1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>~/ntl-11.4.2/doc/ZZ_pEX.cpp.html</title>
<meta name="Generator" content="Vim/8.0">
<meta name="plugin-version" content="vim7.4_v2">
<meta name="syntax" content="cpp">
<meta name="settings" content="use_css,pre_wrap,no_foldcolumn,expand_tabs,prevent_copy=">
<meta name="colorscheme" content="macvim">
<style type="text/css">
<!--
pre { white-space: pre-wrap; font-family: monospace; color: #000000; background-color: #ffffff; }
body { font-family: monospace; color: #000000; background-color: #ffffff; }
* { font-size: 1em; }
.String { color: #4a708b; }
.PreProc { color: #1874cd; }
.Statement { color: #b03060; font-weight: bold; }
.Comment { color: #0000ee; font-style: italic; }
.Type { color: #008b00; font-weight: bold; }
-->
</style>
<script type='text/javascript'>
<!--
-->
</script>
</head>
<body>
<pre id='vimCodeElement'>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment">MODULE: ZZ_pEX</span>
<span class="Comment">SUMMARY:</span>
<span class="Comment">The class ZZ_pEX represents polynomials over ZZ_pE,</span>
<span class="Comment">and so can be used, for example, for arithmentic in GF(p^n)[X].</span>
<span class="Comment">However, except where mathematically necessary (e.g., GCD computations),</span>
<span class="Comment">ZZ_pE need not be a field.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="PreProc">#include </span><span class="String"><NTL/ZZ_pE.h></span>
<span class="PreProc">#include </span><span class="String"><NTL/vec_ZZ_pE.h></span>
<span class="Type">class</span> ZZ_pEX {
<span class="Statement">public</span>:
ZZ_pEX(); <span class="Comment">// initial value 0</span>
ZZ_pEX(<span class="Type">const</span> ZZ_pEX& a); <span class="Comment">// copy</span>
<span class="Type">explicit</span> ZZ_pEX(<span class="Type">const</span> ZZ_pE& a); <span class="Comment">// promotion</span>
<span class="Type">explicit</span> ZZ_pEX(<span class="Type">const</span> ZZ_p& a);
<span class="Type">explicit</span> ZZ_pEX(<span class="Type">long</span> a);
ZZ_pEX& <span class="Statement">operator</span>=(<span class="Type">const</span> ZZ_pEX& a); <span class="Comment">// assignment</span>
ZZ_pEX& <span class="Statement">operator</span>=(<span class="Type">const</span> ZZ_pE& a);
ZZ_pEX& <span class="Statement">operator</span>=(<span class="Type">const</span> ZZ_p& a);
ZZ_pEX& <span class="Statement">operator</span>=(<span class="Type">long</span> a);
~ZZ_pEX(); <span class="Comment">// destructor</span>
ZZ_pEX(ZZ_pEX&& a);
<span class="Comment">// move constructor (C++11 only)</span>
<span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>
<span class="PreProc">#ifndef NTL_DISABLE_MOVE_ASSIGN</span>
ZZ_pEX& <span class="Statement">operator</span>=(ZZ_pEX&& a);
<span class="Comment">// move assignment (C++11 only)</span>
<span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>
<span class="PreProc">#endif</span>
ZZ_pEX(INIT_MONO_TYPE, <span class="Type">long</span> i, <span class="Type">const</span> ZZ_pE& c);
ZZ_pEX(INIT_MONO_TYPE, <span class="Type">long</span> i, <span class="Type">const</span> ZZ_p& c);
ZZ_pEX(INIT_MONO_TYPE, <span class="Type">long</span> i, <span class="Type">long</span> c);
<span class="Comment">// initialize to c*X^i, invoke as ZZ_pEX(INIT_MONO, i, c)</span>
ZZ_pEX(INIT_MONO_TYPE, <span class="Type">long</span> i);
<span class="Comment">// initialize to X^i, invoke as ZZ_pEX(INIT_MONO, i)</span>
<span class="Comment">// typedefs to aid in generic programming</span>
<span class="Type">typedef</span> ZZ_pE coeff_type;
<span class="Type">typedef</span> ZZ_pEXModulus modulus_type;
<span class="Comment">// ...</span>
};
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Accessing coefficients</span>
<span class="Comment">The degree of a polynomial f is obtained as deg(f),</span>
<span class="Comment">where the zero polynomial, by definition, has degree -1.</span>
<span class="Comment">A polynomial f is represented as a coefficient vector.</span>
<span class="Comment">Coefficients may be accesses in one of two ways.</span>
<span class="Comment">The safe, high-level method is to call the function</span>
<span class="Comment">coeff(f, i) to get the coefficient of X^i in the polynomial f,</span>
<span class="Comment">and to call the function SetCoeff(f, i, a) to set the coefficient</span>
<span class="Comment">of X^i in f to the scalar a.</span>
<span class="Comment">One can also access the coefficients more directly via a lower level </span>
<span class="Comment">interface. The coefficient of X^i in f may be accessed using </span>
<span class="Comment">subscript notation f[i]. In addition, one may write f.SetLength(n)</span>
<span class="Comment">to set the length of the underlying coefficient vector to n,</span>
<span class="Comment">and f.SetMaxLength(n) to allocate space for n coefficients,</span>
<span class="Comment">without changing the coefficient vector itself.</span>
<span class="Comment">After setting coefficients using this low-level interface,</span>
<span class="Comment">one must ensure that leading zeros in the coefficient vector</span>
<span class="Comment">are stripped afterwards by calling the function f.normalize().</span>
<span class="Comment">NOTE: the coefficient vector of f may also be accessed directly</span>
<span class="Comment">as f.rep; however, this is not recommended. Also, for a properly</span>
<span class="Comment">normalized polynomial f, we have f.rep.length() == deg(f)+1,</span>
