1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>~/ntl-11.4.2/doc/ZZ.cpp.html</title>
<meta name="Generator" content="Vim/8.0">
<meta name="plugin-version" content="vim7.4_v2">
<meta name="syntax" content="cpp">
<meta name="settings" content="use_css,pre_wrap,no_foldcolumn,expand_tabs,prevent_copy=">
<meta name="colorscheme" content="macvim">
<style type="text/css">
<!--
pre { white-space: pre-wrap; font-family: monospace; color: #000000; background-color: #ffffff; }
body { font-family: monospace; color: #000000; background-color: #ffffff; }
* { font-size: 1em; }
.String { color: #4a708b; }
.PreProc { color: #1874cd; }
.Constant { color: #ff8c00; }
.Statement { color: #b03060; font-weight: bold; }
.Comment { color: #0000ee; font-style: italic; }
.Type { color: #008b00; font-weight: bold; }
-->
</style>
<script type='text/javascript'>
<!--
-->
</script>
</head>
<body>
<pre id='vimCodeElement'>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment">MODULE: ZZ</span>
<span class="Comment">SUMMARY:</span>
<span class="Comment">The class ZZ is used to represent signed, arbitrary length integers.</span>
<span class="Comment">Routines are provided for all of the basic arithmetic operations, as</span>
<span class="Comment">well as for some more advanced operations such as primality testing.</span>
<span class="Comment">Space is automatically managed by the constructors and destructors.</span>
<span class="Comment">This module also provides routines for generating small primes, and</span>
<span class="Comment">fast routines for performing modular arithmetic on single-precision</span>
<span class="Comment">numbers.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="PreProc">#include </span><span class="String"><NTL/tools.h></span>
<span class="Type">class</span> ZZ {
<span class="Statement">public</span>:
ZZ(); <span class="Comment">// initial value is 0</span>
ZZ(<span class="Type">const</span> ZZ& a); <span class="Comment">// copy constructor</span>
<span class="Type">explicit</span> ZZ(<span class="Type">long</span> a); <span class="Comment">// promotion constructor</span>
~ZZ(); <span class="Comment">// destructor</span>
ZZ& <span class="Statement">operator</span>=(<span class="Type">const</span> ZZ& a); <span class="Comment">// assignment operator</span>
ZZ& <span class="Statement">operator</span>=(<span class="Type">long</span> a);
ZZ(ZZ&& a);
<span class="Comment">// move constructor (C++11 only)</span>
<span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>
ZZ& <span class="Statement">operator</span>=(ZZ&& a);
<span class="Comment">// move assignment (C++11 only)</span>
<span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>
<span class="Comment">// typedefs to aid in generic programming</span>
<span class="Type">typedef</span> ZZ_p residue_type;
<span class="Type">typedef</span> ZZX poly_type;
<span class="Comment">// ...</span>
};
<span class="Comment">// NOTE: A ZZ is represented as a sequence of "limbs",</span>
<span class="Comment">// where each limb is between 0 and 2^{NTL_ZZ_NBITS-1}.</span>
<span class="Comment">// NTL_ZZ_NBITS is macros defined in <NTL/ZZ.h>.</span>
<span class="Comment">// SIZE INVARIANT: the number of bits in a ZZ is always less than</span>
<span class="Comment">// 2^(NTL_BITS_PER_LONG-4).</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Comparison</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// The usual comparison operators: </span>
<span class="Type">long</span> <span class="Statement">operator</span>==(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Type">long</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Type">long</span> <span class="Statement">operator</span><(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Type">long</span> <span class="Statement">operator</span>>(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Type">long</span> <span class="Statement">operator</span><=(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Type">long</span> <span class="Statement">operator</span>>=(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Comment">// other stuff:</span>
<span class="Type">long</span> sign(<span class="Type">const</span> ZZ& a); <span class="Comment">// returns sign of a (-1, 0, +1)</span>
<span class="Type">long</span> IsZero(<span class="Type">const</span> ZZ& a); <span class="Comment">// test for 0</span>
<span class="Type">long</span> IsOne(<span class="Type">const</span> ZZ& a); <span class="Comment">// test for 1</span>
<span class="Type">long</span> compare(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b); <span class="Comment">// returns sign of a-b (-1, 0, or 1).</span>
<span class="Comment">// PROMOTIONS: the comparison operators and the function compare</span>
<span class="Comment">// support promotion from long to ZZ on (a, b).</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Addition</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// operator notation:</span>
ZZ <span class="Statement">operator</span>+(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
ZZ <span class="Statement">operator</span>-(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
ZZ <span class="Statement">operator</span>-(<span class="Type">const</span> ZZ& a); <span class="Comment">// unary -</span>
ZZ& <span class="Statement">operator</span>+=(ZZ& x, <span class="Type">const</span> ZZ& a);
ZZ& <span class="Statement">operator</span>+=(ZZ& x, <span class="Type">long</span> a);
ZZ& <span class="Statement">operator</span>-=(ZZ& x, <span class="Type">const</span> ZZ& a);
ZZ& <span class="Statement">operator</span>-=(ZZ& x, <span class="Type">long</span> a);
ZZ& <span class="Statement">operator</span>++(ZZ& x); <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>++(ZZ& x, <span class="Type">int</span>); <span class="Comment">// postfix</span>
ZZ& <span class="Statement">operator</span>--(ZZ& x); <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>--(ZZ& x, <span class="Type">int</span>); <span class="Comment">// postfix</span>
<span class="Comment">// procedural versions:</span>
<span class="Type">void</span> add(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b); <span class="Comment">// x = a + b</span>
<span class="Type">void</span> sub(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b); <span class="Comment">// x = a - b</span>
<span class="Type">void</span> SubPos(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b); <span class="Comment">// x = a-b; assumes a >= b >= 0.</span>
<span class="Type">void</span> negate(ZZ& x, <span class="Type">const</span> ZZ& a); <span class="Comment">// x = -a</span>
<span class="Type">void</span> abs(ZZ& x, <span class="Type">const</span> ZZ& a); <span class="Comment">// x = |a|</span>
ZZ abs(<span class="Type">const</span> ZZ& a);
<span class="Comment">// PROMOTIONS: binary +, -, as well as the procedural versions add, sub</span>
<span class="Comment">// support promotions from long to ZZ on (a, b).</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Multiplication</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// operator notation:</span>
ZZ <span class="Statement">operator</span>*(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
ZZ& <span class="Statement">operator</span>*=(ZZ& x, <span class="Type">const</span> ZZ& a);
ZZ& <span class="Statement">operator</span>*=(ZZ& x, <span class="Type">long</span> a);
<span class="Comment">// procedural versions:</span>
<span class="Type">void</span> mul(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b); <span class="Comment">// x = a * b</span>
<span class="Type">void</span> sqr(ZZ& x, <span class="Type">const</span> ZZ& a); <span class="Comment">// x = a*a</span>
ZZ sqr(<span class="Type">const</span> ZZ& a);
<span class="Comment">// PROMOTIONS: operator * and procedure mul support promotion</span>
