1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>~/ntl-11.4.2/doc/lzz_p.cpp.html</title>
<meta name="Generator" content="Vim/8.0">
<meta name="plugin-version" content="vim7.4_v2">
<meta name="syntax" content="cpp">
<meta name="settings" content="use_css,pre_wrap,no_foldcolumn,expand_tabs,prevent_copy=">
<meta name="colorscheme" content="macvim">
<style type="text/css">
<!--
pre { white-space: pre-wrap; font-family: monospace; color: #000000; background-color: #ffffff; }
body { font-family: monospace; color: #000000; background-color: #ffffff; }
* { font-size: 1em; }
.String { color: #4a708b; }
.PreProc { color: #1874cd; }
.Statement { color: #b03060; font-weight: bold; }
.Comment { color: #0000ee; font-style: italic; }
.Type { color: #008b00; font-weight: bold; }
-->
</style>
<script type='text/javascript'>
<!--
-->
</script>
</head>
<body>
<pre id='vimCodeElement'>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment">MODULE: zz_p</span>
<span class="Comment">SUMMARY:</span>
<span class="Comment">The class zz_p is used to represent integers mod p, where 1 <= p <</span>
<span class="Comment">NTL_SP_BOUND. Note that NTL_SP_BOUND is usually 2^30 on 32-bit machines and</span>
<span class="Comment">2^50 on 64-bit machines.</span>
<span class="Comment">The modulus p may be any positive integer, not necessarily prime.</span>
<span class="Comment">Objects of the class zz_p are represented as a long in the range 0..p-1.</span>
<span class="Comment">An executing program maintains a "current modulus", which is set to p using</span>
<span class="Comment">zz_p::init(p). The current modulus *must* be initialized before any operations</span>
<span class="Comment">on zz_p's are performed. The modulus may be changed, and a mechanism is provided</span>
<span class="Comment">for saving and restoring a modulus (see classes zz_pPush and zz_pContext below).</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="PreProc">#include </span><span class="String"><NTL/ZZ.h></span>
<span class="PreProc">#include </span><span class="String"><NTL/FFT.h></span>
<span class="PreProc">#include </span><span class="String"><NTL/SmartPtr.h></span>
<span class="Type">class</span> zz_p {
<span class="Statement">public</span>:
zz_p(); <span class="Comment">// initial value 0</span>
zz_p(<span class="Type">const</span> zz_p& a); <span class="Comment">// copy constructor</span>
<span class="Type">explicit</span> zz_p(<span class="Type">long</span> a); <span class="Comment">// promotion constructor</span>
zz_p& <span class="Statement">operator</span>=(<span class="Type">const</span> zz_p& a); <span class="Comment">// assignment</span>
zz_p& <span class="Statement">operator</span>=(<span class="Type">long</span> a); <span class="Comment">// assignment</span>
<span class="Type">static</span> <span class="Type">void</span> init(<span class="Type">long</span> p);
<span class="Comment">// set the modulus to p, where p > 1. This must be called before any</span>
<span class="Comment">// zz_p constructors are invoked.</span>
<span class="Comment">// The number p must have at most NTL_SP_NBITS bits.</span>
<span class="Type">static</span> <span class="Type">long</span> modulus();
<span class="Comment">// zz_p::modulus() yields read-only reference to the current</span>
<span class="Comment">// modulus</span>
<span class="Comment">// typedefs to aid in generic programming</span>
<span class="Type">typedef</span> <span class="Type">long</span> rep_type;
<span class="Type">typedef</span> zz_pContext context_type;
<span class="Type">typedef</span> zz_pBak bak_type;
<span class="Type">typedef</span> zz_pPush push_type;
<span class="Type">typedef</span> zz_pX poly_type;
};
<span class="Type">long</span> rep(zz_p a); <span class="Comment">// read-only access to representation of a</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Comparison</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">long</span> <span class="Statement">operator</span>==(zz_p a, zz_p b);
<span class="Type">long</span> <span class="Statement">operator</span>!=(zz_p a, zz_p b);
<span class="Type">long</span> IsZero(zz_p a); <span class="Comment">// test for 0</span>
<span class="Type">long</span> IsOne(zz_p a); <span class="Comment">// test for 1</span>
<span class="Comment">// PROMOTIONS: operators ==, != promote long to zz_p on (a, b).</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Addition </span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// operator notation:</span>
zz_p <span class="Statement">operator</span>+(zz_p a, zz_p b);
zz_p <span class="Statement">operator</span>-(zz_p a, zz_p b);
zz_p <span class="Statement">operator</span>-(zz_p a); <span class="Comment">// unary -</span>
zz_p& <span class="Statement">operator</span>+=(zz_p& x, zz_p a);
