File: ZZ.cpp.html

package info (click to toggle)
ntl 11.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 8,820 kB
  • sloc: cpp: 92,194; sh: 10,577; ansic: 3,058; makefile: 536
file content (1193 lines) | stat: -rw-r--r-- 73,322 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>~/ntl-11.4.2/doc/ZZ.cpp.html</title>
<meta name="Generator" content="Vim/8.0">
<meta name="plugin-version" content="vim7.4_v2">
<meta name="syntax" content="cpp">
<meta name="settings" content="use_css,pre_wrap,no_foldcolumn,expand_tabs,prevent_copy=">
<meta name="colorscheme" content="macvim">
<style type="text/css">
<!--
pre { white-space: pre-wrap; font-family: monospace; color: #000000; background-color: #ffffff; }
body { font-family: monospace; color: #000000; background-color: #ffffff; }
* { font-size: 1em; }
.String { color: #4a708b; }
.PreProc { color: #1874cd; }
.Constant { color: #ff8c00; }
.Statement { color: #b03060; font-weight: bold; }
.Comment { color: #0000ee; font-style: italic; }
.Type { color: #008b00; font-weight: bold; }
-->
</style>

<script type='text/javascript'>
<!--

-->
</script>
</head>
<body>
<pre id='vimCodeElement'>

<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">MODULE: ZZ</span>

<span class="Comment">SUMMARY:</span>

<span class="Comment">The class ZZ is used to represent signed, arbitrary length integers.</span>

<span class="Comment">Routines are provided for all of the basic arithmetic operations, as</span>
<span class="Comment">well as for some more advanced operations such as primality testing.</span>
<span class="Comment">Space is automatically managed by the constructors and destructors.</span>

<span class="Comment">This module also provides routines for generating small primes, and</span>
<span class="Comment">fast routines for performing modular arithmetic on single-precision</span>
<span class="Comment">numbers.</span>


<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="PreProc">#include </span><span class="String">&lt;NTL/tools.h&gt;</span>


<span class="Type">class</span> ZZ {
<span class="Statement">public</span>:


   ZZ(); <span class="Comment">// initial value is 0</span>

   ZZ(<span class="Type">const</span> ZZ&amp; a);  <span class="Comment">// copy constructor</span>
   <span class="Type">explicit</span> ZZ(<span class="Type">long</span> a);  <span class="Comment">// promotion constructor</span>

   ~ZZ(); <span class="Comment">// destructor</span>

   ZZ&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> ZZ&amp; a);  <span class="Comment">// assignment operator</span>
   ZZ&amp; <span class="Statement">operator</span>=(<span class="Type">long</span> a);

   ZZ(ZZ&amp;&amp; a);
   <span class="Comment">// move constructor (C++11 only)</span>
   <span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>

   ZZ&amp; <span class="Statement">operator</span>=(ZZ&amp;&amp; a);
   <span class="Comment">// move assignment (C++11 only)</span>
   <span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>



   <span class="Comment">// typedefs to aid in generic programming</span>
   <span class="Type">typedef</span> ZZ_p residue_type;
   <span class="Type">typedef</span> ZZX poly_type;


   <span class="Comment">// ...</span>

};


<span class="Comment">// NOTE: A ZZ is represented as a sequence of &quot;limbs&quot;,</span>
<span class="Comment">// where each limb is between 0 and 2^{NTL_ZZ_NBITS-1}.</span>

<span class="Comment">// NTL_ZZ_NBITS is  macros defined in &lt;NTL/ZZ.h&gt;.</span>

<span class="Comment">// SIZE INVARIANT: the number of bits in a ZZ is always less than</span>
<span class="Comment">// 2^(NTL_BITS_PER_LONG-4).</span>



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                 Comparison</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>



<span class="Comment">// The usual comparison operators: </span>

<span class="Type">long</span> <span class="Statement">operator</span>==(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Type">long</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Type">long</span> <span class="Statement">operator</span>&lt;(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Type">long</span> <span class="Statement">operator</span>&gt;(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Type">long</span> <span class="Statement">operator</span>&lt;=(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Type">long</span> <span class="Statement">operator</span>&gt;=(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);

<span class="Comment">// other stuff:</span>

<span class="Type">long</span> sign(<span class="Type">const</span> ZZ&amp; a); <span class="Comment">// returns sign of a (-1, 0, +1)</span>
<span class="Type">long</span> IsZero(<span class="Type">const</span> ZZ&amp; a); <span class="Comment">// test for 0</span>
<span class="Type">long</span> IsOne(<span class="Type">const</span> ZZ&amp; a); <span class="Comment">// test for 1</span>

<span class="Type">long</span> compare(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b); <span class="Comment">// returns sign of a-b (-1, 0, or 1).</span>

<span class="Comment">// PROMOTIONS: the comparison operators and the function compare</span>
<span class="Comment">// support promotion from long to ZZ on (a, b).</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                 Addition</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Comment">// operator notation:</span>

ZZ <span class="Statement">operator</span>+(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
ZZ <span class="Statement">operator</span>-(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
ZZ <span class="Statement">operator</span>-(<span class="Type">const</span> ZZ&amp; a); <span class="Comment">// unary -</span>

ZZ&amp; <span class="Statement">operator</span>+=(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a);
ZZ&amp; <span class="Statement">operator</span>+=(ZZ&amp; x, <span class="Type">long</span> a);

ZZ&amp; <span class="Statement">operator</span>-=(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a);
ZZ&amp; <span class="Statement">operator</span>-=(ZZ&amp; x, <span class="Type">long</span> a);

ZZ&amp; <span class="Statement">operator</span>++(ZZ&amp; x);  <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>++(ZZ&amp; x, <span class="Type">int</span>);  <span class="Comment">// postfix</span>

ZZ&amp; <span class="Statement">operator</span>--(ZZ&amp; x);  <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>--(ZZ&amp; x, <span class="Type">int</span>);  <span class="Comment">// postfix</span>



<span class="Comment">// procedural versions:</span>

<span class="Type">void</span> add(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b); <span class="Comment">// x = a + b</span>
<span class="Type">void</span> sub(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b); <span class="Comment">// x = a - b</span>
<span class="Type">void</span> SubPos(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b); <span class="Comment">// x = a-b; assumes a &gt;= b &gt;= 0.</span>
<span class="Type">void</span> negate(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a); <span class="Comment">// x = -a</span>

<span class="Type">void</span> abs(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a); <span class="Comment">// x = |a|</span>
ZZ abs(<span class="Type">const</span> ZZ&amp; a);

<span class="Comment">// PROMOTIONS: binary +, -, as well as the procedural versions add, sub</span>
<span class="Comment">// support promotions from long to ZZ on (a, b).</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                             Multiplication</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// operator notation:</span>

ZZ <span class="Statement">operator</span>*(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);

ZZ&amp; <span class="Statement">operator</span>*=(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a);
ZZ&amp; <span class="Statement">operator</span>*=(ZZ&amp; x, <span class="Type">long</span> a);

<span class="Comment">// procedural versions:</span>

<span class="Type">void</span> mul(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b); <span class="Comment">// x = a * b</span>

<span class="Type">void</span> sqr(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a); <span class="Comment">// x = a*a</span>
ZZ sqr(<span class="Type">const</span> ZZ&amp; a);

<span class="Comment">// PROMOTIONS: operator * and procedure mul support promotion</span>
<span class="Comment">// from long to ZZ on (a, b).</span>

<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                            Combined Multiply and Add </span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> MulAddTo(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b); <span class="Comment">// x += a*b</span>
<span class="Type">void</span> MulAddTo(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> b);      <span class="Comment">// x += a*b</span>