<span class="Comment">// from long to ZZ on (a, b).</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Combined Multiply and Add </span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> MulAddTo(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b); <span class="Comment">// x += a*b</span>
<span class="Type">void</span> MulAddTo(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">long</span> b); <span class="Comment">// x += a*b</span>
<span class="Type">void</span> MulSubFrom(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b); <span class="Comment">// x -= a*b</span>
<span class="Type">void</span> MulSubFrom(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">long</span> b); <span class="Comment">// x -= a*b</span>
<span class="Comment">// NOTE: these are provided for both convenience and efficiency.</span>
<span class="Comment">// The single-precision versions may be significantly</span>
<span class="Comment">// faster than the code sequence </span>
<span class="Comment">// mul(tmp, a, b); add(x, x, tmp);</span>
<span class="Comment">// However, for the single-precision version, the use-case</span>
<span class="Comment">// that is optimized is for |b| < 2^{NTL_WSP_BOUND}.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Division</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// operator notation:</span>
ZZ <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
ZZ <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> b);
ZZ <span class="Statement">operator</span>%(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Type">long</span> <span class="Statement">operator</span>%(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> b);
ZZ& <span class="Statement">operator</span>/=(ZZ& x, <span class="Type">const</span> ZZ& b);
ZZ& <span class="Statement">operator</span>/=(ZZ& x, <span class="Type">long</span> b);
ZZ& <span class="Statement">operator</span>%=(ZZ& x, <span class="Type">const</span> ZZ& b);
<span class="Comment">// procedural versions:</span>
<span class="Type">void</span> DivRem(ZZ& q, ZZ& r, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Comment">// q = floor(a/b), r = a - b*q.</span>
<span class="Comment">// This implies that:</span>
<span class="Comment">// |r| < |b|, and if r != 0, sign(r) = sign(b)</span>
<span class="Type">void</span> div(ZZ& q, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Comment">// q = floor(a/b)</span>
<span class="Type">void</span> rem(ZZ& r, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Comment">// q = floor(a/b), r = a - b*q</span>
<span class="Comment">// single-precision variants:</span>
<span class="Type">long</span> DivRem(ZZ& q, <span class="Type">const</span> ZZ& a, <span class="Type">long</span> b);
<span class="Comment">// q = floor(a/b), r = a - b*q, return value is r.</span>
<span class="Type">long</span> rem(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> b);
<span class="Comment">// q = floor(a/b), r = a - b*q, return value is r.</span>
<span class="Comment">// divisibility testing:</span>
<span class="Type">long</span> divide(ZZ& q, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Type">long</span> divide(ZZ& q, <span class="Type">const</span> ZZ& a, <span class="Type">long</span> b);
<span class="Comment">// if b | a, sets q = a/b and returns 1; otherwise returns 0.</span>
<span class="Type">long</span> divide(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Type">long</span> divide(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> b);
<span class="Comment">// if b | a, returns 1; otherwise returns 0.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> GCD's</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> GCD(ZZ& d, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
ZZ GCD(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Comment">// d = gcd(a, b) (which is always non-negative). Uses a binary GCD</span>
<span class="Comment">// algorithm.</span>
<span class="Type">void</span> XGCD(ZZ& d, ZZ& s, ZZ& t, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Comment">// d = gcd(a, b) = a*s + b*t.</span>
<span class="Comment">// The coefficients s and t are defined according to the standard</span>
<span class="Comment">// Euclidean algorithm applied to |a| and |b|, with the signs then</span>
<span class="Comment">// adjusted according to the signs of a and b.</span>
<span class="Comment">// The implementation may or may not Euclid's algorithm,</span>
<span class="Comment">// but the coefficients s and t are always computed as if </span>
<span class="Comment">// it did.</span>
<span class="Comment">// In particular, the following inequalties should hold:</span>
<span class="Comment">// |s| <= 1 OR |s| < |b|/(2*d)</span>
<span class="Comment">// |t| <= 1 OR |t| < |a|/(2*d)</span>
<span class="Comment">// special-purpose single-precision variants:</span>
<span class="Type">long</span> GCD(<span class="Type">long</span> a, <span class="Type">long</span> b);
<span class="Comment">// return value is gcd(a, b) (which is always non-negative)</span>
<span class="Type">void</span> XGCD(<span class="Type">long</span>& d, <span class="Type">long</span>& s, <span class="Type">long</span>& t, <span class="Type">long</span> a, <span class="Type">long</span> b);
<span class="Comment">// d = gcd(a, b) = a*s + b*t.</span>
<span class="Comment">// The coefficients s and t are defined according to the standard</span>
<span class="Comment">// Euclidean algorithm applied to |a| and |b|, with the signs then</span>
<span class="Comment">// adjusted according to the signs of a and b.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Modular Arithmetic</span>
<span class="Comment">The following routines perform arithmetic mod n, where n > 1.</span>
<span class="Comment">All arguments (other than exponents) are assumed to be in the range</span>
<span class="Comment">0..n-1. Some routines may check this and raise an error if this</span>
<span class="Comment">does not hold. Others may not, and the behaviour is unpredictable</span>
<span class="Comment">in this case.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> AddMod(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b, <span class="Type">const</span> ZZ& n); <span class="Comment">// x = (a+b)%n</span>
ZZ AddMod(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b, <span class="Type">const</span> ZZ& n);
<span class="Type">void</span> SubMod(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b, <span class="Type">const</span> ZZ& n); <span class="Comment">// x = (a-b)%n</span>
ZZ SubMod(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b, <span class="Type">const</span> ZZ& n);
<span class="Type">void</span> NegateMod(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& n); <span class="Comment">// x = -a % n</span>
ZZ NegateMod(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& n);
<span class="Type">void</span> MulMod(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b, <span class="Type">const</span> ZZ& n); <span class="Comment">// x = (a*b)%n</span>
ZZ MulMod(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b, <span class="Type">const</span> ZZ& n);
<span class="Type">void</span> SqrMod(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& n); <span class="Comment">// x = a^2 % n</span>
ZZ SqrMod(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& n);
<span class="Type">void</span> InvMod(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& n);
ZZ InvMod(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& n);
<span class="Comment">// x = a^{-1} mod n (0 <= x < n); error is raised occurs if inverse</span>
<span class="Comment">// not defined</span>
<span class="Comment">// If exceptions are enabled, an object of the following class </span>
<span class="Comment">// is throw by the InvMod routine if the inverse of a mod n is</span>