zz_p& <span class="Statement">operator</span>+=(zz_p& x, <span class="Type">long</span> a);
zz_p& <span class="Statement">operator</span>-=(zz_p& x, zz_p a);
zz_p& <span class="Statement">operator</span>-=(zz_p& x, <span class="Type">long</span> a);
zz_p& <span class="Statement">operator</span>++(zz_p& x); <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>++(zz_p& x, <span class="Type">int</span>); <span class="Comment">// postfix</span>
zz_p& <span class="Statement">operator</span>--(zz_p& x); <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>--(zz_p& x, <span class="Type">int</span>); <span class="Comment">// postfix</span>
<span class="Comment">// procedural versions:</span>
<span class="Type">void</span> add(zz_p& x, zz_p a, zz_p b); <span class="Comment">// x = a + b</span>
<span class="Type">void</span> sub(zz_p& x, zz_p a, zz_p b); <span class="Comment">// x = a - b </span>
<span class="Type">void</span> negate(zz_p& x, zz_p a); <span class="Comment">// x = -a</span>
<span class="Comment">// PROMOTIONS: binary +, -, and procedures add, sub promote</span>
<span class="Comment">// from long to zz_p on (a, b).</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Multiplication </span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// operator notation:</span>
zz_p <span class="Statement">operator</span>*(zz_p a, zz_p b);
zz_p& <span class="Statement">operator</span>*=(zz_p& x, zz_p a);
zz_p& <span class="Statement">operator</span>*=(zz_p& x, <span class="Type">long</span> a);
<span class="Comment">// procedural versions:</span>
<span class="Type">void</span> mul(zz_p& x, zz_p a, zz_p b); <span class="Comment">// x = a * b</span>
<span class="Type">void</span> sqr(zz_p& x, zz_p a); <span class="Comment">// x = a^2</span>
zz_p sqr(zz_p a);
<span class="Comment">// PROMOTIONS: operator * and procedure mul promote from long to zz_p</span>
<span class="Comment">// on (a, b).</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Division</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Statement">operator</span> notation:
zz_p <span class="Statement">operator</span>/(z_p a, zz_p b);
zz_p& <span class="Statement">operator</span>/=(zz_p& x, zz_p a);
zz_p& <span class="Statement">operator</span>/=(zz_p& x, <span class="Type">long</span> a);
procedural versions:
<span class="Type">void</span> div(zz_p& x, zz_p a, zz_p b);
<span class="Comment">// x = a/b</span>
<span class="Type">void</span> inv(zz_p& x, zz_p a);
zz_p inv(zz_p a);
<span class="Comment">// x = 1/a</span>
<span class="Comment">// PROMOTIONS: operator / and procedure div promote from long to zz_p</span>
<span class="Comment">// on (a, b).</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Exponentiation</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> power(zz_p& x, zz_p a, <span class="Type">long</span> e); <span class="Comment">// x = a^e (e may be negative)</span>
zz_p power(zz_p a, <span class="Type">long</span> e);
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Random Elements</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> random(zz_p& x);
zz_p random_zz_p();
<span class="Comment">// x = random element in zz_p. Uses RandomBnd from ZZ.</span>
<span class="Type">void</span> VectorRandom(<span class="Type">long</span> k, zz_p *x);
<span class="Comment">// equivalent to random(x[i]) for i in [0..k), but fatser</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Input/Output</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
ostream& <span class="Statement">operator</span><<(ostream& s, zz_p a);
istream& <span class="Statement">operator</span>>>(istream& s, zz_p& x);
<span class="Comment">// a ZZ is read and reduced mod p</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Modulus Switching </span>
<span class="Comment">A class zz_pPush is provided for "backing up" the current modulus</span>
<span class="Comment">and installing a new one.</span>
<span class="Comment">Here is what you do to save the current modulus, temporarily</span>
<span class="Comment">set it to p, and automatically restore it:</span>
<span class="Comment"> { </span>
<span class="Comment"> zz_pPush push(p); </span>
<span class="Comment"> ...</span>
<span class="Comment"> }</span>
<span class="Comment">The constructor for push will save the current modulus, and install p as the</span>
<span class="Comment">current modulus. The destructor for push will restore the old modulus when the</span>
<span class="Comment">scope enclosing it exits. This is the so-called RAII (resource acquisition is</span>
<span class="Comment">initialization) paradigm.</span>
<span class="Comment">You could also do the following:</span>
<span class="Comment"> {</span>
<span class="Comment"> zz_pPush push; // just backup current modulus</span>
<span class="Comment"> ...</span>