<span class="Comment">and deg(f) >= 0 => f.rep[deg(f)] != 0.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">long</span> deg(<span class="Type">const</span> ZZ_pEX& a); <span class="Comment">// return deg(a); deg(0) == -1.</span>
<span class="Type">const</span> ZZ_pE& coeff(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> i);
<span class="Comment">// returns the coefficient of X^i, or zero if i not in range</span>
<span class="Type">const</span> ZZ_pE& LeadCoeff(<span class="Type">const</span> ZZ_pEX& a);
<span class="Comment">// returns leading term of a, or zero if a == 0</span>
<span class="Type">const</span> ZZ_pE& ConstTerm(<span class="Type">const</span> ZZ_pEX& a);
<span class="Comment">// returns constant term of a, or zero if a == 0</span>
<span class="Type">void</span> SetCoeff(ZZ_pEX& x, <span class="Type">long</span> i, <span class="Type">const</span> ZZ_pE& a);
<span class="Type">void</span> SetCoeff(ZZ_pEX& x, <span class="Type">long</span> i, <span class="Type">const</span> ZZ_p& a);
<span class="Type">void</span> SetCoeff(ZZ_pEX& x, <span class="Type">long</span> i, <span class="Type">long</span> a);
<span class="Comment">// makes coefficient of X^i equal to a; error is raised if i < 0</span>
<span class="Type">void</span> SetCoeff(ZZ_pEX& x, <span class="Type">long</span> i);
<span class="Comment">// makes coefficient of X^i equal to 1; error is raised if i < 0</span>
<span class="Type">void</span> SetX(ZZ_pEX& x); <span class="Comment">// x is set to the monomial X</span>
<span class="Type">long</span> IsX(<span class="Type">const</span> ZZ_pEX& a); <span class="Comment">// test if x = X</span>
ZZ_pE& ZZ_pEX::<span class="Statement">operator</span>[](<span class="Type">long</span> i);
<span class="Type">const</span> ZZ_pE& ZZ_pEX::<span class="Statement">operator</span>[](<span class="Type">long</span> i) <span class="Type">const</span>;
<span class="Comment">// indexing operators: f[i] is the coefficient of X^i ---</span>
<span class="Comment">// i should satsify i >= 0 and i <= deg(f).</span>
<span class="Comment">// No range checking (unless NTL_RANGE_CHECK is defined).</span>
<span class="Type">void</span> ZZ_pEX::SetLength(<span class="Type">long</span> n);
<span class="Comment">// f.SetLength(n) sets the length of the inderlying coefficient</span>
<span class="Comment">// vector to n --- after this call, indexing f[i] for i = 0..n-1</span>
<span class="Comment">// is valid.</span>
<span class="Type">void</span> ZZ_pEX::normalize();
<span class="Comment">// f.normalize() strips leading zeros from coefficient vector of f</span>
<span class="Type">void</span> ZZ_pEX::SetMaxLength(<span class="Type">long</span> n);
<span class="Comment">// f.SetMaxLength(n) pre-allocate spaces for n coefficients. The</span>
<span class="Comment">// polynomial that f represents is unchanged.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Comparison</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">long</span> <span class="Statement">operator</span>==(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
<span class="Type">long</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
<span class="Type">long</span> IsZero(<span class="Type">const</span> ZZ_pEX& a); <span class="Comment">// test for 0</span>
<span class="Type">long</span> IsOne(<span class="Type">const</span> ZZ_pEX& a); <span class="Comment">// test for 1</span>
<span class="Comment">// PROMOTIONS: ==, != promote {long,ZZ_p,ZZ_pE} to ZZ_pEX on (a, b).</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Addition</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// operator notation:</span>
ZZ_pEX <span class="Statement">operator</span>+(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
ZZ_pEX <span class="Statement">operator</span>-(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
ZZ_pEX <span class="Statement">operator</span>-(<span class="Type">const</span> ZZ_pEX& a);
ZZ_pEX& <span class="Statement">operator</span>+=(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a);
ZZ_pEX& <span class="Statement">operator</span>+=(ZZ_pEX& x, <span class="Type">const</span> ZZ_pE& a);
ZZ_pEX& <span class="Statement">operator</span>+=(ZZ_pEX& x, <span class="Type">const</span> ZZ_p& a);
ZZ_pEX& <span class="Statement">operator</span>+=(ZZ_pEX& x, <span class="Type">long</span> a);
ZZ_pEX& <span class="Statement">operator</span>++(ZZ_pEX& x); <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>++(ZZ_pEX& x, <span class="Type">int</span>); <span class="Comment">// postfix</span>
ZZ_pEX& <span class="Statement">operator</span>-=(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a);
ZZ_pEX& <span class="Statement">operator</span>-=(ZZ_pEX& x, <span class="Type">const</span> ZZ_pE& a);
ZZ_pEX& <span class="Statement">operator</span>-=(ZZ_pEX& x, <span class="Type">const</span> ZZ_p& a);
ZZ_pEX& <span class="Statement">operator</span>-=(ZZ_pEX& x, <span class="Type">long</span> a);
ZZ_pEX& <span class="Statement">operator</span>--(ZZ_pEX& x); <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>--(ZZ_pEX& x, <span class="Type">int</span>); <span class="Comment">// postfix</span>
<span class="Comment">// procedural versions:</span>
<span class="Type">void</span> add(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b); <span class="Comment">// x = a + b</span>
<span class="Type">void</span> sub(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b); <span class="Comment">// x = a - b </span>
<span class="Type">void</span> negate(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a); <span class="Comment">// x = - a </span>