<span class="Comment">// not defined. The methods get_a() and get_n() give read-only</span>
<span class="Comment">// access to the offending values of a and n.</span>
<span class="Comment">// This also happens for any indirect call to InvMod, via PowerMod,</span>
<span class="Comment">// of via inverse computations in ZZ_p.</span>
<span class="Type">class</span> InvModErrorObject : <span class="Statement">public</span> ArithmeticErrorObject {
<span class="Statement">public</span>:
InvModErrorObject(<span class="Type">const</span> <span class="Type">char</span> *s, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& n);
<span class="Type">const</span> ZZ& get_a() <span class="Type">const</span>;
<span class="Type">const</span> ZZ& get_n() <span class="Type">const</span>;
};
<span class="Type">long</span> InvModStatus(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& n);
<span class="Comment">// if gcd(a,n) = 1, then return-value = 0, x = a^{-1} mod n;</span>
<span class="Comment">// otherwise, return-value = 1, x = gcd(a, n)</span>
<span class="Type">void</span> PowerMod(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& e, <span class="Type">const</span> ZZ& n);
ZZ PowerMod(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& e, <span class="Type">const</span> ZZ& n);
<span class="Type">void</span> PowerMod(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">long</span> e, <span class="Type">const</span> ZZ& n);
ZZ PowerMod(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> e, <span class="Type">const</span> ZZ& n);
<span class="Comment">// x = a^e % n (e may be negative)</span>
<span class="Comment">// PROMOTIONS: AddMod, SubMod, and MulMod (both procedural and functional</span>
<span class="Comment">// forms) support promotions from long to ZZ on (a, b).</span>
<a name="modarith"></a>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Single-precision modular arithmetic</span>
<span class="Comment">These routines implement single-precision modular arithmetic. If n is</span>
<span class="Comment">the modulus, all inputs should be in the range 0..n-1. The number n</span>
<span class="Comment">itself should be in the range 2..NTL_SP_BOUND-1.</span>
<span class="Comment">Most of these routines are, of course, implemented as fast inline</span>
<span class="Comment">functions. No checking is done that inputs are in range.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">long</span> AddMod(<span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n); <span class="Comment">// return (a+b)%n</span>
<span class="Type">long</span> SubMod(<span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n); <span class="Comment">// return (a-b)%n</span>
<span class="Type">long</span> NegateMod(<span class="Type">long</span> a, <span class="Type">long</span> n); <span class="Comment">// return (-a)%n</span>
<span class="Type">long</span> MulMod(<span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n); <span class="Comment">// return (a*b)%n</span>
<span class="Type">long</span> MulMod(<span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n, mulmod_t ninv);
<span class="Comment">// return (a*b)%n. </span>
<span class="Comment">//</span>
<span class="Comment">// Usually faster than plain MulMod when n is fixed for many</span>
<span class="Comment">// invocations. The value ninv should be precomputed as </span>
<span class="Comment">// mulmod_t ninv = PrepMulMod(n);</span>
mulmod_t PrepMulMod(<span class="Type">long</span> n);
<span class="Comment">// Prepare auxiliary data for MulMod.</span>
<span class="Type">long</span> MulModPrecon(<span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n, mulmod_precon_t bninv);
<span class="Comment">// return (a*b)%n. </span>
<span class="Comment">//</span>
<span class="Comment">// Usually much faster than MulMod when both b and n are fixed for </span>
<span class="Comment">// many invocations. The value bninv should be precomputed as</span>
<span class="Comment">// mulmod_precon_t bninv = PrepMulModPrecon(b, n);</span>
<span class="Comment">// or as</span>
<span class="Comment">// mulmod_precon_t bninv = PrepMulModPrecon(b, n, ninv);</span>
<span class="Comment">// where ninv = PrepMulMod(n).</span>
mulmod_precon_t PrepMulModPrecon(<span class="Type">long</span> b, <span class="Type">long</span> n);
mulmod_precon_t PrepMulModPrecon(<span class="Type">long</span> b, <span class="Type">long</span> n, mulmod_t ninv);
<span class="Comment">// Prepare auxiliary data for MulModPrecon.</span>
<span class="Comment">// In the second version, ninv = PrepMulMod(n).</span>
<span class="Type">long</span> InvMod(<span class="Type">long</span> a, <span class="Type">long</span> n);
<span class="Comment">// computes a^{-1} mod n. Error is raised if undefined.</span>
<span class="Type">long</span> InvModStatus(<span class="Type">long</span>& x, <span class="Type">long</span> a, <span class="Type">long</span> n);
<span class="Comment">// if gcd(a,n) = 1, then return-value = 0, x = a^{-1} mod n;</span>
<span class="Comment">// otherwise, return-value = 1, x = gcd(a, n)</span>
<span class="Type">long</span> PowerMod(<span class="Type">long</span> a, <span class="Type">long</span> e, <span class="Type">long</span> n);
<span class="Comment">// computes a^e mod n (e may be negative)</span>
<span class="Comment">// The following are vector versions of the MulMod routines</span>
<span class="Comment">// They each compute x[i] = (a[i] * b)% n i = 0..k-1 </span>
<span class="Type">void</span> VectorMulMod(<span class="Type">long</span> k, <span class="Type">long</span> *x, <span class="Type">const</span> <span class="Type">long</span> *a, <span class="Type">long</span> b, <span class="Type">long</span> n);
<span class="Type">void</span> VectorMulMod(<span class="Type">long</span> k, <span class="Type">long</span> *x, <span class="Type">const</span> <span class="Type">long</span> *a, <span class="Type">long</span> b, <span class="Type">long</span> n,
mulmod_t ninv);
<span class="Comment">// ninv = PrepMulMod(n)</span>
<span class="Type">void</span> VectorMulModPrecon(<span class="Type">long</span> k, <span class="Type">long</span> *x, <span class="Type">const</span> <span class="Type">long</span> *a, <span class="Type">long</span> b, <span class="Type">long</span> n,
mulmod_precon_t bninv);
<span class="Comment">// bninv = MulModPrecon(b, n)</span>
<span class="Comment">// The following is provided for legacy support, but is not generally </span>
<span class="Comment">// recommended:</span>
<span class="Type">long</span> MulDivRem(<span class="Type">long</span>& q, <span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n, muldivrem_t bninv);
<span class="Comment">// return (a*b)%n, set q = (a*b)/n. </span>
<span class="Comment">// The value bninv should be precomputed as </span>
<span class="Comment">// muldivrem_t bninv = PrepMulDivRem(b, n);</span>
<span class="Comment">// or as</span>
<span class="Comment">// muldivrem_t bninv = PrepMulDivRem(b, n, ninv);</span>
<span class="Comment">// where ninv = PrepMod(n).</span>
muldivrem_t PrepMulDivRem(<span class="Type">long</span> b, <span class="Type">long</span> n);
muldivrem_t PrepMulDivRem(<span class="Type">long</span> b, <span class="Type">long</span> n, mulmod_t ninv);
<span class="Comment">// Prepare auxiliary data for MulDivRem.</span>
<span class="Comment">// In the second version, ninv = PrepMulMod(n).</span>
<span class="Comment">// NOTE: despite the similarity in the interface to MulModPrecon,</span>
<span class="Comment">// this routine is typically implemented in a very different way,</span>
<span class="Comment">// and usually much less efficient.</span>
<span class="Comment">// It was initially designed for specialized, internal use</span>
<span class="Comment">// within NTL, but has been a part of the documented NTL</span>