<span class="Comment"> zz_p::init(p1); // install p1 </span>
<span class="Comment"> ...</span>
<span class="Comment"> zz_p::init(p2); // install p2</span>
<span class="Comment"> // reinstall original modulus as close of scope</span>
<span class="Comment"> }</span>
<span class="Comment"> </span>
<span class="Comment">The zz_pPush interface is good for implementing simple stack-like</span>
<span class="Comment">modulus "context switching". For more general context switching,</span>
<span class="Comment">see zz_pContext below. There is also an older zz_pBak class</span>
<span class="Comment">that may also be useful.</span>
<span class="Comment">..........................................................................</span>
<span class="Comment">It is critical that zz_p objects created under one zz_p modulus are not used in</span>
<span class="Comment">any non-trivial way "out of context", i.e., under a different (or undefined)</span>
<span class="Comment">zz_p modulus. However, for ease-of-use, some operations may be safely</span>
<span class="Comment">performed out of context. These safe operations include: the default and copy</span>
<span class="Comment">constructor, the destructor, and the assignment operator. In addition is is</span>
<span class="Comment">generally safe to read any zz_p object out of context (i.e., printing it out, or</span>
<span class="Comment">fetching its underlying representive using the rep() function).</span>
<span class="Comment">Any unsafe uses out of context are not in general checked, and may </span>
<span class="Comment">lead to unpredictable behavior.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// A convenient interface for common cases:</span>
<span class="Type">class</span> zz_pPush {
<span class="Statement">public</span>:
zz_pPush(); <span class="Comment">// just backup current modulus</span>
<span class="Type">explicit</span> zz_pPush(<span class="Type">long</span> p, <span class="Type">long</span> maxroot=NTL_FFTMaxRoot);
zz_pPush(INIT_FFT_TYPE, <span class="Type">long</span> index);
zz_pPush(INIT_USER_FFT_TYPE, <span class="Type">long</span> p);
<span class="Type">explicit</span> zz_pPush(<span class="Type">const</span> zz_pContext& context);
<span class="Comment">// backup current modulus and install the given one</span>
<span class="Comment">// see documentation for zz_p::init for more details</span>
<span class="Statement">private</span>:
zz_pPush(<span class="Type">const</span> zz_pPush&); <span class="Comment">// disabled</span>
<span class="Type">void</span> <span class="Statement">operator</span>=(<span class="Type">const</span> zz_pPush&); <span class="Comment">// disabled</span>
};
<span class="Comment">// more general context switching:</span>
<span class="Comment">// A zz_pContext object has a modulus q (possibly "null")</span>
<span class="Type">class</span> zz_pContext {
<span class="Statement">public</span>:
zz_pContext(); <span class="Comment">// q = "null"</span>
<span class="Type">explicit</span> zz_pContext(<span class="Type">long</span> p);
zz_pContext(INIT_FFT_TYPE, <span class="Type">long</span> index);
zz_pContext(INIT_USER_FFT_TYPE, <span class="Type">long</span> p);
<span class="Comment">// q = the given modulus</span>
<span class="Comment">// see documentation for zz_p::init for more details</span>
<span class="Type">void</span> save(); <span class="Comment">// q = CurrentModulus</span>
<span class="Type">void</span> restore() <span class="Type">const</span>; <span class="Comment">// CurrentModulus = q</span>
zz_pContext(<span class="Type">const</span> zz_pContext&); <span class="Comment">// copy</span>
zz_pContext& <span class="Statement">operator</span>=(<span class="Type">const</span> zz_pContext&); <span class="Comment">// assignment</span>
~zz_pContext(); <span class="Comment">// destructor</span>
};
/ An older interface:
<span class="Comment">// To describe this logic, think of a zz_pBak object</span>
<span class="Comment">// of having two components: a modulus q (possibly "null") and </span>
<span class="Comment">// an "auto-restore bit" b.</span>
<span class="Type">class</span> zz_pBak {
<span class="Statement">public</span>:
zz_pBak(); <span class="Comment">// q = "null", b = 0</span>
~zz_pBak(); <span class="Comment">// if (b) CurrentModulus = q</span>
<span class="Type">void</span> save(); <span class="Comment">// q = CurrentModulus, b = 1 </span>
<span class="Type">void</span> restore(); <span class="Comment">// CurrentModulus = q, b = 0</span>
<span class="Statement">private</span>:
zz_pBak(<span class="Type">const</span> zz_pBak&); <span class="Comment">// copy disabled</span>
<span class="Type">void</span> <span class="Statement">operator</span>=(<span class="Type">const</span> zz_pBak&); <span class="Comment">// assignment disabled</span>