<span class="Comment">// PROMOTIONS: +, -, add, sub promote {long,ZZ_p,ZZ_pE} to ZZ_pEX on (a, b).</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Multiplication</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// operator notation:</span>
ZZ_pEX <span class="Statement">operator</span>*(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
ZZ_pEX& <span class="Statement">operator</span>*=(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a);
ZZ_pEX& <span class="Statement">operator</span>*=(ZZ_pEX& x, <span class="Type">const</span> ZZ_pE& a);
ZZ_pEX& <span class="Statement">operator</span>*=(ZZ_pEX& x, <span class="Type">const</span> ZZ_p& a);
ZZ_pEX& <span class="Statement">operator</span>*=(ZZ_pEX& x, <span class="Type">long</span> a);
<span class="Comment">// procedural versions:</span>
<span class="Type">void</span> mul(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b); <span class="Comment">// x = a * b</span>
<span class="Type">void</span> sqr(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a); <span class="Comment">// x = a^2</span>
ZZ_pEX sqr(<span class="Type">const</span> ZZ_pEX& a);
<span class="Comment">// PROMOTIONS: *, mul promote {long,ZZ_p,ZZ_pE} to ZZ_pEX on (a, b).</span>
<span class="Type">void</span> power(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> e); <span class="Comment">// x = a^e (e >= 0)</span>
ZZ_pEX power(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> e);
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Shift Operations</span>
<span class="Comment">LeftShift by n means multiplication by X^n</span>
<span class="Comment">RightShift by n means division by X^n</span>
<span class="Comment">A negative shift amount reverses the direction of the shift.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// operator notation:</span>
ZZ_pEX <span class="Statement">operator</span><<(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
ZZ_pEX <span class="Statement">operator</span>>>(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
ZZ_pEX& <span class="Statement">operator</span><<=(ZZ_pEX& x, <span class="Type">long</span> n);
ZZ_pEX& <span class="Statement">operator</span>>>=(ZZ_pEX& x, <span class="Type">long</span> n);
<span class="Comment">// procedural versions:</span>
<span class="Type">void</span> LeftShift(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
ZZ_pEX LeftShift(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
<span class="Type">void</span> RightShift(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
ZZ_pEX RightShift(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Division</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// operator notation:</span>
ZZ_pEX <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
ZZ_pEX <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pE& b);
ZZ_pEX <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_p& b);
ZZ_pEX <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> b);
ZZ_pEX <span class="Statement">operator</span>%(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
ZZ_pEX& <span class="Statement">operator</span>/=(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a);
ZZ_pEX& <span class="Statement">operator</span>/=(ZZ_pEX& x, <span class="Type">const</span> ZZ_pE& a);
ZZ_pEX& <span class="Statement">operator</span>/=(ZZ_pEX& x, <span class="Type">const</span> ZZ_p& a);
ZZ_pEX& <span class="Statement">operator</span>/=(ZZ_pEX& x, <span class="Type">long</span> a);
ZZ_pEX& <span class="Statement">operator</span>%=(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a);
<span class="Comment">// procedural versions:</span>
<span class="Type">void</span> DivRem(ZZ_pEX& q, ZZ_pEX& r, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
<span class="Comment">// q = a/b, r = a%b</span>
<span class="Type">void</span> div(ZZ_pEX& q, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
<span class="Type">void</span> div(ZZ_pEX& q, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pE& b);
<span class="Type">void</span> div(ZZ_pEX& q, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_p& b);
<span class="Type">void</span> div(ZZ_pEX& q, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> b);
<span class="Comment">// q = a/b</span>
<span class="Type">void</span> rem(ZZ_pEX& r, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
<span class="Comment">// r = a%b</span>
<span class="Type">long</span> divide(ZZ_pEX& q, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
<span class="Comment">// if b | a, sets q = a/b and returns 1; otherwise returns 0</span>
<span class="Type">long</span> divide(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
<span class="Comment">// if b | a, sets q = a/b and returns 1; otherwise returns 0</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> GCD's</span>
<span class="Comment">These routines are intended for use when ZZ_pE is a field.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> GCD(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
ZZ_pEX GCD(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
<span class="Comment">// x = GCD(a, b), x is always monic (or zero if a==b==0).</span>
<span class="Type">void</span> XGCD(ZZ_pEX& d, ZZ_pEX& s, ZZ_pEX& t, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
<span class="Comment">// d = gcd(a,b), a s + b t = d </span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Input/Output</span>
<span class="Comment">I/O format:</span>
<span class="Comment"> [a_0 a_1 ... a_n],</span>