<span class="Type">void</span> MulSubFrom(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b); <span class="Comment">// x -= a*b</span>
<span class="Type">void</span> MulSubFrom(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> b);      <span class="Comment">// x -= a*b</span>

<span class="Comment">// NOTE: these are provided for both convenience and efficiency.</span>
<span class="Comment">// The single-precision versions may be significantly</span>
<span class="Comment">// faster than the code sequence </span>
<span class="Comment">//   mul(tmp, a, b); add(x, x, tmp);</span>
<span class="Comment">// However, for the single-precision version, the use-case</span>
<span class="Comment">// that is optimized is for |b| &lt; 2^{NTL_WSP_BOUND}.</span>



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                 Division</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Comment">// operator notation:</span>

ZZ <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
ZZ <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span>  b);

ZZ <span class="Statement">operator</span>%(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Type">long</span> <span class="Statement">operator</span>%(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> b);

ZZ&amp; <span class="Statement">operator</span>/=(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; b);
ZZ&amp; <span class="Statement">operator</span>/=(ZZ&amp; x, <span class="Type">long</span> b);

ZZ&amp; <span class="Statement">operator</span>%=(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; b);


<span class="Comment">// procedural versions:</span>

<span class="Type">void</span> DivRem(ZZ&amp; q, ZZ&amp; r, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Comment">// q = floor(a/b), r = a - b*q.</span>
<span class="Comment">// This implies that:</span>
<span class="Comment">//    |r| &lt; |b|, and if r != 0, sign(r) = sign(b)</span>

<span class="Type">void</span> div(ZZ&amp; q, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Comment">// q = floor(a/b)</span>

<span class="Type">void</span> rem(ZZ&amp; r, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Comment">// q = floor(a/b), r = a - b*q</span>


<span class="Comment">// single-precision variants:</span>

<span class="Type">long</span> DivRem(ZZ&amp; q, <span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> b);
<span class="Comment">// q = floor(a/b), r = a - b*q, return value is r.</span>

<span class="Type">long</span> rem(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> b);
<span class="Comment">// q = floor(a/b), r = a - b*q, return value is r.</span>


<span class="Comment">// divisibility testing:</span>

<span class="Type">long</span> divide(ZZ&amp; q, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Type">long</span> divide(ZZ&amp; q, <span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> b);
<span class="Comment">// if b | a, sets q = a/b and returns 1; otherwise returns 0.</span>

<span class="Type">long</span> divide(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Type">long</span> divide(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> b);
<span class="Comment">// if b | a, returns 1; otherwise returns 0.</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                    GCD's</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> GCD(ZZ&amp; d, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
ZZ GCD(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);

<span class="Comment">// d = gcd(a, b) (which is always non-negative).  Uses a binary GCD</span>
<span class="Comment">// algorithm.</span>



<span class="Type">void</span> XGCD(ZZ&amp; d, ZZ&amp; s, ZZ&amp; t, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);

<span class="Comment">//  d = gcd(a, b) = a*s + b*t.</span>

<span class="Comment">// The coefficients s and t are defined according to the standard</span>
<span class="Comment">// Euclidean algorithm applied to |a| and |b|, with the signs then</span>
<span class="Comment">// adjusted according to the signs of a and b.</span>

<span class="Comment">// The implementation may or may not Euclid's algorithm,</span>
<span class="Comment">// but the coefficients s and t are always computed as if </span>
<span class="Comment">// it did.</span>

<span class="Comment">// In particular, the following inequalties should hold:</span>
<span class="Comment">//    |s| &lt;= 1   OR   |s| &lt; |b|/(2*d)</span>
<span class="Comment">//    |t| &lt;= 1   OR   |t| &lt; |a|/(2*d)</span>



<span class="Comment">// special-purpose single-precision variants:</span>

<span class="Type">long</span> GCD(<span class="Type">long</span> a, <span class="Type">long</span> b);
<span class="Comment">// return value is gcd(a, b) (which is always non-negative)</span>

<span class="Type">void</span> XGCD(<span class="Type">long</span>&amp; d, <span class="Type">long</span>&amp; s, <span class="Type">long</span>&amp; t, <span class="Type">long</span> a, <span class="Type">long</span> b);
<span class="Comment">//  d = gcd(a, b) = a*s + b*t.</span>

<span class="Comment">//  The coefficients s and t are defined according to the standard</span>
<span class="Comment">//  Euclidean algorithm applied to |a| and |b|, with the signs then</span>
<span class="Comment">//  adjusted according to the signs of a and b.</span>



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                             Modular Arithmetic</span>

<span class="Comment">The following routines perform arithmetic mod n, where n &gt; 1.</span>

<span class="Comment">All arguments (other than exponents) are assumed to be in the range</span>
<span class="Comment">0..n-1.  Some routines may check this and raise an error if this</span>
<span class="Comment">does not hold.  Others may not, and the behaviour is unpredictable</span>
<span class="Comment">in this case.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>



<span class="Type">void</span> AddMod(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b, <span class="Type">const</span> ZZ&amp; n); <span class="Comment">// x = (a+b)%n</span>
ZZ AddMod(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b, <span class="Type">const</span> ZZ&amp; n);

<span class="Type">void</span> SubMod(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b, <span class="Type">const</span> ZZ&amp; n); <span class="Comment">// x = (a-b)%n</span>
ZZ SubMod(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b, <span class="Type">const</span> ZZ&amp; n);

<span class="Type">void</span> NegateMod(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; n); <span class="Comment">// x = -a % n</span>
ZZ NegateMod(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; n);

<span class="Type">void</span> MulMod(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b, <span class="Type">const</span> ZZ&amp; n); <span class="Comment">// x = (a*b)%n</span>
ZZ MulMod(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b, <span class="Type">const</span> ZZ&amp; n);

<span class="Type">void</span> SqrMod(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; n); <span class="Comment">// x = a^2 % n</span>
ZZ SqrMod(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; n);




<span class="Type">void</span> InvMod(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; n);
ZZ InvMod(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; n);
<span class="Comment">// x = a^{-1} mod n (0 &lt;= x &lt; n); error is raised occurs if inverse</span>
<span class="Comment">// not defined</span>

<span class="Comment">// If exceptions are enabled, an object of the following class </span>
<span class="Comment">// is throw by the InvMod routine if the inverse of a mod n is</span>
<span class="Comment">// not defined. The methods get_a() and get_n() give read-only</span>
<span class="Comment">// access to the offending values of a and n.</span>
<span class="Comment">// This also happens for any indirect call to InvMod, via PowerMod,</span>
<span class="Comment">// of via inverse computations in ZZ_p.</span>

<span class="Type">class</span> InvModErrorObject : <span class="Statement">public</span> ArithmeticErrorObject {
<span class="Statement">public</span>:
   InvModErrorObject(<span class="Type">const</span> <span class="Type">char</span> *s, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; n);
   <span class="Type">const</span> ZZ&amp; get_a() <span class="Type">const</span>;
   <span class="Type">const</span> ZZ&amp; get_n() <span class="Type">const</span>;
};

<span class="Type">long</span> InvModStatus(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; n);
<span class="Comment">// if gcd(a,n) = 1, then return-value = 0, x = a^{-1} mod n;</span>
<span class="Comment">// otherwise, return-value = 1, x = gcd(a, n)</span>

<span class="Type">void</span> PowerMod(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; e, <span class="Type">const</span> ZZ&amp; n);
ZZ PowerMod(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; e, <span class="Type">const</span> ZZ&amp; n);

