span class="Type">void</span> swap(UniqueArray&lt;T&gt;&amp; p, UniqueArray&lt;T&gt;&amp; q);



<span class="Comment">// Equality testing</span>

<span class="Type">template</span>&lt;<span class="Type">class</span> X&gt; <span class="Type">bool</span> <span class="Statement">operator</span>==(<span class="Type">const</span> UniqueArray&lt;X&gt;&amp; a, <span class="Type">const</span> UniqueArray&lt;X&gt;&amp; b);
<span class="Type">template</span>&lt;<span class="Type">class</span> X&gt; <span class="Type">bool</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> UniqueArray&lt;X&gt;&amp; a, <span class="Type">const</span> UniqueArray&lt;X&gt;&amp; b);




<span class="Comment">/*</span><span class="Comment">*********************************************************************</span>

<span class="Comment">Unique2DArray&lt;T&gt; -- unique pointer to array of arrays.</span>

<span class="Comment">This is very similar to UniqueArray&lt; UniqueArray&lt;T&gt; &gt;, except that </span>
<span class="Comment">we can retrofit old code that accepts objects of type T**.</span>

<span class="Comment">Constructors:</span>
<span class="Comment">   Unique2DArray&lt;T&gt; p1;     // initialize with null</span>
<span class="Comment">   Unique2DArray&lt;T&gt; p1(0); </span>

<span class="Comment">   p1 = 0;              // destroy's p1's referent and assigns null</span>
<span class="Comment">   p1.reset();</span>

<span class="Comment">   p1.SetLength(n);     // destroy's p1's referent and assigns</span>
<span class="Comment">                        // a fresh array of null pointers</span>

<span class="Comment">   p1.SetDims(n, m)     // creates an n x m array</span>
<span class="Comment">                </span>
<span class="Comment">   if (!p1) ...         // test for null</span>
<span class="Comment">   if (p1 == 0) ...</span>

<span class="Comment">   if (p1) ...          // test for nonnull</span>
<span class="Comment">   if (p1 != 0) ...</span>

<span class="Comment">   if (p1 == p2) ...    // test for equality</span>
<span class="Comment">   if (p1 != p2) ...   </span>

<span class="Comment">   p1[i]                // array indexing</span>

<span class="Comment">   T **rp;</span>
<span class="Comment">   rp = p1.get();       // fetch raw pointer</span>
<span class="Comment">   rp = p1.release();   // fetch raw pointer, and set to null</span>
<span class="Comment">   p1.move(p2);         // if p1 != p2 then:</span>
<span class="Comment">                        //    makes p1 point to p2's referent,</span>
<span class="Comment">                        //    setting p2 to null and destroying</span>
<span class="Comment">                        //    p1's referent</span>

<span class="Comment">   p1.swap(p2);         // fast swap</span>
<span class="Comment">   swap(p1, p2);</span>

<span class="Comment">   </span>
<span class="Comment">*********************************************************************</span><span class="Comment">*/</span>


<span class="Type">template</span>&lt;<span class="Type">class</span> T&gt;
<span class="Type">class</span> Unique2DArray {
<span class="Statement">public</span>:
   <span class="Type">typedef</span> T *T_ptr;

   Unique2DArray();
   <span class="Comment">// initially null</span>

   Unique2DArray&amp; <span class="Statement">operator</span>=(fake_null_type1);
   <span class="Comment">// allows initialization and assignment of 0</span>

   ~Unique2DArray();
   <span class="Comment">// destroys the entire array and each row in the array</span>

   Unique2DArray(Unique2DArray&amp;&amp; other) <span class="Statement">noexcept</span>;
   Unique2DArray&amp; <span class="Statement">operator</span>=(Unique2DArray&amp;&amp; other) <span class="Statement">noexcept</span>;
   <span class="Comment">// move semantics (C++11 only)</span>

   <span class="Type">void</span> reset();
   <span class="Comment">// reset to null</span>