<span class="Comment">represents the polynomial a_0 + a_1*X + ... + a_n*X^n.</span>
<span class="Comment">On output, all coefficients will be polynomials of degree < ZZ_pE::degree() and</span>
<span class="Comment">a_n not zero (the zero polynomial is [ ]). On input, the coefficients</span>
<span class="Comment">are arbitrary polynomials which are reduced modulo ZZ_pE::modulus(), </span>
<span class="Comment">and leading zeros stripped.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
istream& <span class="Statement">operator</span>>>(istream& s, ZZ_pEX& x);
ostream& <span class="Statement">operator</span><<(ostream& s, <span class="Type">const</span> ZZ_pEX& a);
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Some utility routines</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> diff(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a); <span class="Comment">// x = derivative of a</span>
ZZ_pEX diff(<span class="Type">const</span> ZZ_pEX& a);
<span class="Type">void</span> MakeMonic(ZZ_pEX& x);
<span class="Comment">// if x != 0 makes x into its monic associate; LeadCoeff(x) must be</span>
<span class="Comment">// invertible in this case</span>
<span class="Type">void</span> reverse(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> hi);
ZZ_pEX reverse(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> hi);
<span class="Type">void</span> reverse(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a);
ZZ_pEX reverse(<span class="Type">const</span> ZZ_pEX& a);
<span class="Comment">// x = reverse of a[0]..a[hi] (hi >= -1);</span>
<span class="Comment">// hi defaults to deg(a) in second version</span>
<span class="Type">void</span> VectorCopy(vec_ZZ_pE& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
vec_ZZ_pE VectorCopy(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
<span class="Comment">// x = copy of coefficient vector of a of length exactly n.</span>
<span class="Comment">// input is truncated or padded with zeroes as appropriate.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Random Polynomials</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> random(ZZ_pEX& x, <span class="Type">long</span> n);
ZZ_pEX random_ZZ_pEX(<span class="Type">long</span> n);
<span class="Comment">// x = random polynomial of degree < n </span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Polynomial Evaluation and related problems</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> BuildFromRoots(ZZ_pEX& x, <span class="Type">const</span> vec_ZZ_pE& a);
ZZ_pEX BuildFromRoots(<span class="Type">const</span> vec_ZZ_pE& a);
<span class="Comment">// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()</span>
<span class="Type">void</span> eval(ZZ_pE& b, <span class="Type">const</span> ZZ_pEX& f, <span class="Type">const</span> ZZ_pE& a);
ZZ_pE eval(<span class="Type">const</span> ZZ_pEX& f, <span class="Type">const</span> ZZ_pE& a);
<span class="Comment">// b = f(a)</span>
<span class="Type">void</span> eval(ZZ_pE& b, <span class="Type">const</span> ZZ_pX& f, <span class="Type">const</span> ZZ_pE& a);
ZZ_pE eval(<span class="Type">const</span> ZZ_pEX& f, <span class="Type">const</span> ZZ_pE& a);
<span class="Comment">// b = f(a); uses ModComp algorithm for ZZ_pX</span>
<span class="Type">void</span> eval(vec_ZZ_pE& b, <span class="Type">const</span> ZZ_pEX& f, <span class="Type">const</span> vec_ZZ_pE& a);
vec_ZZ_pE eval(<span class="Type">const</span> ZZ_pEX& f, <span class="Type">const</span> vec_ZZ_pE& a);
<span class="Comment">// b.SetLength(a.length()); b[i] = f(a[i]) for 0 <= i < a.length()</span>
<span class="Type">void</span> interpolate(ZZ_pEX& f, <span class="Type">const</span> vec_ZZ_pE& a, <span class="Type">const</span> vec_ZZ_pE& b);
ZZ_pEX interpolate(<span class="Type">const</span> vec_ZZ_pE& a, <span class="Type">const</span> vec_ZZ_pE& b);
<span class="Comment">// interpolates the polynomial f satisfying f(a[i]) = b[i]. </span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Arithmetic mod X^n</span>
<span class="Comment">Required: n >= 0; otherwise, an error is raised.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> trunc(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n); <span class="Comment">// x = a % X^n</span>
ZZ_pEX trunc(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
<span class="Type">void</span> MulTrunc(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b, <span class="Type">long</span> n);
ZZ_pEX MulTrunc(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b, <span class="Type">long</span> n);
<span class="Comment">// x = a * b % X^n</span>
<span class="Type">void</span> SqrTrunc(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
ZZ_pEX SqrTrunc(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
<span class="Comment">// x = a^2 % X^n</span>
<span class="Type">void</span> InvTrunc(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
ZZ_pEX InvTrunc(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> n);
<span class="Comment">// computes x = a^{-1} % X^m. Must have ConstTerm(a) invertible.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Modular Arithmetic (without pre-conditioning)</span>
<span class="Comment">Arithmetic mod f.</span>
<span class="Comment">All inputs and outputs are polynomials of degree less than deg(f), and</span>
<span class="Comment">deg(f) > 0.</span>
<span class="Comment">NOTE: if you want to do many computations with a fixed f, use the</span>
<span class="Comment">ZZ_pEXModulus data structure and associated routines below for better</span>