<span class="Type">void</span> PowerMod(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> e, <span class="Type">const</span> ZZ&amp; n);
ZZ PowerMod(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> e, <span class="Type">const</span> ZZ&amp; n);

<span class="Comment">// x = a^e % n (e may be negative)</span>


<span class="Comment">// PROMOTIONS: AddMod, SubMod, and MulMod (both procedural and functional</span>
<span class="Comment">// forms) support promotions from long to ZZ on (a, b).</span>




<a name="modarith"></a>

<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                        Single-precision modular arithmetic</span>

<span class="Comment">These routines implement single-precision modular arithmetic.  If n is</span>
<span class="Comment">the modulus, all inputs should be in the range 0..n-1.  The number n</span>
<span class="Comment">itself should be in the range 2..NTL_SP_BOUND-1.</span>

<span class="Comment">Most of these routines are, of course, implemented as fast inline</span>
<span class="Comment">functions.  No checking is done that inputs are in range.</span>


<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>




<span class="Type">long</span> AddMod(<span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n); <span class="Comment">// return (a+b)%n</span>

<span class="Type">long</span> SubMod(<span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n); <span class="Comment">// return (a-b)%n</span>

<span class="Type">long</span> NegateMod(<span class="Type">long</span> a, <span class="Type">long</span> n); <span class="Comment">// return (-a)%n</span>

<span class="Type">long</span> MulMod(<span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n); <span class="Comment">// return (a*b)%n</span>

<span class="Type">long</span> MulMod(<span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n, mulmod_t ninv);
<span class="Comment">// return (a*b)%n.  </span>
<span class="Comment">//</span>
<span class="Comment">// Usually faster than plain MulMod when n is fixed for many</span>
<span class="Comment">// invocations. The value ninv should be precomputed as </span>
<span class="Comment">//   mulmod_t ninv = PrepMulMod(n);</span>

mulmod_t PrepMulMod(<span class="Type">long</span> n);
<span class="Comment">// Prepare auxiliary data for MulMod.</span>

<span class="Type">long</span> MulModPrecon(<span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n, mulmod_precon_t bninv);
<span class="Comment">// return (a*b)%n.  </span>
<span class="Comment">//</span>
<span class="Comment">// Usually much faster than MulMod when both b and n are fixed for </span>
<span class="Comment">// many invocations.  The value bninv should be precomputed as</span>
<span class="Comment">//   mulmod_precon_t bninv = PrepMulModPrecon(b, n);</span>
<span class="Comment">// or as</span>
<span class="Comment">//   mulmod_precon_t bninv = PrepMulModPrecon(b, n, ninv);</span>
<span class="Comment">// where ninv = PrepMulMod(n).</span>

mulmod_precon_t PrepMulModPrecon(<span class="Type">long</span> b, <span class="Type">long</span> n);
mulmod_precon_t PrepMulModPrecon(<span class="Type">long</span> b, <span class="Type">long</span> n, mulmod_t ninv);
<span class="Comment">// Prepare auxiliary data for MulModPrecon.</span>
<span class="Comment">// In the second version, ninv = PrepMulMod(n).</span>



<span class="Type">long</span> InvMod(<span class="Type">long</span> a, <span class="Type">long</span> n);
<span class="Comment">// computes a^{-1} mod n.  Error is raised if undefined.</span>

<span class="Type">long</span> InvModStatus(<span class="Type">long</span>&amp; x, <span class="Type">long</span> a, <span class="Type">long</span> n);
<span class="Comment">// if gcd(a,n) = 1, then return-value = 0, x = a^{-1} mod n;</span>
<span class="Comment">// otherwise, return-value = 1, x = gcd(a, n)</span>

<span class="Type">long</span> PowerMod(<span class="Type">long</span> a, <span class="Type">long</span> e, <span class="Type">long</span> n);
<span class="Comment">// computes a^e mod n (e may be negative)</span>

<span class="Comment">// The following are vector versions of the MulMod routines</span>
<span class="Comment">// They each compute x[i] = (a[i] * b)% n   i = 0..k-1 </span>

<span class="Type">void</span> VectorMulMod(<span class="Type">long</span> k, <span class="Type">long</span> *x, <span class="Type">const</span> <span class="Type">long</span> *a, <span class="Type">long</span> b, <span class="Type">long</span> n);

<span class="Type">void</span> VectorMulMod(<span class="Type">long</span> k, <span class="Type">long</span> *x, <span class="Type">const</span> <span class="Type">long</span> *a, <span class="Type">long</span> b, <span class="Type">long</span> n,
                  mulmod_t ninv);
<span class="Comment">// ninv = PrepMulMod(n)</span>

<span class="Type">void</span> VectorMulModPrecon(<span class="Type">long</span> k, <span class="Type">long</span> *x, <span class="Type">const</span> <span class="Type">long</span> *a, <span class="Type">long</span> b, <span class="Type">long</span> n,
                        mulmod_precon_t bninv);
<span class="Comment">// bninv = MulModPrecon(b, n)</span>


<span class="Comment">// The following is provided for legacy support, but is not generally </span>
<span class="Comment">// recommended:</span>

<span class="Type">long</span> MulDivRem(<span class="Type">long</span>&amp; q, <span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n, muldivrem_t bninv);
<span class="Comment">// return (a*b)%n, set q = (a*b)/n.  </span>
<span class="Comment">// The value bninv should be precomputed as </span>
<span class="Comment">//   muldivrem_t bninv = PrepMulDivRem(b, n);</span>
<span class="Comment">// or as</span>
<span class="Comment">//   muldivrem_t bninv = PrepMulDivRem(b, n, ninv);</span>
<span class="Comment">// where ninv = PrepMod(n).</span>

 muldivrem_t PrepMulDivRem(<span class="Type">long</span> b, <span class="Type">long</span> n);
 muldivrem_t PrepMulDivRem(<span class="Type">long</span> b, <span class="Type">long</span> n, mulmod_t ninv);
<span class="Comment">// Prepare auxiliary data for MulDivRem.</span>
<span class="Comment">// In the second version, ninv = PrepMulMod(n).</span>

<span class="Comment">// NOTE: despite the similarity in the interface to MulModPrecon,</span>
<span class="Comment">// this routine is typically implemented in a very different way,</span>
<span class="Comment">// and usually much less efficient.</span>
<span class="Comment">// It was initially designed for specialized, internal use</span>
<span class="Comment">// within NTL, but has been a part of the documented NTL</span>
<span class="Comment">// interface for some time, and remains so even after the</span>
<span class="Comment">// v9.0 upgrade.</span>



<span class="Comment">//</span>
<span class="Comment">// Compatibility notes:</span>
<span class="Comment">//</span>
<span class="Comment">// The types mulmod_t and muldivrem_t were introduced in NTL v9.0, as were the</span>
<span class="Comment">// functions PrepMulMod and PrepMulDivRem.  Prior to this, the built-in type</span>
<span class="Comment">// &quot;double&quot; played the role of these types, and the user was expected to</span>
<span class="Comment">// compute PrepMulMod(n) as 1/double(n) and PrepMulDivRem(b, n) as</span>
<span class="Comment">// double(b)/double(n).</span>
<span class="Comment">// </span>
<span class="Comment">// By abstracting these types, NTL is able to exploit a wider variety of</span>
<span class="Comment">// implementation strategies.  Some old client code may break, but the compiler</span>
<span class="Comment">// will easily find the code that needs to be updated, and the updates are</span>
<span class="Comment">// quite mechanical (unless the old code implicitly made use of the assumption</span>
<span class="Comment">// that NTL_SP_NBITS &lt;= NTL_DOUBLE_PRECISION-3).</span>
<span class="Comment">//</span>
<span class="Comment">// It is highly recommended that old client codes be updated.  However, one may</span>
<span class="Comment">// build NTL with the configuration option NTL_LEGACY_SP_MULMOD=on, which will</span>
<span class="Comment">// cause the interfaces and implementations to revert to their pre-v9.0</span>
<span class="Comment">// definitions.  This option will also make the following (obsolete) function</span>
<span class="Comment">// visible:</span>