};
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Miscellany</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">void</span> clear(zz_p& x); <span class="Comment">// x = 0</span>
<span class="Type">void</span> set(zz_p& x); <span class="Comment">// x = 1</span>
<span class="Type">static</span> mulmod_t zz_p::ModulusInverse();
<span class="Comment">// zz_p::ModulusInverse() returns PrepMulMod(zz_p::modulus()) </span>
<span class="Type">static</span> zz_p zz_p::zero();
<span class="Comment">// zz_p::zero() yields a read-only reference to zero</span>
<span class="Type">void</span> swap(zz_p& x, zz_p& y);
<span class="Comment">// swap x and y </span>
<span class="Type">static</span> <span class="Type">void</span> zz_p::init(<span class="Type">long</span> p, <span class="Type">long</span> maxroot);
<span class="Comment">// Same as ordinary zz_p::init(p), but somewhat more efficient. If you are</span>
<span class="Comment">// going to perform arithmetic modulo a degree n polynomial, in which</span>
<span class="Comment">// case set maxroot to NextPowerOfTwo(n)+1. This is useful, for</span>
<span class="Comment">// example, if you are going to factor a polynomial of degree n modulo</span>
<span class="Comment">// p, and you know n in advance.</span>
<span class="Comment">// If maxroot is set too low, the program will abort with an</span>
<span class="Comment">// appropriate error message.</span>
<span class="Type">static</span> <span class="Type">void</span> zz_p::FFTInit(<span class="Type">long</span> i);
<span class="Comment">// sets modulus to the i-th FFT prime (counting from 0). FFT primes</span>
<span class="Comment">// are NTL_SP_NBITS-bit primes p, where p-1 is divisible by a high power</span>
<span class="Comment">// of two. Thus, polynomial arithmetic mod p can be implemented</span>
<span class="Comment">// particularly efficiently using the FFT. As i increases, the power</span>
<span class="Comment">// of 2 that divides p-1 gets smaller, thus placing a more severe</span>
<span class="Comment">// restriction on the degrees of the polynomials to be multiplied.</span>
<span class="Type">static</span> <span class="Type">void</span> zz_p::UserFFTInit(<span class="Type">long</span> p);
<span class="Comment">// set the modulus to a user-provided FFT prime p. To be useful,</span>
<span class="Comment">// p-1 should be divisibly by a high power of 2. </span>
<span class="Comment">// The function is a utility routine that may be used to </span>
<span class="Comment">// calculate this value (see below). </span>
<span class="Comment">// If you are going to perform arithmetic modulo a degree n polynomial, </span>
<span class="Comment">// you will want CalcMaxRoot(p) >= NextPowerOfTwo(n)+1. </span>
zz_pContext::zz_pContext(<span class="Type">long</span> p, <span class="Type">long</span> maxroot);
<span class="Comment">// constructor for a zz_pContext with same semantics</span>
<span class="Comment">// as zz_p::init(p, maxroot) above.</span>
zz_pContext::zz_pContext(INIT_FFT_TYPE, <span class="Type">long</span> i);
<span class="Comment">// constructor for a zz_pContext with same semantics</span>
<span class="Comment">// as zz_p::FFTInit(i) above; invoke as zz_pContext(INIT_FFT, i).</span>
zz_pContext::zz_pContext(INIT_USER_FFT_TYPE, <span class="Type">long</span> p);
<span class="Comment">// constructor for a zz_pContext with same semantics</span>
<span class="Comment">// as zz_p::UserFFTInit(p) above; invoke as zz_pContext(INIT_USER_FFT, p).</span>
zz_p::zz_p(INIT_NO_ALLOC_TYPE);
<span class="Comment">// provided for consistency with other classes, initialize to zero</span>
zz_p::zz_p(INIT_ALLOC_TYPE);
<span class="Comment">// provided for consistency with other classes, initialize to zero</span>
zz_p::allocate();
<span class="Comment">// provided for consistency with other classes, no action</span>
<span class="Type">long</span> CalcMaxRoot(<span class="Type">long</span> p);
<span class="Comment">// p is assumed to be an odd prime.</span>
<span class="Comment">// Returns the largest k such that 2^k divides p-1</span>
<span class="Comment">// and such that k does not exceed an implementation defined</span>
<span class="Comment">// constant. This represents the max power of two for which</span>
<span class="Comment">// an FFT mod p is supported.</span>
<span class="Type">void</span> VectorConv(<span class="Type">long</span> k, zz_p *x, <span class="Type">const</span> ZZ *a);
<span class="Type">void</span> VectorConv(<span class="Type">long</span> k, zz_p *x, <span class="Type">const</span> <span class="Type">long</span> *a);
<span class="Comment">// equivalent to conv(x[i], a[i]) for i in [0..k), but fatser</span>
</pre>
</body>
</html>
<!-- vim: set foldmethod=manual : -->
|