<span class="Comment">// interface for some time, and remains so even after the</span>
<span class="Comment">// v9.0 upgrade.</span>
<span class="Comment">//</span>
<span class="Comment">// Compatibility notes:</span>
<span class="Comment">//</span>
<span class="Comment">// The types mulmod_t and muldivrem_t were introduced in NTL v9.0, as were the</span>
<span class="Comment">// functions PrepMulMod and PrepMulDivRem. Prior to this, the built-in type</span>
<span class="Comment">// "double" played the role of these types, and the user was expected to</span>
<span class="Comment">// compute PrepMulMod(n) as 1/double(n) and PrepMulDivRem(b, n) as</span>
<span class="Comment">// double(b)/double(n).</span>
<span class="Comment">// </span>
<span class="Comment">// By abstracting these types, NTL is able to exploit a wider variety of</span>
<span class="Comment">// implementation strategies. Some old client code may break, but the compiler</span>
<span class="Comment">// will easily find the code that needs to be updated, and the updates are</span>
<span class="Comment">// quite mechanical (unless the old code implicitly made use of the assumption</span>
<span class="Comment">// that NTL_SP_NBITS <= NTL_DOUBLE_PRECISION-3).</span>
<span class="Comment">//</span>
<span class="Comment">// It is highly recommended that old client codes be updated. However, one may</span>
<span class="Comment">// build NTL with the configuration option NTL_LEGACY_SP_MULMOD=on, which will</span>
<span class="Comment">// cause the interfaces and implementations to revert to their pre-v9.0</span>
<span class="Comment">// definitions. This option will also make the following (obsolete) function</span>
<span class="Comment">// visible:</span>
<span class="Type">long</span> MulMod2(<span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n, <span class="Type">double</span> bninv);
<span class="Comment">// return (a*b)%n. bninv = ((double) b)/((double) n). This is faster</span>
<span class="Comment">// if both n and b are fixed for many multiplications.</span>
<span class="Comment">// Note: This is OBSOLETE -- use MulModPrecon.</span>
<span class="Comment">// As of v9.2 of NTL, this new interface allows for 60-bit moduli on most</span>
<span class="Comment">// 64-bit machines. The requirement is that a working 128-bit integer type is</span>
<span class="Comment">// available. For current versions of gcc, clang, and icc, this is available</span>
<span class="Comment">// vie the types __int128_t and __uint128_t. If this requirement is met (which</span>
<span class="Comment">// is verified during NTL installation), then a "long long" implementation for</span>
<span class="Comment">// MulMod is used. In versions 9.0 and 9.1 of NTL, a "long double"</span>
<span class="Comment">// implementation was introduced, which utilized the 80-bit extended double</span>
<span class="Comment">// precision hardware on x86 machines. This also allows for 60-bit moduli on</span>
<span class="Comment">// 64-bit machines.</span>
<span class="Comment">// If 128-bit integer types are not available, or if you build NTL with the</span>
<span class="Comment">// NTL_DISABLE_LONGLONG=on flag, NTL will attempt to use the extended double</span>
<span class="Comment">// precision hardware to still allow 60-bit moduli. If that is not possible,</span>
<span class="Comment">// or if you build NTL with the NTL_DISABLE_LONGDOUBLE=on flag, then NTL will</span>
<span class="Comment">// fall back to its "classical" implementation (pre-9.0) that relies on</span>
<span class="Comment">// double-precision arithmetic and imposes a 50-bit limit on moduli. </span>
<span class="Comment">// Note that in on 64-bit machines, either the "long long" or "long double"</span>
<span class="Comment">// implementations could support 62-bit moduli, rather than 60-bit moduli.</span>
<span class="Comment">// However, the restriction to 60-bits speeds up a few things, and so seems</span>
<span class="Comment">// like a good trade off. This is subject to change in the future.</span>
<span class="Comment">// Also note that all of these enhancements introduced since v9.0 are only</span>
<span class="Comment">// available to builds of NTL that use GMP. Builds that don't use GMP will</span>
<span class="Comment">// still be restricted to 50-bit moduli on 64-bit machines. </span>
<span class="Comment">// On machines with 32-bit longs, moduli will be resricted to 30 bits,</span>
<span class="Comment">// regardless on the implementation, which will be based on "long long"</span>
<span class="Comment">// arithmetic (if a 64-bit integer type is available), or on double-precision</span>
<span class="Comment">// floating point (otherwise).</span>
<span class="Comment">// One can detect the new (v9) interface by testing if the macro</span>
<span class="Comment">// NTL_HAVE_MULMOD_T is defined. The following code can be used to make</span>
<span class="Comment">// new-style NTL clients work with either older (pre-9.0) versions of NTL or</span>
<span class="Comment">// newer versions (post-9.0):</span>
<span class="PreProc">#ifndef NTL_HAVE_MULMOD_T</span>
<span class="Type">namespace</span> NTL {
<span class="Type">typedef</span> <span class="Type">double</span> mulmod_t;
<span class="Type">typedef</span> <span class="Type">double</span> muldivrem_t;
<span class="Type">static</span> <span class="Type">inline</span> <span class="Type">double</span> PrepMulMod(<span class="Type">long</span> n)
{ <span class="Statement">return</span> <span class="Type">double</span>(<span class="Constant">1L</span>)/<span class="Type">double</span>(n); }
<span class="Type">static</span> <span class="Type">inline</span> <span class="Type">double</span> PrepMulDivRem(<span class="Type">long</span> b, <span class="Type">long</span> n, <span class="Type">double</span> ninv)
{ <span class="Statement">return</span> <span class="Type">double</span>(b)*ninv; }
<span class="Type">static</span> <span class="Type">inline</span> <span class="Type">double</span> PrepMulDivRem(<span class="Type">long</span> b, <span class="Type">long</span> n)
{ <span class="Statement">return</span> <span class="Type">double</span>(b)/<span class="Type">double</span>(n); }
<span class="Type">static</span> <span class="Type">inline</span> <span class="Type">double</span> PrepMulModPrecon(<span class="Type">long</span> b, <span class="Type">long</span> n)
{ <span class="Statement">return</span> PrepMulModPrecon(b, n, PrepMulMod(n)); }
}
<span class="PreProc">#endif</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Shift Operations</span>
<span class="Comment">LeftShift by n means multiplication by 2^n</span>
<span class="Comment">RightShift by n means division by 2^n, with truncation toward zero</span>
<span class="Comment"> (so the sign is preserved).</span>
<span class="Comment">A negative shift amount reverses the direction of the shift.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// operator notation:</span>
ZZ <span class="Statement">operator</span><<(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> n);
ZZ <span class="Statement">operator</span>>>(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> n);
ZZ& <span class="Statement">operator</span><<=(ZZ& x, <span class="Type">long</span> n);
ZZ& <span class="Statement">operator</span>>>=(ZZ& x, <span class="Type">long</span> n);
<span class="Comment">// procedural versions:</span>
<span class="Type">void</span> LeftShift(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">long</span> n);
ZZ LeftShift(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> n);
<span class="Type">void</span> RightShift(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">long</span> n);
ZZ RightShift(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> n);
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Bits and Bytes</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">long</span> MakeOdd(ZZ& x);