    <span class="Type">long</span> MulMod2(<span class="Type">long</span> a, <span class="Type">long</span> b, <span class="Type">long</span> n, <span class="Type">double</span> bninv);
    <span class="Comment">// return (a*b)%n.  bninv = ((double) b)/((double) n).  This is faster</span>
    <span class="Comment">// if both n and b are fixed for many multiplications.</span>
    <span class="Comment">// Note: This is OBSOLETE -- use MulModPrecon.</span>


<span class="Comment">// As of v9.2 of NTL, this new interface allows for 60-bit moduli on most</span>
<span class="Comment">// 64-bit machines.  The requirement is that a working 128-bit integer type is</span>
<span class="Comment">// available.  For current versions of gcc, clang, and icc, this is available</span>
<span class="Comment">// vie the types __int128_t and __uint128_t.  If this requirement is met (which</span>
<span class="Comment">// is verified during NTL installation), then a &quot;long long&quot; implementation for</span>
<span class="Comment">// MulMod is used.  In versions 9.0 and 9.1 of NTL, a &quot;long double&quot;</span>
<span class="Comment">// implementation was introduced, which utilized the 80-bit extended double</span>
<span class="Comment">// precision hardware on x86 machines.  This also allows for 60-bit moduli on</span>
<span class="Comment">// 64-bit machines.</span>

<span class="Comment">// If 128-bit integer types are not available, or if you build NTL with the</span>
<span class="Comment">// NTL_DISABLE_LONGLONG=on flag, NTL will attempt to use the extended double</span>
<span class="Comment">// precision hardware to still allow 60-bit moduli.  If that is not possible,</span>
<span class="Comment">// or if you build NTL with the NTL_DISABLE_LONGDOUBLE=on flag, then NTL will</span>
<span class="Comment">// fall back to its &quot;classical&quot; implementation (pre-9.0) that relies on</span>
<span class="Comment">// double-precision arithmetic and imposes a 50-bit limit on moduli.  </span>

<span class="Comment">// Note that in on 64-bit machines, either the &quot;long long&quot; or &quot;long double&quot;</span>
<span class="Comment">// implementations could support 62-bit moduli, rather than 60-bit moduli.</span>
<span class="Comment">// However, the restriction to 60-bits speeds up a few things, and so seems</span>
<span class="Comment">// like a good trade off.  This is subject to change in the future.</span>

<span class="Comment">// Also note that all of these enhancements introduced since v9.0 are only</span>
<span class="Comment">// available to builds of NTL that use GMP.  Builds that don't use GMP will</span>
<span class="Comment">// still be restricted to 50-bit moduli on 64-bit machines. </span>

<span class="Comment">// On machines with 32-bit longs, moduli will be resricted to 30 bits,</span>
<span class="Comment">// regardless on the implementation, which will be based on &quot;long long&quot;</span>
<span class="Comment">// arithmetic (if a 64-bit integer type is available), or on double-precision</span>
<span class="Comment">// floating point (otherwise).</span>

<span class="Comment">// One can detect the new (v9) interface by testing if the macro</span>
<span class="Comment">// NTL_HAVE_MULMOD_T is defined.  The following code can be used to make</span>
<span class="Comment">// new-style NTL clients work with either older (pre-9.0) versions of NTL or</span>
<span class="Comment">// newer versions (post-9.0):</span>


   <span class="PreProc">#ifndef NTL_HAVE_MULMOD_T</span>
      <span class="Type">namespace</span> NTL {
         <span class="Type">typedef</span> <span class="Type">double</span> mulmod_t;
         <span class="Type">typedef</span> <span class="Type">double</span> muldivrem_t;

         <span class="Type">static</span> <span class="Type">inline</span> <span class="Type">double</span> PrepMulMod(<span class="Type">long</span> n)
         { <span class="Statement">return</span> <span class="Type">double</span>(<span class="Constant">1L</span>)/<span class="Type">double</span>(n); }

         <span class="Type">static</span> <span class="Type">inline</span> <span class="Type">double</span> PrepMulDivRem(<span class="Type">long</span> b, <span class="Type">long</span> n, <span class="Type">double</span> ninv)
         { <span class="Statement">return</span> <span class="Type">double</span>(b)*ninv; }

         <span class="Type">static</span> <span class="Type">inline</span> <span class="Type">double</span> PrepMulDivRem(<span class="Type">long</span> b, <span class="Type">long</span> n)
         { <span class="Statement">return</span> <span class="Type">double</span>(b)/<span class="Type">double</span>(n); }

         <span class="Type">static</span> <span class="Type">inline</span> <span class="Type">double</span> PrepMulModPrecon(<span class="Type">long</span> b, <span class="Type">long</span> n)
         { <span class="Statement">return</span> PrepMulModPrecon(b, n, PrepMulMod(n)); }
      }
   <span class="PreProc">#endif</span>





<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                               Shift Operations</span>

<span class="Comment">LeftShift by n means multiplication by 2^n</span>
<span class="Comment">RightShift by n means division by 2^n, with truncation toward zero</span>
<span class="Comment">  (so the sign is preserved).</span>

<span class="Comment">A negative shift amount reverses the direction of the shift.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// operator notation:</span>

ZZ <span class="Statement">operator</span>&lt;&lt;(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> n);
ZZ <span class="Statement">operator</span>&gt;&gt;(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> n);

ZZ&amp; <span class="Statement">operator</span>&lt;&lt;=(ZZ&amp; x, <span class="Type">long</span> n);
ZZ&amp; <span class="Statement">operator</span>&gt;&gt;=(ZZ&amp; x, <span class="Type">long</span> n);

<span class="Comment">// procedural versions:</span>

<span class="Type">void</span> LeftShift(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> n);
ZZ LeftShift(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> n);

<span class="Type">void</span> RightShift(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> n);
ZZ RightShift(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> n);



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                              Bits and Bytes</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>



<span class="Type">long</span> MakeOdd(ZZ&amp; x);
<span class="Comment">// removes factors of 2 from x, returns the number of 2's removed</span>
<span class="Comment">// returns 0 if x == 0</span>

<span class="Type">long</span> NumTwos(<span class="Type">const</span> ZZ&amp; x);
<span class="Comment">// returns max e such that 2^e divides x if x != 0, and returns 0 if x == 0.</span>

<span class="Type">long</span> IsOdd(<span class="Type">const</span> ZZ&amp; a); <span class="Comment">// test if a is odd</span>

<span class="Type">long</span> NumBits(<span class="Type">const</span> ZZ&amp; a);
<span class="Type">long</span> NumBits(<span class="Type">long</span> a);
<span class="Comment">// returns the number of bits in binary represenation of |a|; </span>
<span class="Comment">// NumBits(0) = 0</span>


<span class="Type">long</span> bit(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> k);
<span class="Type">long</span> bit(<span class="Type">long</span> a, <span class="Type">long</span> k);
<span class="Comment">// returns bit k of |a|, position 0 being the low-order bit.</span>
<span class="Comment">// If  k &lt; 0 or k &gt;= NumBits(a), returns 0.</span>