   <span class="Type">void</span> SetLength(<span class="Type">long</span> n);
   <span class="Comment">// resets the array to a vector of length n,</span>
   <span class="Comment">// each entry initialized to null.</span>
   <span class="Comment">// EXCEPTIONS: may throw (provides strong ES guarantee)</span>

   <span class="Type">void</span> SetDims(<span class="Type">long</span> n, <span class="Type">long</span> m);
   <span class="Comment">// resets the array to a 2D array with n rows and m columns.</span>
   <span class="Comment">// EXCEPTIONS: may throw (provides strong ES guarantee)</span>

   <span class="Type">void</span> SetDimsFrom1(<span class="Type">long</span> n, <span class="Type">long</span> m);
   <span class="Comment">// same as above, but only initializes rows 1..n-1.</span>
   <span class="Comment">// this helps with some legacy code.</span>
   <span class="Comment">// EXCEPTIONS: may throw (provides strong ES guarantee)</span>

   T_ptr&amp; <span class="Statement">operator</span>[](<span class="Type">long</span> i) <span class="Type">const</span>;
   <span class="Comment">// array indexing, no range checking</span>

   T_ptr* get() <span class="Type">const</span>;
   <span class="Comment">// return underlying pointer</span>

   T_ptr* release() { len = <span class="Constant">0</span>; <span class="Statement">return</span> dp.release(); }
   <span class="Comment">// return underlying pointer and reset to null</span>


   <span class="Type">void</span> move(Unique2DArray&amp; other);
   <span class="Comment">// move pointers</span>

   <span class="Type">void</span> swap(Unique2DArray&amp; other);
   <span class="Comment">// swap pointers</span>

   <span class="Statement">operator</span> fake_null_type() <span class="Type">const</span>;
   <span class="Comment">// allows comparison to 0</span>


<span class="Statement">private</span>:

   Unique2DArray(<span class="Type">const</span> Unique2DArray&amp;); <span class="Comment">// disabled</span>
   <span class="Type">void</span> <span class="Statement">operator</span>=(<span class="Type">const</span> Unique2DArray&amp;); <span class="Comment">// disabled</span>

};


<span class="Comment">// free swap function</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> T&gt; <span class="Type">void</span> swap(Unique2DArray&lt;T&gt;&amp; p, Unique2DArray&lt;T&gt;&amp; q);



<span class="Comment">// Equality testing</span>

<span class="Type">template</span>&lt;<span class="Type">class</span> X&gt; <span class="Type">bool</span> <span class="Statement">operator</span>==(<span class="Type">const</span> Unique2DArray&lt;X&gt;&amp; a, <span class="Type">const</span> Unique2DArray&lt;X&gt;&amp; b);
<span class="Type">template</span>&lt;<span class="Type">class</span> X&gt; <span class="Type">bool</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> Unique2DArray&lt;X&gt;&amp; a, <span class="Type">const</span> Unique2DArray&lt;X&gt;&amp; b);





<span class="Comment">/*</span><span class="Comment">*********************************************************************</span>


<span class="Comment">OptionalVal&lt;T&gt; -- unique pointer to object with copying enabled.</span>

<span class="Comment">NOTE: this class is deprecated; use CopiedPtr instead.</span>
<span class="Comment">It will, however, be maintained indefinitely for backward compatibility.</span>

<span class="Comment">Constructors:</span>
<span class="Comment">   OptionalVal&lt;T&gt; p1;     // initialize with null</span>

<span class="Comment">   T* rp;</span>
<span class="Comment">   OptionalVal&lt;T&gt; p1(rp); // construct using raw pointer (explicit)</span>

<span class="Comment">   OptionalVal&lt;T&gt; p2(p1); // construct a copy of p1's referent</span>

<span class="Comment">    </span>

<span class="Comment">   p1.make(...);        // destroy's p1's referent and assigns</span>
<span class="Comment">                        // a fresh objected constructed via T(...),</span>
<span class="Comment">                        // using psuedo variadic templates</span>
<span class="Comment">                </span>
<span class="Comment">   p1.reset(rp);        // destroy's p1's referent and assign rp</span>