<span class="Comment">performance.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> MulMod(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b, <span class="Type">const</span> ZZ_pEX& f);
ZZ_pEX MulMod(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b, <span class="Type">const</span> ZZ_pEX& f);
<span class="Comment">// x = (a * b) % f</span>
<span class="Type">void</span> SqrMod(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& f);
ZZ_pEX SqrMod(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& f);
<span class="Comment">// x = a^2 % f</span>
<span class="Type">void</span> MulByXMod(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& f);
ZZ_pEX MulByXMod(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& f);
<span class="Comment">// x = (a * X) mod f</span>
<span class="Type">void</span> InvMod(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& f);
ZZ_pEX InvMod(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& f);
<span class="Comment">// x = a^{-1} % f, error is a is not invertible</span>
<span class="Type">long</span> InvModStatus(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& f);
<span class="Comment">// if (a, f) = 1, returns 0 and sets x = a^{-1} % f; otherwise,</span>
<span class="Comment">// returns 1 and sets x = (a, f)</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Modular Arithmetic with Pre-Conditioning</span>
<span class="Comment">If you need to do a lot of arithmetic modulo a fixed f, build</span>
<span class="Comment">ZZ_pEXModulus F for f. This pre-computes information about f that</span>
<span class="Comment">speeds up subsequent computations.</span>
<span class="Comment">As an example, the following routine the product modulo f of a vector</span>
<span class="Comment">of polynomials.</span>
<span class="Comment">#include <NTL/ZZ_pEX.h></span>
<span class="Comment">void product(ZZ_pEX& x, const vec_ZZ_pEX& v, const ZZ_pEX& f)</span>
<span class="Comment">{</span>
<span class="Comment"> ZZ_pEXModulus F(f);</span>
<span class="Comment"> ZZ_pEX res;</span>
<span class="Comment"> res = 1;</span>
<span class="Comment"> long i;</span>
<span class="Comment"> for (i = 0; i < v.length(); i++)</span>
<span class="Comment"> MulMod(res, res, v[i], F); </span>
<span class="Comment"> x = res;</span>
<span class="Comment">}</span>
<span class="Comment">NOTE: A ZZ_pEX may be used wherever a ZZ_pEXModulus is required,</span>
<span class="Comment">and a ZZ_pEXModulus may be used wherever a ZZ_pEX is required.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">class</span> ZZ_pEXModulus {
<span class="Statement">public</span>:
ZZ_pEXModulus(); <span class="Comment">// initially in an unusable state</span>
ZZ_pEXModulus(<span class="Type">const</span> ZZ_pEX& f); <span class="Comment">// initialize with f, deg(f) > 0</span>
ZZ_pEXModulus(<span class="Type">const</span> ZZ_pEXModulus&); <span class="Comment">// copy</span>
ZZ_pEXModulus& <span class="Statement">operator</span>=(<span class="Type">const</span> ZZ_pEXModulus&); <span class="Comment">// assignment</span>
~ZZ_pEXModulus(); <span class="Comment">// destructor</span>
<span class="Statement">operator</span> <span class="Type">const</span> ZZ_pEX& () <span class="Type">const</span>; <span class="Comment">// implicit read-only access to f</span>
<span class="Type">const</span> ZZ_pEX& val() <span class="Type">const</span>; <span class="Comment">// explicit read-only access to f</span>
};
<span class="Type">void</span> build(ZZ_pEXModulus& F, <span class="Type">const</span> ZZ_pEX& f);
<span class="Comment">// pre-computes information about f and stores it in F. Must have</span>
<span class="Comment">// deg(f) > 0. Note that the declaration ZZ_pEXModulus F(f) is</span>
<span class="Comment">// equivalent to ZZ_pEXModulus F; build(F, f).</span>
<span class="Comment">// In the following, f refers to the polynomial f supplied to the</span>
<span class="Comment">// build routine, and n = deg(f).</span>
<span class="Type">long</span> deg(<span class="Type">const</span> ZZ_pEXModulus& F); <span class="Comment">// return n=deg(f)</span>
<span class="Type">void</span> MulMod(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b,
<span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX MulMod(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// x = (a * b) % f; deg(a), deg(b) < n</span>
<span class="Type">void</span> SqrMod(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX SqrMod(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// x = a^2 % f; deg(a) < n</span>
<span class="Type">void</span> PowerMod(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ& e, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX PowerMod(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ& e, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Type">void</span> PowerMod(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> e, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX PowerMod(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">long</span> e, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// x = a^e % f; e >= 0, deg(a) < n. Uses a sliding window algorithm.</span>
<span class="Comment">// (e may be negative)</span>
<span class="Type">void</span> PowerXMod(ZZ_pEX& x, <span class="Type">const</span> ZZ& e, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX PowerXMod(<span class="Type">const</span> ZZ& e, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Type">void</span> PowerXMod(ZZ_pEX& x, <span class="Type">long</span> e, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX PowerXMod(<span class="Type">long</span> e, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// x = X^e % f (e may be negative)</span>