<span class="Type">void</span> trunc(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> k);
<span class="Comment">// x = low order k bits of |a|. </span>
<span class="Comment">// If k &lt;= 0, x = 0.</span>

<span class="Comment">// two functional variants:</span>
ZZ trunc_ZZ(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> k);
<span class="Type">long</span> trunc_long(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> k);

<span class="Type">long</span> SetBit(ZZ&amp; x, <span class="Type">long</span> p);
<span class="Comment">// returns original value of p-th bit of |a|, and replaces p-th bit of</span>
<span class="Comment">// a by 1 if it was zero; low order bit is bit 0; error if p &lt; 0;</span>
<span class="Comment">// the sign of x is maintained</span>

<span class="Type">long</span> SwitchBit(ZZ&amp; x, <span class="Type">long</span> p);
<span class="Comment">// returns original value of p-th bit of |a|, and switches the value</span>
<span class="Comment">// of p-th bit of a; low order bit is bit 0; error if p &lt; 0</span>
<span class="Comment">// the sign of x is maintained</span>

<span class="Type">long</span> weight(<span class="Type">const</span> ZZ&amp; a); <span class="Comment">// returns Hamming weight of |a|</span>
<span class="Type">long</span> weight(<span class="Type">long</span> a);

<span class="Comment">// bit-wise Boolean operations, procedural form:</span>

<span class="Type">void</span> bit_and(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b); <span class="Comment">// x = |a| AND |b|</span>
<span class="Type">void</span> bit_or(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b); <span class="Comment">// x = |a| OR |b|</span>
<span class="Type">void</span> bit_xor(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b); <span class="Comment">// x = |a| XOR |b|</span>

<span class="Comment">// bit-wise Boolean operations, operator notation:</span>

ZZ <span class="Statement">operator</span>&amp;(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
ZZ <span class="Statement">operator</span>|(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);
ZZ <span class="Statement">operator</span>^(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; b);

<span class="Comment">// PROMOTIONS: the above bit-wise operations (both procedural </span>
<span class="Comment">// and operator forms) provide promotions from long to ZZ on (a, b).</span>

ZZ&amp; <span class="Statement">operator</span>&amp;=(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; b);
ZZ&amp; <span class="Statement">operator</span>&amp;=(ZZ&amp; x, <span class="Type">long</span> b);

ZZ&amp; <span class="Statement">operator</span>|=(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; b);
ZZ&amp; <span class="Statement">operator</span>|=(ZZ&amp; x, <span class="Type">long</span> b);

ZZ&amp; <span class="Statement">operator</span>^=(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; b);
ZZ&amp; <span class="Statement">operator</span>^=(ZZ&amp; x, <span class="Type">long</span> b);



<span class="Comment">// conversions between byte sequences and ZZ's</span>

<span class="Type">void</span> ZZFromBytes(ZZ&amp; x, <span class="Type">const</span> <span class="Type">unsigned</span> <span class="Type">char</span> *p, <span class="Type">long</span> n);
ZZ ZZFromBytes(<span class="Type">const</span> <span class="Type">unsigned</span> <span class="Type">char</span> *p, <span class="Type">long</span> n);
<span class="Comment">// x = sum(p[i]*256^i, i=0..n-1). </span>
<span class="Comment">// NOTE: in the unusual event that a char is more than 8 bits, </span>
<span class="Comment">//       only the low order 8 bits of p[i] are used</span>

<span class="Type">void</span> BytesFromZZ(<span class="Type">unsigned</span> <span class="Type">char</span> *p, <span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> n);
<span class="Comment">// Computes p[0..n-1] such that abs(a) == sum(p[i]*256^i, i=0..n-1) mod 256^n.</span>

<span class="Type">long</span> NumBytes(<span class="Type">const</span> ZZ&amp; a);
<span class="Type">long</span> NumBytes(<span class="Type">long</span> a);
<span class="Comment">// returns # of base 256 digits needed to represent abs(a).</span>
<span class="Comment">// NumBytes(0) == 0.</span>


<a name="prg"></a>

<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                            Pseudo-Random Numbers</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Comment">// Routines for generating pseudo-random numbers.</span>

<span class="Comment">// These routines generate high qualtity, cryptographically strong</span>
<span class="Comment">// pseudo-random numbers.  They are implemented so that their behaviour</span>
<span class="Comment">// is completely independent of the underlying hardware and long </span>
<span class="Comment">// integer implementation.  Note, however, that other routines </span>
<span class="Comment">// throughout NTL use pseudo-random numbers, and because of this,</span>
<span class="Comment">// the word size of the machine can impact the sequence of numbers</span>
<span class="Comment">// seen by a client program.</span>


<span class="Type">void</span> SetSeed(<span class="Type">const</span> ZZ&amp; s);
<span class="Type">void</span> SetSeed(<span class="Type">const</span> <span class="Type">unsigned</span> <span class="Type">char</span> *data, <span class="Type">long</span> dlen);
<span class="Type">void</span> SetSeed(<span class="Type">const</span> RandomStream&amp; s);
<span class="Comment">// Initializes generator with a &quot;seed&quot;.</span>

<span class="Comment">// The first version hashes the binary representation of s to obtain a key for</span>
<span class="Comment">// a low-level RandomStream object (see below).</span>

<span class="Comment">// The second version does the same, hashing the first dlen bytes pointed to by</span>
<span class="Comment">// data to obtain a key for the RandomStream object.</span>

<span class="Comment">// The third version initializes the PRG state directly with the given</span>
<span class="Comment">// RandomStream object.</span>

<span class="Comment">// EXCEPTIONS: strong ES</span>


<span class="Type">void</span> RandomBnd(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; n);
ZZ RandomBnd(<span class="Type">const</span> ZZ&amp; n);
<span class="Type">void</span> RandomBnd(<span class="Type">long</span>&amp; x, <span class="Type">long</span> n);
<span class="Type">long</span> RandomBnd(<span class="Type">long</span> n);
<span class="Comment">// x = pseudo-random number in the range 0..n-1, or 0 if n &lt;= 0</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>

<span class="Type">void</span> VectorRandomBnd(<span class="Type">long</span> k, <span class="Type">long</span> *x, <span class="Type">long</span> n);
<span class="Comment">// equivalent to x[i] = RandomBnd(n) for i in [0..k), but faster</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>

<span class="Type">void</span> VectorRandomWord(<span class="Type">long</span> k, <span class="Type">long</span> *x);
<span class="Comment">// equivalent to x[i] = RandomWord(n) for i in [0..k), but faster</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>


<span class="Type">void</span> RandomBits(ZZ&amp; x, <span class="Type">long</span> l);
ZZ RandomBits_ZZ(<span class="Type">long</span> l);
<span class="Type">void</span> RandomBits(<span class="Type">long</span>&amp; x, <span class="Type">long</span> l);
<span class="Type">long</span> RandomBits_long(<span class="Type">long</span> l);
<span class="Comment">// x = pseudo-random number in the range 0..2^l-1.</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>

<span class="Type">void</span> RandomLen(ZZ&amp; x, <span class="Type">long</span> l);
ZZ RandomLen_ZZ(<span class="Type">long</span> l);
<span class="Type">void</span> RandomLen(<span class="Type">long</span>&amp; x, <span class="Type">long</span> l);
<span class="Type">long</span> RandomLen_long(<span class="Type">long</span> l);
<span class="Comment">// x = psuedo-random number with precisely l bits,</span>
<span class="Comment">// or 0 of l &lt;= 0.</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>

<span class="Type">unsigned</span> <span class="Type">long</span> RandomBits_ulong(<span class="Type">long</span> l);
<span class="Comment">// returns a pseudo-random number in the range 0..2^l-1</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>