<span class="Comment">// removes factors of 2 from x, returns the number of 2's removed</span>
<span class="Comment">// returns 0 if x == 0</span>
<span class="Type">long</span> NumTwos(<span class="Type">const</span> ZZ& x);
<span class="Comment">// returns max e such that 2^e divides x if x != 0, and returns 0 if x == 0.</span>
<span class="Type">long</span> IsOdd(<span class="Type">const</span> ZZ& a); <span class="Comment">// test if a is odd</span>
<span class="Type">long</span> NumBits(<span class="Type">const</span> ZZ& a);
<span class="Type">long</span> NumBits(<span class="Type">long</span> a);
<span class="Comment">// returns the number of bits in binary represenation of |a|; </span>
<span class="Comment">// NumBits(0) = 0</span>
<span class="Type">long</span> bit(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> k);
<span class="Type">long</span> bit(<span class="Type">long</span> a, <span class="Type">long</span> k);
<span class="Comment">// returns bit k of |a|, position 0 being the low-order bit.</span>
<span class="Comment">// If k < 0 or k >= NumBits(a), returns 0.</span>
<span class="Type">void</span> trunc(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">long</span> k);
<span class="Comment">// x = low order k bits of |a|. </span>
<span class="Comment">// If k <= 0, x = 0.</span>
<span class="Comment">// two functional variants:</span>
ZZ trunc_ZZ(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> k);
<span class="Type">long</span> trunc_long(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> k);
<span class="Type">long</span> SetBit(ZZ& x, <span class="Type">long</span> p);
<span class="Comment">// returns original value of p-th bit of |a|, and replaces p-th bit of</span>
<span class="Comment">// a by 1 if it was zero; low order bit is bit 0; error if p < 0;</span>
<span class="Comment">// the sign of x is maintained</span>
<span class="Type">long</span> SwitchBit(ZZ& x, <span class="Type">long</span> p);
<span class="Comment">// returns original value of p-th bit of |a|, and switches the value</span>
<span class="Comment">// of p-th bit of a; low order bit is bit 0; error if p < 0</span>
<span class="Comment">// the sign of x is maintained</span>
<span class="Type">long</span> weight(<span class="Type">const</span> ZZ& a); <span class="Comment">// returns Hamming weight of |a|</span>
<span class="Type">long</span> weight(<span class="Type">long</span> a);
<span class="Comment">// bit-wise Boolean operations, procedural form:</span>
<span class="Type">void</span> bit_and(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b); <span class="Comment">// x = |a| AND |b|</span>
<span class="Type">void</span> bit_or(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b); <span class="Comment">// x = |a| OR |b|</span>
<span class="Type">void</span> bit_xor(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b); <span class="Comment">// x = |a| XOR |b|</span>
<span class="Comment">// bit-wise Boolean operations, operator notation:</span>
ZZ <span class="Statement">operator</span>&(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
ZZ <span class="Statement">operator</span>|(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
ZZ <span class="Statement">operator</span>^(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& b);
<span class="Comment">// PROMOTIONS: the above bit-wise operations (both procedural </span>
<span class="Comment">// and operator forms) provide promotions from long to ZZ on (a, b).</span>
ZZ& <span class="Statement">operator</span>&=(ZZ& x, <span class="Type">const</span> ZZ& b);
ZZ& <span class="Statement">operator</span>&=(ZZ& x, <span class="Type">long</span> b);
ZZ& <span class="Statement">operator</span>|=(ZZ& x, <span class="Type">const</span> ZZ& b);
ZZ& <span class="Statement">operator</span>|=(ZZ& x, <span class="Type">long</span> b);
ZZ& <span class="Statement">operator</span>^=(ZZ& x, <span class="Type">const</span> ZZ& b);
ZZ& <span class="Statement">operator</span>^=(ZZ& x, <span class="Type">long</span> b);
<span class="Comment">// conversions between byte sequences and ZZ's</span>
<span class="Type">void</span> ZZFromBytes(ZZ& x, <span class="Type">const</span> <span class="Type">unsigned</span> <span class="Type">char</span> *p, <span class="Type">long</span> n);
ZZ ZZFromBytes(<span class="Type">const</span> <span class="Type">unsigned</span> <span class="Type">char</span> *p, <span class="Type">long</span> n);
<span class="Comment">// x = sum(p[i]*256^i, i=0..n-1). </span>
<span class="Comment">// NOTE: in the unusual event that a char is more than 8 bits, </span>
<span class="Comment">// only the low order 8 bits of p[i] are used</span>
<span class="Type">void</span> BytesFromZZ(<span class="Type">unsigned</span> <span class="Type">char</span> *p, <span class="Type">const</span> ZZ& a, <span class="Type">long</span> n);
<span class="Comment">// Computes p[0..n-1] such that abs(a) == sum(p[i]*256^i, i=0..n-1) mod 256^n.</span>
<span class="Type">long</span> NumBytes(<span class="Type">const</span> ZZ& a);
<span class="Type">long</span> NumBytes(<span class="Type">long</span> a);
<span class="Comment">// returns # of base 256 digits needed to represent abs(a).</span>
<span class="Comment">// NumBytes(0) == 0.</span>
<a name="prg"></a>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Pseudo-Random Numbers</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// Routines for generating pseudo-random numbers.</span>
<span class="Comment">// These routines generate high qualtity, cryptographically strong</span>
<span class="Comment">// pseudo-random numbers. They are implemented so that their behaviour</span>
<span class="Comment">// is completely independent of the underlying hardware and long </span>
<span class="Comment">// integer implementation. Note, however, that other routines </span>
<span class="Comment">// throughout NTL use pseudo-random numbers, and because of this,</span>
<span class="Comment">// the word size of the machine can impact the sequence of numbers</span>
<span class="Comment">// seen by a client program.</span>
<span class="Type">void</span> SetSeed(<span class="Type">const</span> ZZ& s);
<span class="Type">void</span> SetSeed(<span class="Type">const</span> <span class="Type">unsigned</span> <span class="Type">char</span> *data, <span class="Type">long</span> dlen);
<span class="Type">void</span> SetSeed(<span class="Type">const</span> RandomStream& s);
<span class="Comment">// Initializes generator with a "seed".</span>
<span class="Comment">// The first version hashes the binary representation of s to obtain a key for</span>
<span class="Comment">// a low-level RandomStream object (see below).</span>
<span class="Comment">// The second version does the same, hashing the first dlen bytes pointed to by</span>
<span class="Comment">// data to obtain a key for the RandomStream object.</span>
<span class="Comment">// The third version initializes the PRG state directly with the given</span>
<span class="Comment">// RandomStream object.</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>
<span class="Type">void</span> RandomBnd(ZZ& x, <span class="Type">const</span> ZZ& n);
ZZ RandomBnd(<span class="Type">const</span> ZZ& n);
<span class="Type">void</span> RandomBnd(<span class="Type">long</span>& x, <span class="Type">long</span> n);
<span class="Type">long</span> RandomBnd(<span class="Type">long</span> n);
<span class="Comment">// x = pseudo-random number in the range 0..n-1, or 0 if n <= 0</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>
<span class="Type">void</span> VectorRandomBnd(<span class="Type">long</span> k, <span class="Type">long</span> *x, <span class="Type">long</span> n);