<span class="Comment">   if (p1.exists()) ... // test for null</span>

<span class="Comment">   p1.val()             // dereference</span>

<span class="Comment">   rp = p1.get();       // fetch raw pointer</span>
<span class="Comment">   rp = p1.release();   // fetch raw pointer, and set to NULL</span>
<span class="Comment">   p1.move(p2);         // move p2 to p1, destroying p1's referent</span>
<span class="Comment">                        //   if p1 != p2</span>

<span class="Comment">   p1 = p2;             // deep copy, using T's copy constructor</span>

<span class="Comment">   p1.swap(p2);         // swap pointers</span>
<span class="Comment">   swap(p1, p2);</span>

<span class="Comment">   </span>
<span class="Comment">*********************************************************************</span><span class="Comment">*/</span>


<span class="Type">template</span>&lt;<span class="Type">class</span> T&gt;
<span class="Type">class</span> OptionalVal {
<span class="Statement">public</span>:
   <span class="Type">explicit</span> OptionalVal(T *p);
   <span class="Comment">// initialize using raw pointer (allocated with new)</span>

   OptionalVal();
   <span class="Comment">// initialize to null</span>

   OptionalVal(<span class="Type">const</span> OptionalVal&amp; other);
   <span class="Comment">// initialize using a deep copy (via T's copy constructor)</span>

   OptionalVal&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> OptionalVal&amp; other);
   <span class="Comment">// assignment using a deep copy (via T's copy constructor)</span>

   ~OptionalVal();
   <span class="Comment">// destroys the referent</span>

   OptionalVal(OptionalVal&amp;&amp; other) <span class="Statement">noexcept</span>;
   OptionalVal&amp; <span class="Statement">operator</span>=(OptionalVal&amp;&amp; other) <span class="Statement">noexcept</span>;
   <span class="Comment">// move semantics (C++11 only)</span>

   <span class="Type">void</span> reset(T* p = <span class="Constant">0</span>);
   <span class="Comment">// resets the referent</span>

   <span class="Type">template</span>&lt;<span class="Type">class</span> T, <span class="Type">class</span>... Args&gt;
   <span class="Type">void</span> make(Args&amp;&amp;... args);
   <span class="Comment">// pseudo-variadic template.</span>
   <span class="Comment">// resets the referent to a new object T(std::forward&lt;Args&gt; args...)</span>
   <span class="Comment">// EXCEPTIONS: may throw an exception (but provides strong ES guarantee)</span>

   T&amp; val() <span class="Type">const</span>;
   <span class="Comment">// returns reference to referent </span>
   <span class="Comment">// if underlying pointer p is null, the indirection *p</span>
   <span class="Comment">// is undefined behavior, but most likely leads to program termination</span>

   <span class="Type">bool</span> exists() <span class="Type">const</span>;
   <span class="Comment">// checks that underlying pointer is not null</span>

   T* get() <span class="Type">const</span>;
   <span class="Comment">// returns underlying raw pointer</span>

   T* release();
   <span class="Comment">// returns raw pointer, and sets the raw pointer to null</span>

   <span class="Type">void</span> move(OptionalVal&amp; other);
   <span class="Comment">// performs a (shallow) pointer move</span>

   <span class="Type">void</span> swap(OptionalVal&amp; other);
   <span class="Comment">// performs a (shallow) pointer swap</span>

};


<span class="Comment">// free swap function</span>
<span class="Type">template</span>&lt;<span class="Type">class</span> T&gt; <span class="Type">void</span> swap(OptionalVal&lt;T&gt;&amp; p, OptionalVal&lt;T&gt;&amp; q);



<span class="Comment">// EXCEPTIONS: unless otherwise specified, the methods above</span>
<span class="Comment">// never throw an exception (under C++11 rules, if a destructor</span>
<span class="Comment">// is invoked that throws an exception, the program will terminate).</span>

</pre>
</body>
</html>
<!-- vim: set foldmethod=manual : -->