<span class="Type">unsigned</span> <span class="Type">long</span> RandomWord();
<span class="Comment">// returns a word filled with pseudo-random bits.</span>
<span class="Comment">// Equivalent to RandomBits_ulong(NTL_BITS_PER_LONG).</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>



<span class="Type">class</span> RandomStream {
<span class="Comment">// The low-level pseudo-random generator (PRG).</span>
<span class="Comment">// After initializing it with a key, one can effectively read an unbounded</span>
<span class="Comment">// stream of pseudorandom bytes</span>

<span class="Statement">public</span>:

   <span class="Type">explicit</span> RandomStream(<span class="Type">const</span> <span class="Type">unsigned</span> <span class="Type">char</span> *key);
   <span class="Comment">// key should point to an array of NTL_PRG_KEYLEN bytes</span>
   <span class="Comment">// EXCEPTIONS: strong ES</span>

   <span class="Type">void</span> get(<span class="Type">unsigned</span> <span class="Type">char</span> *res, <span class="Type">long</span> n);
   <span class="Comment">// read the next n bytes from the stream and store to location pointed to by</span>
   <span class="Comment">// res</span>
   <span class="Comment">// EXCEPTIONS: throws a LogicError exception if n is negative</span>

   RandomStream(<span class="Type">const</span> RandomStream&amp;);
   <span class="Comment">// EXCEPTIONS: strong ES</span>

   RandomStream&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> RandomStream&amp;);
   <span class="Comment">// EXCEPTIONS: strong ES</span>
};


RandomStream&amp; GetCurrentRandomStream();
<span class="Comment">// get reference to the current PRG state. If SetSeed has not been called, it</span>
<span class="Comment">// is called with a default value (which should be unique to each</span>
<span class="Comment">// process/thread).  NOTE: this is a reference to a thread-local object, so</span>
<span class="Comment">// different threads will use different PRG's, and by default, each will be</span>
<span class="Comment">// initialized with a unique seed.</span>
<span class="Comment">// NOTE: using this reference, you can copy the current PRG state or assign a</span>
<span class="Comment">// different value to it; however, see the helper class RandomStreamPush below,</span>
<span class="Comment">// which may be more convenient.</span>
<span class="Comment">// EXCEPTIONS: strong ES</span>



<span class="Type">class</span> RandomStreamPush {
<span class="Comment">// RAII for saving/restoring current PRG state</span>
<span class="Statement">public</span>:
   RandomStreamPush();   <span class="Comment">// save a copy of the current PRG state</span>
                         <span class="Comment">// EXCEPTIONS: strong ES</span>

   ~RandomStreamPush();  <span class="Comment">// restore the saved copy of the PRG state</span>

<span class="Statement">private</span>:
   RandomStreamPush(<span class="Type">const</span> RandomStreamPush&amp;); <span class="Comment">// disable</span>
   <span class="Type">void</span> <span class="Statement">operator</span>=(<span class="Type">const</span> RandomStreamPush&amp;); <span class="Comment">// disable</span>
};


<span class="Type">void</span> DeriveKey(<span class="Type">unsigned</span> <span class="Type">char</span> *key, <span class="Type">long</span> klen,
               <span class="Type">const</span> <span class="Type">unsigned</span> <span class="Type">char</span> *data, <span class="Type">long</span> dlen);
<span class="Comment">// utility routine to derive from the byte string (data, dlen) a byte string</span>
<span class="Comment">// (key, klen).  Heuristically, if (data, dlen) has high entropy, then (key,</span>
<span class="Comment">// klen) should be pseudorandom.  This routine is also used internally to</span>
<span class="Comment">// derive PRG keys.</span>
<span class="Comment">// EXCEPTIONS: throws LogicError exception if klen &lt; 0 or hlen &lt; 0</span>



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">             Incremental Chinese Remaindering</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">long</span> CRT(ZZ&amp; a, ZZ&amp; p, <span class="Type">const</span> ZZ&amp; A, <span class="Type">const</span> ZZ&amp; P);
<span class="Type">long</span> CRT(ZZ&amp; a, ZZ&amp; p, <span class="Type">long</span> A, <span class="Type">long</span> P);

<span class="Comment">// 0 &lt;= A &lt; P, (p, P) = 1; computes a' such that a' = a mod p, </span>
<span class="Comment">// a' = A mod P, and -p*P/2 &lt; a' &lt;= p*P/2; sets a := a', p := p*P, and</span>
<span class="Comment">// returns 1 if a's value has changed, otherwise 0</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                  Rational Reconstruction</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">long</span> ReconstructRational(ZZ&amp; a, ZZ&amp; b, <span class="Type">const</span> ZZ&amp; x, <span class="Type">const</span> ZZ&amp; m,
                         <span class="Type">const</span> ZZ&amp; a_bound, <span class="Type">const</span> ZZ&amp; b_bound);

<span class="Comment">// 0 &lt;= x &lt; m, m &gt; 2 * a_bound * b_bound,</span>
<span class="Comment">// a_bound &gt;= 0, b_bound &gt; 0</span>

<span class="Comment">// This routine either returns 0, leaving a and b unchanged, </span>
<span class="Comment">// or returns 1 and sets a and b so that</span>
<span class="Comment">//   (1) a = b x (mod m),</span>
<span class="Comment">//   (2) |a| &lt;= a_bound, 0 &lt; b &lt;= b_bound, and</span>
<span class="Comment">//   (3) gcd(m, b) = gcd(a, b).</span>

<span class="Comment">// If there exist a, b satisfying (1), (2), and </span>
<span class="Comment">//   (3') gcd(m, b) = 1,</span>
<span class="Comment">// then a, b are uniquely determined if we impose the additional</span>
<span class="Comment">// condition that gcd(a, b) = 1;  moreover, if such a, b exist,</span>
<span class="Comment">// then these values are returned by the routine.</span>

<span class="Comment">// Unless the calling routine can *a priori* guarantee the existence</span>
<span class="Comment">// of a, b satisfying (1), (2), and (3'),</span>
<span class="Comment">// then to ensure correctness, the calling routine should check</span>
<span class="Comment">// that gcd(m, b) = 1, or equivalently, gcd(a, b) = 1.</span>

<span class="Comment">// This is implemented using a variant of Lehmer's extended</span>
<span class="Comment">// Euclidean algorithm.</span>

<span class="Comment">// Literature:  see G. Collins and M. Encarnacion, J. Symb. Comp. 20:287-297, </span>
<span class="Comment">// 1995; P. Wang, M. Guy, and J. Davenport, SIGSAM Bulletin 16:2-3, 1982. </span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                Primality Testing </span>
<span class="Comment">                           and Prime Number Generation</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> GenPrime(ZZ&amp; n, <span class="Type">long</span> l, <span class="Type">long</span> err = <span class="Constant">80</span>);
ZZ GenPrime_ZZ(<span class="Type">long</span> l, <span class="Type">long</span> err = <span class="Constant">80</span>);
<span class="Type">long</span> GenPrime_long(<span class="Type">long</span> l, <span class="Type">long</span> err = <span class="Constant">80</span>);

<span class="Comment">// GenPrime generates a random prime n of length l so that the</span>
<span class="Comment">// probability that the resulting n is composite is bounded by 2^(-err).</span>
<span class="Comment">// This calls the routine RandomPrime below, and uses results of </span>
<span class="Comment">// Damgard, Landrock, Pomerance to &quot;optimize&quot; </span>
<span class="Comment">// the number of Miller-Rabin trials at the end.</span>