<span class="Type">void</span> rem(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// x = a % f</span>
<span class="Type">void</span> DivRem(ZZ_pEX& q, ZZ_pEX& r, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// q = a/f, r = a%f</span>
<span class="Type">void</span> div(ZZ_pEX& q, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// q = a/f</span>
<span class="Comment">// operator notation:</span>
ZZ_pEX <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX <span class="Statement">operator</span>%(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX& <span class="Statement">operator</span>/=(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX& <span class="Statement">operator</span>%=(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> vectors of ZZ_pEX's</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">typedef</span> Vec<ZZ_pEX> vec_ZZ_pEX; <span class="Comment">// backward compatibility</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Modular Composition</span>
<span class="Comment">Modular composition is the problem of computing g(h) mod f for</span>
<span class="Comment">polynomials f, g, and h.</span>
<span class="Comment">The algorithm employed is that of Brent & Kung (Fast algorithms for</span>
<span class="Comment">manipulating formal power series, JACM 25:581-595, 1978), which uses</span>
<span class="Comment">O(n^{1/2}) modular polynomial multiplications, and O(n^2) scalar</span>
<span class="Comment">operations.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> CompMod(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEX& h,
<span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX CompMod(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEX& h,
<span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// x = g(h) mod f; deg(h) < n</span>
<span class="Type">void</span> Comp2Mod(ZZ_pEX& x1, ZZ_pEX& x2, <span class="Type">const</span> ZZ_pEX& g1, <span class="Type">const</span> ZZ_pEX& g2,
<span class="Type">const</span> ZZ_pEX& h, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// xi = gi(h) mod f (i=1,2); deg(h) < n.</span>
<span class="Type">void</span> Comp3Mod(ZZ_pEX& x1, ZZ_pEX& x2, ZZ_pEX& x3,
<span class="Type">const</span> ZZ_pEX& g1, <span class="Type">const</span> ZZ_pEX& g2, <span class="Type">const</span> ZZ_pEX& g3,
<span class="Type">const</span> ZZ_pEX& h, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// xi = gi(h) mod f (i=1..3); deg(h) < n.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Composition with Pre-Conditioning</span>
<span class="Comment">If a single h is going to be used with many g's then you should build</span>
<span class="Comment">a ZZ_pEXArgument for h, and then use the compose routine below. The</span>
<span class="Comment">routine build computes and stores h, h^2, ..., h^m mod f. After this</span>
<span class="Comment">pre-computation, composing a polynomial of degree roughly n with h</span>
<span class="Comment">takes n/m multiplies mod f, plus n^2 scalar multiplies. Thus,</span>
<span class="Comment">increasing m increases the space requirement and the pre-computation</span>
<span class="Comment">time, but reduces the composition time.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">struct</span> ZZ_pEXArgument {
vec_ZZ_pEX H;
};
<span class="Type">void</span> build(ZZ_pEXArgument& H, <span class="Type">const</span> ZZ_pEX& h, <span class="Type">const</span> ZZ_pEXModulus& F, <span class="Type">long</span> m);
<span class="Comment">// Pre-Computes information about h. m > 0, deg(h) < n.</span>
<span class="Type">void</span> CompMod(ZZ_pEX& x, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXArgument& H,
<span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX CompMod(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXArgument& H,
<span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Type">extern</span> <span class="Type">thread_local</span> <span class="Type">long</span> ZZ_pEXArgBound;
<span class="Comment">// Initially 0. If this is set to a value greater than zero, then</span>
<span class="Comment">// composition routines will allocate a table of no than about</span>
<span class="Comment">// ZZ_pEXArgBound KB. Setting this value affects all compose routines</span>
<span class="Comment">// and the power projection and minimal polynomial routines below, </span>
<span class="Comment">// and indirectly affects many routines in ZZ_pEXFactoring.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> power projection routines</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> project(ZZ_pE& x, <span class="Type">const</span> ZZ_pEVector& a, <span class="Type">const</span> ZZ_pEX& b);
ZZ_pE project(<span class="Type">const</span> ZZ_pEVector& a, <span class="Type">const</span> ZZ_pEX& b);
<span class="Comment">// x = inner product of a with coefficient vector of b</span>
<span class="Type">void</span> ProjectPowers(vec_ZZ_pE& x, <span class="Type">const</span> vec_ZZ_pE& a, <span class="Type">long</span> k,
<span class="Type">const</span> ZZ_pEX& h, <span class="Type">const</span> ZZ_pEXModulus& F);
vec_ZZ_pE ProjectPowers(<span class="Type">const</span> vec_ZZ_pE& a, <span class="Type">long</span> k,
<span class="Type">const</span> ZZ_pEX& h, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// Computes the vector</span>