<span class="Comment">// equivalent to x[i] = RandomBnd(n) for i in [0..k), but faster</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>
<span class="Type">void</span> VectorRandomWord(<span class="Type">long</span> k, <span class="Type">long</span> *x);
<span class="Comment">// equivalent to x[i] = RandomWord(n) for i in [0..k), but faster</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>
<span class="Type">void</span> RandomBits(ZZ& x, <span class="Type">long</span> l);
ZZ RandomBits_ZZ(<span class="Type">long</span> l);
<span class="Type">void</span> RandomBits(<span class="Type">long</span>& x, <span class="Type">long</span> l);
<span class="Type">long</span> RandomBits_long(<span class="Type">long</span> l);
<span class="Comment">// x = pseudo-random number in the range 0..2^l-1.</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>
<span class="Type">void</span> RandomLen(ZZ& x, <span class="Type">long</span> l);
ZZ RandomLen_ZZ(<span class="Type">long</span> l);
<span class="Type">void</span> RandomLen(<span class="Type">long</span>& x, <span class="Type">long</span> l);
<span class="Type">long</span> RandomLen_long(<span class="Type">long</span> l);
<span class="Comment">// x = psuedo-random number with precisely l bits,</span>
<span class="Comment">// or 0 of l <= 0.</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>
<span class="Type">unsigned</span> <span class="Type">long</span> RandomBits_ulong(<span class="Type">long</span> l);
<span class="Comment">// returns a pseudo-random number in the range 0..2^l-1</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>
<span class="Type">unsigned</span> <span class="Type">long</span> RandomWord();
<span class="Comment">// returns a word filled with pseudo-random bits.</span>
<span class="Comment">// Equivalent to RandomBits_ulong(NTL_BITS_PER_LONG).</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>
<span class="Type">class</span> RandomStream {
<span class="Comment">// The low-level pseudo-random generator (PRG).</span>
<span class="Comment">// After initializing it with a key, one can effectively read an unbounded</span>
<span class="Comment">// stream of pseudorandom bytes</span>
<span class="Statement">public</span>:
<span class="Type">explicit</span> RandomStream(<span class="Type">const</span> <span class="Type">unsigned</span> <span class="Type">char</span> *key);
<span class="Comment">// key should point to an array of NTL_PRG_KEYLEN bytes</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>
<span class="Type">void</span> get(<span class="Type">unsigned</span> <span class="Type">char</span> *res, <span class="Type">long</span> n);
<span class="Comment">// read the next n bytes from the stream and store to location pointed to by</span>
<span class="Comment">// res</span>
<span class="Comment">// EXCEPTIONS: throws a LogicError exception if n is negative</span>
RandomStream(<span class="Type">const</span> RandomStream&);
<span class="Comment">// EXCEPTIONS: strong ES</span>
RandomStream& <span class="Statement">operator</span>=(<span class="Type">const</span> RandomStream&);
<span class="Comment">// EXCEPTIONS: strong ES</span>
};
RandomStream& GetCurrentRandomStream();
<span class="Comment">// get reference to the current PRG state. If SetSeed has not been called, it</span>
<span class="Comment">// is called with a default value (which should be unique to each</span>
<span class="Comment">// process/thread). NOTE: this is a reference to a thread-local object, so</span>
<span class="Comment">// different threads will use different PRG's, and by default, each will be</span>
<span class="Comment">// initialized with a unique seed.</span>
<span class="Comment">// NOTE: using this reference, you can copy the current PRG state or assign a</span>
<span class="Comment">// different value to it; however, see the helper class RandomStreamPush below,</span>
<span class="Comment">// which may be more convenient.</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>
<span class="Type">class</span> RandomStreamPush {
<span class="Comment">// RAII for saving/restoring current PRG state</span>
<span class="Statement">public</span>:
RandomStreamPush(); <span class="Comment">// save a copy of the current PRG state</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>
~RandomStreamPush(); <span class="Comment">// restore the saved copy of the PRG state</span>
<span class="Statement">private</span>:
RandomStreamPush(<span class="Type">const</span> RandomStreamPush&); <span class="Comment">// disable</span>
<span class="Type">void</span> <span class="Statement">operator</span>=(<span class="Type">const</span> RandomStreamPush&); <span class="Comment">// disable</span>
};
<span class="Type">void</span> DeriveKey(<span class="Type">unsigned</span> <span class="Type">char</span> *key, <span class="Type">long</span> klen,
<span class="Type">const</span> <span class="Type">unsigned</span> <span class="Type">char</span> *data, <span class="Type">long</span> dlen);
<span class="Comment">// utility routine to derive from the byte string (data, dlen) a byte string</span>
<span class="Comment">// (key, klen). Heuristically, if (data, dlen) has high entropy, then (key,</span>
<span class="Comment">// klen) should be pseudorandom. This routine is also used internally to</span>
<span class="Comment">// derive PRG keys.</span>
<span class="Comment">// EXCEPTIONS: throws LogicError exception if klen < 0 or hlen < 0</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Incremental Chinese Remaindering</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">long</span> CRT(ZZ& a, ZZ& p, <span class="Type">const</span> ZZ& A, <span class="Type">const</span> ZZ& P);
<span class="Type">long</span> CRT(ZZ& a, ZZ& p, <span class="Type">long</span> A, <span class="Type">long</span> P);
<span class="Comment">// 0 <= A < P, (p, P) = 1; computes a' such that a' = a mod p, </span>
<span class="Comment">// a' = A mod P, and -p*P/2 < a' <= p*P/2; sets a := a', p := p*P, and</span>
<span class="Comment">// returns 1 if a's value has changed, otherwise 0</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Rational Reconstruction</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">long</span> ReconstructRational(ZZ& a, ZZ& b, <span class="Type">const</span> ZZ& x, <span class="Type">const</span> ZZ& m,
<span class="Type">const</span> ZZ& a_bound, <span class="Type">const</span> ZZ& b_bound);
<span class="Comment">// 0 <= x < m, m > 2 * a_bound * b_bound,</span>
<span class="Comment">// a_bound >= 0, b_bound > 0</span>
<span class="Comment">// This routine either returns 0, leaving a and b unchanged, </span>
<span class="Comment">// or returns 1 and sets a and b so that</span>
<span class="Comment">// (1) a = b x (mod m),</span>
<span class="Comment">// (2) |a| <= a_bound, 0 < b <= b_bound, and</span>
<span class="Comment">// (3) gcd(m, b) = gcd(a, b).</span>
<span class="Comment">// If there exist a, b satisfying (1), (2), and </span>
<span class="Comment">// (3') gcd(m, b) = 1,</span>
<span class="Comment">// then a, b are uniquely determined if we impose the additional</span>
<span class="Comment">// condition that gcd(a, b) = 1; moreover, if such a, b exist,</span>
<span class="Comment">// then these values are returned by the routine.</span>
<span class="Comment">// Unless the calling routine can *a priori* guarantee the existence</span>
<span class="Comment">// of a, b satisfying (1), (2), and (3'),</span>
<span class="Comment">// then to ensure correctness, the calling routine should check</span>
<span class="Comment">// that gcd(m, b) = 1, or equivalently, gcd(a, b) = 1.</span>
<span class="Comment">// This is implemented using a variant of Lehmer's extended</span>
<span class="Comment">// Euclidean algorithm.</span>
<span class="Comment">// Literature: see G. Collins and M. Encarnacion, J. Symb. Comp. 20:287-297, </span>