<span class="Comment">// Note that the prime generated by GenPrime and RandomPrime </span>
<span class="Comment">// is not entirely platform independent.  The behavior of the</span>
<span class="Comment">// algorithm can depend on the size parameters, such as  NTL_SP_NBITS </span>
<span class="Comment">// NTL_ZZ_NBITS, and NTL_BITS_PER_LONG. However, on a given platform</span>
<span class="Comment">// you will always get the same prime if you run the algorithm</span>
<span class="Comment">// with the same RandomStream. </span>

<span class="Comment">// Note that RandomPrime and GenPrime are thread boosted.</span>
<span class="Comment">// Nevertheless, their behavior is independent of the number of</span>
<span class="Comment">// available threads and any indeterminacy arising from </span>
<span class="Comment">// concurrent computation.</span>

<span class="Type">void</span> GenGermainPrime(ZZ&amp; n, <span class="Type">long</span> l, <span class="Type">long</span> err = <span class="Constant">80</span>);
ZZ GenGermainPrime_ZZ(<span class="Type">long</span> l, <span class="Type">long</span> err = <span class="Constant">80</span>);
<span class="Type">long</span> GenGermainPrime_long(<span class="Type">long</span> l, <span class="Type">long</span> err = <span class="Constant">80</span>);

<span class="Comment">// A (Sophie) Germain prime is a prime p such that p' = 2*p+1 is also a prime.</span>
<span class="Comment">// Such primes are useful for cryptographic applications...cryptographers</span>
<span class="Comment">// sometimes call p' a &quot;strong&quot; or &quot;safe&quot; prime.</span>
<span class="Comment">// GenGermainPrime generates a random Germain prime n of length l</span>
<span class="Comment">// so that the probability that either n or 2*n+1 is not a prime</span>
<span class="Comment">// is bounded by 2^(-err).</span>

<span class="Comment">// Note that GenGermainPrime is thread boosted.</span>
<span class="Comment">// Nevertheless, its behavior is independent of the number of</span>
<span class="Comment">// available threads and any indeterminacy arising from </span>
<span class="Comment">// concurrent computation.</span>

<span class="Type">long</span> ProbPrime(<span class="Type">const</span> ZZ&amp; n, <span class="Type">long</span> NumTrials = <span class="Constant">10</span>);
<span class="Type">long</span> ProbPrime(<span class="Type">long</span> n, <span class="Type">long</span> NumTrials = <span class="Constant">10</span>);
<span class="Comment">// performs trial division, followed by one Miller-Rabin test</span>
<span class="Comment">// to the base 2, followed by NumTrials Miller-witness tests </span>
<span class="Comment">// with random bases.</span>

<span class="Type">void</span> RandomPrime(ZZ&amp; n, <span class="Type">long</span> l, <span class="Type">long</span> NumTrials=<span class="Constant">10</span>);
ZZ RandomPrime_ZZ(<span class="Type">long</span> l, <span class="Type">long</span> NumTrials=<span class="Constant">10</span>);
<span class="Type">long</span> RandomPrime_long(<span class="Type">long</span> l, <span class="Type">long</span> NumTrials=<span class="Constant">10</span>);
<span class="Comment">// n = random l-bit prime.  Uses ProbPrime with NumTrials.</span>

<span class="Type">void</span> NextPrime(ZZ&amp; n, <span class="Type">const</span> ZZ&amp; m, <span class="Type">long</span> NumTrials=<span class="Constant">10</span>);
ZZ NextPrime(<span class="Type">const</span> ZZ&amp; m, <span class="Type">long</span> NumTrials=<span class="Constant">10</span>);
<span class="Comment">// n = smallest prime &gt;= m.  Uses ProbPrime with NumTrials.</span>

<span class="Type">long</span> NextPrime(<span class="Type">long</span> m, <span class="Type">long</span> NumTrials=<span class="Constant">10</span>);
<span class="Comment">// Single precision version of the above.</span>
<span class="Comment">// Result will always be bounded by NTL_ZZ_SP_BOUND, and an</span>
<span class="Comment">// error is raised if this cannot be satisfied.</span>

<span class="Type">long</span> MillerWitness(<span class="Type">const</span> ZZ&amp; n, <span class="Type">const</span> ZZ&amp; w);
<span class="Comment">// Tests if w is a witness to compositeness a la Miller.  Assumption: n is</span>
<span class="Comment">// odd and positive, 0 &lt;= w &lt; n.</span>
<span class="Comment">// Return value of 1 implies n is composite.</span>
<span class="Comment">// Return value of 0 indicates n might be prime.</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                               Exponentiation</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> power(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> e); <span class="Comment">// x = a^e (e &gt;= 0)</span>
ZZ power(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> e);

<span class="Type">void</span> power(ZZ&amp; x, <span class="Type">long</span> a, <span class="Type">long</span> e);

<span class="Comment">// two functional variants:</span>
ZZ power_ZZ(<span class="Type">long</span> a, <span class="Type">long</span> e);
<span class="Type">long</span> power_long(<span class="Type">long</span> a, <span class="Type">long</span> e);

<span class="Type">void</span> power2(ZZ&amp; x, <span class="Type">long</span> e); <span class="Comment">// x = 2^e (e &gt;= 0)</span>
ZZ power2_ZZ(<span class="Type">long</span> e);


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                               Square Roots</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> SqrRoot(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a); <span class="Comment">// x = floor(a^{1/2}) (a &gt;= 0)</span>
ZZ SqrRoot(<span class="Type">const</span> ZZ&amp; a);

<span class="Type">long</span> SqrRoot(<span class="Type">long</span> a);




<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                    Jacobi symbol and modular square roots</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">long</span> Jacobi(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; n);
<span class="Comment">//  compute Jacobi symbol of a and n; assumes 0 &lt;= a &lt; n, n odd</span>

<span class="Type">void</span> SqrRootMod(ZZ&amp; x, <span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; n);
ZZ SqrRootMod(<span class="Type">const</span> ZZ&amp; a, <span class="Type">const</span> ZZ&amp; n);
<span class="Comment">//  computes square root of a mod n; assumes n is an odd prime, and</span>
<span class="Comment">//  that a is a square mod n, with 0 &lt;= a &lt; n.</span>




<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                             Input/Output</span>

<span class="Comment">I/O Format:</span>

<span class="Comment">Numbers are written in base 10, with an optional minus sign.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

istream&amp; <span class="Statement">operator</span>&gt;&gt;(istream&amp; s, ZZ&amp; x);
ostream&amp; <span class="Statement">operator</span>&lt;&lt;(ostream&amp; s, <span class="Type">const</span> ZZ&amp; a);



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                            Miscellany</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Comment">// The following macros are defined:</span>

<span class="PreProc">#define NTL_ZZ_NBITS (...)  </span><span class="Comment">// number of bits in a limb;</span>
                            <span class="Comment">// a ZZ is represented as a sequence of limbs.</span>

<span class="PreProc">#define NTL_SP_NBITS (...)  </span><span class="Comment">// max number of bits in a &quot;single-precision&quot; number</span>

<span class="PreProc">#define NTL_WSP_NBITS (...)  </span><span class="Comment">// max number of bits in a &quot;wide single-precision&quot;</span>
                             <span class="Comment">// number</span>

<span class="Comment">// The following relations hold:</span>
<span class="Comment">//    30 &lt;= NTL_SP_NBITS &lt;= NTL_WSP_NBITS </span>
<span class="Comment">//       &lt;= min(NTL_ZZ_NBITS, NTL_BITS_PER_LONG-2)</span>