<span class="Comment">// project(a, 1), project(a, h), ..., project(a, h^{k-1} % f). </span>
<span class="Comment">// This operation is the "transpose" of the modular composition operation.</span>
<span class="Type">void</span> ProjectPowers(vec_ZZ_pE& x, <span class="Type">const</span> vec_ZZ_pE& a, <span class="Type">long</span> k,
<span class="Type">const</span> ZZ_pEXArgument& H, <span class="Type">const</span> ZZ_pEXModulus& F);
vec_ZZ_pE ProjectPowers(<span class="Type">const</span> vec_ZZ_pE& a, <span class="Type">long</span> k,
<span class="Type">const</span> ZZ_pEXArgument& H, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// same as above, but uses a pre-computed ZZ_pEXArgument</span>
<span class="Type">class</span> ZZ_pEXTransMultiplier { <span class="Comment">/*</span><span class="Comment"> ... </span><span class="Comment">*/</span> };
<span class="Type">void</span> build(ZZ_pEXTransMultiplier& B, <span class="Type">const</span> ZZ_pEX& b, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Type">void</span> UpdateMap(vec_ZZ_pE& x, <span class="Type">const</span> vec_ZZ_pE& a,
<span class="Type">const</span> ZZ_pEXMultiplier& B, <span class="Type">const</span> ZZ_pEXModulus& F);
vec_ZZ_pE UpdateMap(<span class="Type">const</span> vec_ZZ_pE& a,
<span class="Type">const</span> ZZ_pEXMultiplier& B, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// Computes the vector</span>
<span class="Comment">// project(a, b), project(a, (b*X)%f), ..., project(a, (b*X^{n-1})%f)</span>
<span class="Comment">// Required: a.length() <= deg(F), deg(b) < deg(F).</span>
<span class="Comment">// This is "transposed" MulMod by B.</span>
<span class="Comment">// Input may have "high order" zeroes stripped.</span>
<span class="Comment">// Output always has high order zeroes stripped.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Minimum Polynomials</span>
<span class="Comment">These routines should be used only when ZZ_pE is a field.</span>
<span class="Comment">All of these routines implement the algorithm from [Shoup, J. Symbolic</span>
<span class="Comment">Comp. 17:371-391, 1994] and [Shoup, J. Symbolic Comp. 20:363-397,</span>
<span class="Comment">1995], based on transposed modular composition and the</span>
<span class="Comment">Berlekamp/Massey algorithm.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> MinPolySeq(ZZ_pEX& h, <span class="Type">const</span> vec_ZZ_pE& a, <span class="Type">long</span> m);
ZZ_pEX MinPolySeq(<span class="Type">const</span> vec_ZZ_pE& a, <span class="Type">long</span> m);
<span class="Comment">// computes the minimum polynomial of a linealy generated sequence; m</span>
<span class="Comment">// is a bound on the degree of the polynomial; required: a.length() >=</span>
<span class="Comment">// 2*m</span>
<span class="Type">void</span> ProbMinPolyMod(ZZ_pEX& h, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F, <span class="Type">long</span> m);
ZZ_pEX ProbMinPolyMod(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F, <span class="Type">long</span> m);
<span class="Type">void</span> ProbMinPolyMod(ZZ_pEX& h, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX ProbMinPolyMod(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// computes the monic minimal polynomial if (g mod f). m = a bound on</span>
<span class="Comment">// the degree of the minimal polynomial; in the second version, this</span>
<span class="Comment">// argument defaults to n. The algorithm is probabilistic, always</span>
<span class="Comment">// returns a divisor of the minimal polynomial, and returns a proper</span>
<span class="Comment">// divisor with probability at most m/2^{ZZ_pE::degree()}.</span>
<span class="Type">void</span> MinPolyMod(ZZ_pEX& h, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F, <span class="Type">long</span> m);
ZZ_pEX MinPolyMod(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F, <span class="Type">long</span> m);
<span class="Type">void</span> MinPolyMod(ZZ_pEX& h, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX MinPolyMod(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// same as above, but guarantees that result is correct</span>
<span class="Type">void</span> IrredPolyMod(ZZ_pEX& h, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F, <span class="Type">long</span> m);
ZZ_pEX IrredPolyMod(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F, <span class="Type">long</span> m);
<span class="Type">void</span> IrredPolyMod(ZZ_pEX& h, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX IrredPolyMod(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// same as above, but assumes that f is irreducible, or at least that</span>
<span class="Comment">// the minimal poly of g is itself irreducible. The algorithm is</span>
<span class="Comment">// deterministic (and is always correct).</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Composition and Minimal Polynomials in towers</span>
<span class="Comment">These are implementations of algorithms that will be described</span>
<span class="Comment">and analyzed in a forthcoming paper.</span>
<span class="Comment">The routines require that p is prime, but ZZ_pE need not be a field.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> CompTower(ZZ_pEX& x, <span class="Type">const</span> ZZ_pX& g, <span class="Type">const</span> ZZ_pEXArgument& h,
<span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX CompTower(<span class="Type">const</span> ZZ_pX& g, <span class="Type">const</span> ZZ_pEXArgument& h,