<span class="Comment">// 1995; P. Wang, M. Guy, and J. Davenport, SIGSAM Bulletin 16:2-3, 1982. </span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Primality Testing </span>
<span class="Comment"> and Prime Number Generation</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> GenPrime(ZZ& n, <span class="Type">long</span> l, <span class="Type">long</span> err = <span class="Constant">80</span>);
ZZ GenPrime_ZZ(<span class="Type">long</span> l, <span class="Type">long</span> err = <span class="Constant">80</span>);
<span class="Type">long</span> GenPrime_long(<span class="Type">long</span> l, <span class="Type">long</span> err = <span class="Constant">80</span>);
<span class="Comment">// GenPrime generates a random prime n of length l so that the</span>
<span class="Comment">// probability that the resulting n is composite is bounded by 2^(-err).</span>
<span class="Comment">// This calls the routine RandomPrime below, and uses results of </span>
<span class="Comment">// Damgard, Landrock, Pomerance to "optimize" </span>
<span class="Comment">// the number of Miller-Rabin trials at the end.</span>
<span class="Comment">// Note that the prime generated by GenPrime and RandomPrime </span>
<span class="Comment">// is not entirely platform independent. The behavior of the</span>
<span class="Comment">// algorithm can depend on the size parameters, such as NTL_SP_NBITS </span>
<span class="Comment">// NTL_ZZ_NBITS, and NTL_BITS_PER_LONG. However, on a given platform</span>
<span class="Comment">// you will always get the same prime if you run the algorithm</span>
<span class="Comment">// with the same RandomStream. </span>
<span class="Comment">// Note that RandomPrime and GenPrime are thread boosted.</span>
<span class="Comment">// Nevertheless, their behavior is independent of the number of</span>
<span class="Comment">// available threads and any indeterminacy arising from </span>
<span class="Comment">// concurrent computation.</span>
<span class="Type">void</span> GenGermainPrime(ZZ& n, <span class="Type">long</span> l, <span class="Type">long</span> err = <span class="Constant">80</span>);
ZZ GenGermainPrime_ZZ(<span class="Type">long</span> l, <span class="Type">long</span> err = <span class="Constant">80</span>);
<span class="Type">long</span> GenGermainPrime_long(<span class="Type">long</span> l, <span class="Type">long</span> err = <span class="Constant">80</span>);
<span class="Comment">// A (Sophie) Germain prime is a prime p such that p' = 2*p+1 is also a prime.</span>
<span class="Comment">// Such primes are useful for cryptographic applications...cryptographers</span>
<span class="Comment">// sometimes call p' a "strong" or "safe" prime.</span>
<span class="Comment">// GenGermainPrime generates a random Germain prime n of length l</span>
<span class="Comment">// so that the probability that either n or 2*n+1 is not a prime</span>
<span class="Comment">// is bounded by 2^(-err).</span>
<span class="Comment">// Note that GenGermainPrime is thread boosted.</span>
<span class="Comment">// Nevertheless, its behavior is independent of the number of</span>
<span class="Comment">// available threads and any indeterminacy arising from </span>
<span class="Comment">// concurrent computation.</span>
<span class="Type">long</span> ProbPrime(<span class="Type">const</span> ZZ& n, <span class="Type">long</span> NumTrials = <span class="Constant">10</span>);
<span class="Type">long</span> ProbPrime(<span class="Type">long</span> n, <span class="Type">long</span> NumTrials = <span class="Constant">10</span>);
<span class="Comment">// performs trial division, followed by one Miller-Rabin test</span>
<span class="Comment">// to the base 2, followed by NumTrials Miller-witness tests </span>
<span class="Comment">// with random bases.</span>
<span class="Type">void</span> RandomPrime(ZZ& n, <span class="Type">long</span> l, <span class="Type">long</span> NumTrials=<span class="Constant">10</span>);
ZZ RandomPrime_ZZ(<span class="Type">long</span> l, <span class="Type">long</span> NumTrials=<span class="Constant">10</span>);
<span class="Type">long</span> RandomPrime_long(<span class="Type">long</span> l, <span class="Type">long</span> NumTrials=<span class="Constant">10</span>);
<span class="Comment">// n = random l-bit prime. Uses ProbPrime with NumTrials.</span>
<span class="Type">void</span> NextPrime(ZZ& n, <span class="Type">const</span> ZZ& m, <span class="Type">long</span> NumTrials=<span class="Constant">10</span>);
ZZ NextPrime(<span class="Type">const</span> ZZ& m, <span class="Type">long</span> NumTrials=<span class="Constant">10</span>);
<span class="Comment">// n = smallest prime >= m. Uses ProbPrime with NumTrials.</span>
<span class="Type">long</span> NextPrime(<span class="Type">long</span> m, <span class="Type">long</span> NumTrials=<span class="Constant">10</span>);
<span class="Comment">// Single precision version of the above.</span>
<span class="Comment">// Result will always be bounded by NTL_ZZ_SP_BOUND, and an</span>
<span class="Comment">// error is raised if this cannot be satisfied.</span>
<span class="Type">long</span> MillerWitness(<span class="Type">const</span> ZZ& n, <span class="Type">const</span> ZZ& w);
<span class="Comment">// Tests if w is a witness to compositeness a la Miller. Assumption: n is</span>
<span class="Comment">// odd and positive, 0 <= w < n.</span>
<span class="Comment">// Return value of 1 implies n is composite.</span>
<span class="Comment">// Return value of 0 indicates n might be prime.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Exponentiation</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> power(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">long</span> e); <span class="Comment">// x = a^e (e >= 0)</span>
ZZ power(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> e);
<span class="Type">void</span> power(ZZ& x, <span class="Type">long</span> a, <span class="Type">long</span> e);
<span class="Comment">// two functional variants:</span>
ZZ power_ZZ(<span class="Type">long</span> a, <span class="Type">long</span> e);
<span class="Type">long</span> power_long(<span class="Type">long</span> a, <span class="Type">long</span> e);
<span class="Type">void</span> power2(ZZ& x, <span class="Type">long</span> e); <span class="Comment">// x = 2^e (e >= 0)</span>
ZZ power2_ZZ(<span class="Type">long</span> e);
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Square Roots</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> SqrRoot(ZZ& x, <span class="Type">const</span> ZZ& a); <span class="Comment">// x = floor(a^{1/2}) (a >= 0)</span>
ZZ SqrRoot(<span class="Type">const</span> ZZ& a);
<span class="Type">long</span> SqrRoot(<span class="Type">long</span> a);
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Jacobi symbol and modular square roots</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">long</span> Jacobi(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& n);
<span class="Comment">// compute Jacobi symbol of a and n; assumes 0 <= a < n, n odd</span>
<span class="Type">void</span> SqrRootMod(ZZ& x, <span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& n);
ZZ SqrRootMod(<span class="Type">const</span> ZZ& a, <span class="Type">const</span> ZZ& n);
<span class="Comment">// computes square root of a mod n; assumes n is an odd prime, and</span>
<span class="Comment">// that a is a square mod n, with 0 <= a < n.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Input/Output</span>
<span class="Comment">I/O Format:</span>
<span class="Comment">Numbers are written in base 10, with an optional minus sign.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
istream& <span class="Statement">operator</span>>>(istream& s, ZZ& x);
ostream& <span class="Statement">operator</span><<(ostream& s, <span class="Type">const</span> ZZ& a);