<span class="Comment">// Note that NTL_ZZ_NBITS may be less than, equal to, or greater than</span>
<span class="Comment">// NTL_BITS_PER_LONG  -- no particular relationship should be assumed to hold.</span>
<span class="Comment">// In particular, expressions like (1L &lt;&lt; NTL_ZZ_BITS) might overflow.</span>
<span class="Comment">//</span>
<span class="Comment">// &quot;single-precision&quot; numbers are meant to be used in conjunction with the</span>
<span class="Comment">//  single-precision modular arithmetic routines.</span>
<span class="Comment">//</span>
<span class="Comment">// &quot;wide single-precision&quot; numbers are meant to be used in conjunction</span>
<span class="Comment">//  with the ZZ arithmetic routines for optimal efficiency.</span>

<span class="Comment">// The following auxiliary macros are also defined</span>

<span class="PreProc">#define NTL_FRADIX (...) </span><span class="Comment">// double-precision value of 2^NTL_ZZ_NBITS</span>

<span class="PreProc">#define NTL_SP_BOUND (</span><span class="Constant">1L</span><span class="PreProc"> &lt;&lt; NTL_SP_NBITS)</span>
<span class="PreProc">#define NTL_WSP_BOUND (</span><span class="Constant">1L</span><span class="PreProc"> &lt;&lt; NTL_WSP_NBITS)</span>


<span class="Comment">// Backward compatibility notes:</span>
<span class="Comment">//</span>
<span class="Comment">// Prior to version 5.0, the macro NTL_NBITS was defined,</span>
<span class="Comment">// along with the macro NTL_RADIX defined to be (1L &lt;&lt; NTL_NBITS).</span>
<span class="Comment">// While these macros are still available when using NTL's traditional </span>
<span class="Comment">// long integer package (i.e., when NTL_GMP_LIP is not set), </span>
<span class="Comment">// they are not available when using the GMP as the primary long integer </span>
<span class="Comment">// package (i.e., when NTL_GMP_LIP is set).</span>
<span class="Comment">// Furthermore, when writing portable programs, one should avoid these macros.</span>
<span class="Comment">// Note that when using traditional long integer arithmetic, we have</span>
<span class="Comment">//    NTL_ZZ_NBITS = NTL_SP_NBITS = NTL_WSP_NBITS = NTL_NBITS.</span>
<span class="Comment">//</span>
<span class="Comment">// Prior to version 9.0, one could also assume that </span>
<span class="Comment">//   NTL_SP_NBITS &lt;= NTL_DOUBLE_PRECISION-3;</span>
<span class="Comment">// however, this is no longer the case (unless NTL is build with he NTL_LEGACY_SP_MULMOD</span>
<span class="Comment">// flag turned on).</span>


<span class="Comment">// Here are some additional functions.</span>

<span class="Type">void</span> clear(ZZ&amp; x); <span class="Comment">// x = 0</span>
<span class="Type">void</span> set(ZZ&amp; x);   <span class="Comment">// x = 1</span>

<span class="Type">void</span> swap(ZZ&amp; x, ZZ&amp; y);
<span class="Comment">// swap x and y (done by &quot;pointer swapping&quot;, if possible).</span>

<span class="Type">double</span> log(<span class="Type">const</span> ZZ&amp; a);
<span class="Comment">// returns double precision approximation to log(a)</span>

<span class="Type">long</span> NextPowerOfTwo(<span class="Type">long</span> m);
<span class="Comment">// returns least nonnegative k such that 2^k &gt;= m</span>

<span class="Type">long</span> ZZ::size() <span class="Type">const</span>;
<span class="Comment">// a.size() returns the number of limbs of |a|; the</span>
<span class="Comment">// size of 0 is 0.</span>

<span class="Type">void</span> ZZ::SetSize(<span class="Type">long</span> k)
<span class="Comment">// a.SetSize(k) does not change the value of a, but simply pre-allocates</span>
<span class="Comment">// space for k limbs.</span>

<span class="Type">long</span> ZZ::SinglePrecision() <span class="Type">const</span>;
<span class="Comment">// a.SinglePrecision() is a predicate that tests if abs(a) &lt; NTL_SP_BOUND</span>

<span class="Type">long</span> ZZ::WideSinglePrecision() <span class="Type">const</span>;
<span class="Comment">// a.WideSinglePrecision() is a predicate that tests if abs(a) &lt; NTL_WSP_BOUND</span>

<span class="Type">long</span> digit(<span class="Type">const</span> ZZ&amp; a, <span class="Type">long</span> k);
<span class="Comment">// returns k-th limb of |a|, position 0 being the low-order</span>
<span class="Comment">// limb.</span>
<span class="Comment">// OBSOLETE: this routine is only available when using NTL's traditional</span>
<span class="Comment">// long integer arithmetic, and should not be used in programs</span>
<span class="Comment">// that are meant to be portable. You should instead use the </span>
<span class="Comment">// routine ZZ_limbs_get, defined in ZZ_limbs.h.</span>

<span class="Type">void</span> ZZ::kill();
<span class="Comment">// a.kill() sets a to zero and frees the space held by a.</span>

<span class="Type">void</span> ZZ::swap(ZZ&amp; x);
<span class="Comment">// swap method (done by &quot;pointer swapping&quot; if possible)</span>

ZZ::ZZ(INIT_SIZE_TYPE, <span class="Type">long</span> k);
<span class="Comment">// ZZ(INIT_SIZE, k) initializes to 0, but space is pre-allocated so</span>
<span class="Comment">// that numbers x with x.size() &lt;= k can be stored without</span>
<span class="Comment">// re-allocation.</span>

<span class="Type">static</span> <span class="Type">const</span> ZZ&amp; ZZ::zero();
<span class="Comment">// ZZ::zero() yields a read-only reference to zero, if you need it.</span>




<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                    Small Prime Generation</span>

<span class="Comment">primes are generated in sequence, starting at 2, and up to a maximum</span>
<span class="Comment">that is no more than min(NTL_SP_BOUND, 2^30).</span>

<span class="Comment">Example: print the primes up to 1000</span>

<span class="Comment">#include &lt;NTL/ZZ.h&gt;</span>

<span class="Comment">main()</span>
<span class="Comment">{</span>
<span class="Comment">   PrimeSeq s;</span>
<span class="Comment">   long p;</span>

<span class="Comment">   p = s.next();</span>
<span class="Comment">   while (p &lt;= 1000) {</span>
<span class="Comment">      cout &lt;&lt; p &lt;&lt; &quot;\n&quot;;</span>
<span class="Comment">      p = s.next();</span>
<span class="Comment">   }</span>
<span class="Comment">}</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>



<span class="Type">class</span> PrimeSeq {
<span class="Statement">public</span>:
   PrimeSeq();
   ~PrimeSeq();

   <span class="Type">long</span> next();
   <span class="Comment">// returns next prime in the sequence.  returns 0 if list of small</span>
   <span class="Comment">// primes is exhausted.</span>

   <span class="Type">void</span> reset(<span class="Type">long</span> b);
   <span class="Comment">// resets generator so that the next prime in the sequence is the</span>
   <span class="Comment">// smallest prime &gt;= b.</span>

<span class="Statement">private</span>:
   PrimeSeq(<span class="Type">const</span> PrimeSeq&amp;);        <span class="Comment">// disabled</span>
   <span class="Type">void</span> <span class="Statement">operator</span>=(<span class="Type">const</span> PrimeSeq&amp;);  <span class="Comment">// disabled</span>

};


</pre>
</body>
</html>
<!-- vim: set foldmethod=manual : -->