<span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Type">void</span> CompTower(ZZ_pEX& x, <span class="Type">const</span> ZZ_pX& g, <span class="Type">const</span> ZZ_pEX& h,
<span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pEX CompTower(<span class="Type">const</span> ZZ_pX& g, <span class="Type">const</span> ZZ_pEX& h,
<span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// x = g(h) mod f</span>
<span class="Type">void</span> ProbMinPolyTower(ZZ_pX& h, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F,
<span class="Type">long</span> m);
ZZ_pX ProbMinPolyTower(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F, <span class="Type">long</span> m);
<span class="Type">void</span> ProbMinPolyTower(ZZ_pX& h, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pX ProbMinPolyTower(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// Uses a probabilistic algorithm to compute the minimal</span>
<span class="Comment">// polynomial of (g mod f) over ZZ_p.</span>
<span class="Comment">// The parameter m is a bound on the degree of the minimal polynomial</span>
<span class="Comment">// (default = deg(f)*ZZ_pE::degree()).</span>
<span class="Comment">// In general, the result will be a divisor of the true minimimal</span>
<span class="Comment">// polynomial. For correct results, use the MinPoly routines below.</span>
<span class="Type">void</span> MinPolyTower(ZZ_pX& h, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F, <span class="Type">long</span> m);
ZZ_pX MinPolyTower(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F, <span class="Type">long</span> m);
<span class="Type">void</span> MinPolyTower(ZZ_pX& h, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pX MinPolyTower(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// Same as above, but result is always correct.</span>
<span class="Type">void</span> IrredPolyTower(ZZ_pX& h, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F, <span class="Type">long</span> m);
ZZ_pX IrredPolyTower(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F, <span class="Type">long</span> m);
<span class="Type">void</span> IrredPolyTower(ZZ_pX& h, <span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pX IrredPolyTower(<span class="Type">const</span> ZZ_pEX& g, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Comment">// Same as above, but assumes the minimal polynomial is</span>
<span class="Comment">// irreducible, and uses a slightly faster, deterministic algorithm.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Traces, norms, resultants</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> TraceMod(ZZ_pE& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEXModulus& F);
ZZ_pE TraceMod(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEXModulus& F);
<span class="Type">void</span> TraceMod(ZZ_pE& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& f);
ZZ_pE TraceMod(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEXModulus& f);
<span class="Comment">// x = Trace(a mod f); deg(a) < deg(f)</span>
<span class="Type">void</span> TraceVec(vec_ZZ_pE& S, <span class="Type">const</span> ZZ_pEX& f);
vec_ZZ_pE TraceVec(<span class="Type">const</span> ZZ_pEX& f);
<span class="Comment">// S[i] = Trace(X^i mod f), i = 0..deg(f)-1; 0 < deg(f)</span>
<span class="Comment">// The above trace routines implement the asymptotically fast trace</span>
<span class="Comment">// algorithm from [von zur Gathen and Shoup, Computational Complexity,</span>
<span class="Comment">// 1992].</span>
<span class="Type">void</span> NormMod(ZZ_pE& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& f);
ZZ_pE NormMod(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& f);
<span class="Comment">// x = Norm(a mod f); 0 < deg(f), deg(a) < deg(f)</span>
<span class="Type">void</span> resultant(ZZ_pE& x, <span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
ZZ_pE resultant(<span class="Type">const</span> ZZ_pEX& a, <span class="Type">const</span> ZZ_pEX& b);
<span class="Comment">// x = resultant(a, b)</span>
<span class="Comment">// NormMod and resultant require that ZZ_pE is a field.</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Miscellany</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> clear(ZZ_pEX& x) <span class="Comment">// x = 0</span>
<span class="Type">void</span> set(ZZ_pEX& x); <span class="Comment">// x = 1</span>
<span class="Type">void</span> ZZ_pEX::kill();
<span class="Comment">// f.kill() sets f to 0 and frees all memory held by f. Equivalent to</span>
<span class="Comment">// f.rep.kill().</span>
ZZ_pEX::ZZ_pEX(INIT_SIZE_TYPE, <span class="Type">long</span> n);
<span class="Comment">// ZZ_pEX(INIT_SIZE, n) initializes to zero, but space is pre-allocated</span>
<span class="Comment">// for n coefficients</span>
<span class="Type">static</span> <span class="Type">const</span> ZZ_pEX& zero();
<span class="Comment">// ZZ_pEX::zero() is a read-only reference to 0</span>
<span class="Type">void</span> ZZ_pEX::swap(ZZ_pEX& x);
<span class="Type">void</span> swap(ZZ_pEX& x, ZZ_pEX& y);
<span class="Comment">// swap (via "pointer swapping")</span>
ZZ_pEX::ZZ_pEX(<span class="Type">long</span> i, <span class="Type">const</span> ZZ_pE& c);
ZZ_pEX::ZZ_pEX(<span class="Type">long</span> i, <span class="Type">const</span> ZZ_p& c);
ZZ_pEX::ZZ_pEX(<span class="Type">long</span> i, <span class="Type">long</span> c);
<span class="Comment">// initialize to c*X^i, provided for backward compatibility</span>
</pre>
</body>
</html>
<!-- vim: set foldmethod=manual : -->
|