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Miscellany</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// The following macros are defined:</span>
<span class="PreProc">#define NTL_ZZ_NBITS (...) </span><span class="Comment">// number of bits in a limb;</span>
<span class="Comment">// a ZZ is represented as a sequence of limbs.</span>
<span class="PreProc">#define NTL_SP_NBITS (...) </span><span class="Comment">// max number of bits in a "single-precision" number</span>
<span class="PreProc">#define NTL_WSP_NBITS (...) </span><span class="Comment">// max number of bits in a "wide single-precision"</span>
<span class="Comment">// number</span>
<span class="Comment">// The following relations hold:</span>
<span class="Comment">// 30 <= NTL_SP_NBITS <= NTL_WSP_NBITS </span>
<span class="Comment">// <= min(NTL_ZZ_NBITS, NTL_BITS_PER_LONG-2)</span>
<span class="Comment">// Note that NTL_ZZ_NBITS may be less than, equal to, or greater than</span>
<span class="Comment">// NTL_BITS_PER_LONG -- no particular relationship should be assumed to hold.</span>
<span class="Comment">// In particular, expressions like (1L << NTL_ZZ_BITS) might overflow.</span>
<span class="Comment">//</span>
<span class="Comment">// "single-precision" numbers are meant to be used in conjunction with the</span>
<span class="Comment">// single-precision modular arithmetic routines.</span>
<span class="Comment">//</span>
<span class="Comment">// "wide single-precision" numbers are meant to be used in conjunction</span>
<span class="Comment">// with the ZZ arithmetic routines for optimal efficiency.</span>
<span class="Comment">// The following auxiliary macros are also defined</span>
<span class="PreProc">#define NTL_FRADIX (...) </span><span class="Comment">// double-precision value of 2^NTL_ZZ_NBITS</span>
<span class="PreProc">#define NTL_SP_BOUND (</span><span class="Constant">1L</span><span class="PreProc"> << NTL_SP_NBITS)</span>
<span class="PreProc">#define NTL_WSP_BOUND (</span><span class="Constant">1L</span><span class="PreProc"> << NTL_WSP_NBITS)</span>
<span class="Comment">// Backward compatibility notes:</span>
<span class="Comment">//</span>
<span class="Comment">// Prior to version 5.0, the macro NTL_NBITS was defined,</span>
<span class="Comment">// along with the macro NTL_RADIX defined to be (1L << NTL_NBITS).</span>
<span class="Comment">// While these macros are still available when using NTL's traditional </span>
<span class="Comment">// long integer package (i.e., when NTL_GMP_LIP is not set), </span>
<span class="Comment">// they are not available when using the GMP as the primary long integer </span>
<span class="Comment">// package (i.e., when NTL_GMP_LIP is set).</span>
<span class="Comment">// Furthermore, when writing portable programs, one should avoid these macros.</span>
<span class="Comment">// Note that when using traditional long integer arithmetic, we have</span>
<span class="Comment">// NTL_ZZ_NBITS = NTL_SP_NBITS = NTL_WSP_NBITS = NTL_NBITS.</span>
<span class="Comment">//</span>
<span class="Comment">// Prior to version 9.0, one could also assume that </span>
<span class="Comment">// NTL_SP_NBITS <= NTL_DOUBLE_PRECISION-3;</span>
<span class="Comment">// however, this is no longer the case (unless NTL is build with he NTL_LEGACY_SP_MULMOD</span>
<span class="Comment">// flag turned on).</span>
<span class="Comment">// Here are some additional functions.</span>
<span class="Type">void</span> clear(ZZ& x); <span class="Comment">// x = 0</span>
<span class="Type">void</span> set(ZZ& x); <span class="Comment">// x = 1</span>
<span class="Type">void</span> swap(ZZ& x, ZZ& y);
<span class="Comment">// swap x and y (done by "pointer swapping", if possible).</span>
<span class="Type">double</span> log(<span class="Type">const</span> ZZ& a);
<span class="Comment">// returns double precision approximation to log(a)</span>
<span class="Type">long</span> NextPowerOfTwo(<span class="Type">long</span> m);
<span class="Comment">// returns least nonnegative k such that 2^k >= m</span>
<span class="Type">long</span> ZZ::size() <span class="Type">const</span>;
<span class="Comment">// a.size() returns the number of limbs of |a|; the</span>
<span class="Comment">// size of 0 is 0.</span>
<span class="Type">void</span> ZZ::SetSize(<span class="Type">long</span> k)
<span class="Comment">// a.SetSize(k) does not change the value of a, but simply pre-allocates</span>
<span class="Comment">// space for k limbs.</span>
<span class="Type">long</span> ZZ::SinglePrecision() <span class="Type">const</span>;
<span class="Comment">// a.SinglePrecision() is a predicate that tests if abs(a) < NTL_SP_BOUND</span>
<span class="Type">long</span> ZZ::WideSinglePrecision() <span class="Type">const</span>;
<span class="Comment">// a.WideSinglePrecision() is a predicate that tests if abs(a) < NTL_WSP_BOUND</span>
<span class="Type">long</span> digit(<span class="Type">const</span> ZZ& a, <span class="Type">long</span> k);
<span class="Comment">// returns k-th limb of |a|, position 0 being the low-order</span>
<span class="Comment">// limb.</span>
<span class="Comment">// OBSOLETE: this routine is only available when using NTL's traditional</span>
<span class="Comment">// long integer arithmetic, and should not be used in programs</span>
<span class="Comment">// that are meant to be portable. You should instead use the </span>
<span class="Comment">// routine ZZ_limbs_get, defined in ZZ_limbs.h.</span>
<span class="Type">void</span> ZZ::kill();
<span class="Comment">// a.kill() sets a to zero and frees the space held by a.</span>
<span class="Type">void</span> ZZ::swap(ZZ& x);
<span class="Comment">// swap method (done by "pointer swapping" if possible)</span>
ZZ::ZZ(INIT_SIZE_TYPE, <span class="Type">long</span> k);
<span class="Comment">// ZZ(INIT_SIZE, k) initializes to 0, but space is pre-allocated so</span>
<span class="Comment">// that numbers x with x.size() <= k can be stored without</span>
<span class="Comment">// re-allocation.</span>
<span class="Type">static</span> <span class="Type">const</span> ZZ& ZZ::zero();
<span class="Comment">// ZZ::zero() yields a read-only reference to zero, if you need it.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Small Prime Generation</span>
<span class="Comment">primes are generated in sequence, starting at 2, and up to a maximum</span>
<span class="Comment">that is no more than min(NTL_SP_BOUND, 2^30).</span>
<span class="Comment">Example: print the primes up to 1000</span>
<span class="Comment">#include <NTL/ZZ.h></span>
<span class="Comment">main()</span>
<span class="Comment">{</span>
<span class="Comment"> PrimeSeq s;</span>
<span class="Comment"> long p;</span>
<span class="Comment"> p = s.next();</span>
<span class="Comment"> while (p <= 1000) {</span>
<span class="Comment"> cout << p << "\n";</span>
<span class="Comment"> p = s.next();</span>
<span class="Comment"> }</span>
<span class="Comment">}</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">class</span> PrimeSeq {
<span class="Statement">public</span>:
PrimeSeq();
~PrimeSeq();
<span class="Type">long</span> next();
<span class="Comment">// returns next prime in the sequence. returns 0 if list of small</span>
<span class="Comment">// primes is exhausted.</span>
<span class="Type">void</span> reset(<span class="Type">long</span> b);
<span class="Comment">// resets generator so that the next prime in the sequence is the</span>
<span class="Comment">// smallest prime >= b.</span>
<span class="Statement">private</span>:
PrimeSeq(<span class="Type">const</span> PrimeSeq&); <span class="Comment">// disabled</span>
<span class="Type">void</span> <span class="Statement">operator</span>=(<span class="Type">const</span> PrimeSeq&); <span class="Comment">// disabled</span>
};
</pre>
</body>
</html>
<!-- vim: set foldmethod=manual : -->
|